

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 3, MAY 2003 703

Neural Associative Memory Storing Gray-Coded Gray-Scale Images
Giovanni Costantini, Daniele Casali, and Renzo Perfetti

Abstract—In this paper, we present a neural associative memory
storing gray-scale images. The proposed approach is based on a
suitable decomposition of the gray-scale image into gray-coded
binary images, stored in brain-state-in-a-box-type binary neural
networks. Both learning and recall can be implemented by parallel
computation, with time saving. The learning algorithm, used to
store the binary images, guarantees asymptotic stability of the
stored patterns, low computational cost, and control of the weights
precision. Some design examples and computer simulations are
presented to show the effectiveness of the proposed method.

Index Terms—Associative memories, brain-state-in-a-box (BSB)
neural networks, gray-scale images, neural networks with finite
precision weights.

I. INTRODUCTION

T HE realization of binary associative memories by recur-
rent neural networks has been widely explored [1]–[3].

One of the most promising area of application of associative
memories is that of image recognition in presence of noise.
The design goal is to recognize a noisy image, even if it dif-
fers from the original one in any pixel, as the human eye does.
An image with pixels and gray levels can be represented
using bits for each pixel. It can be stored using a
binary neural network with neurons; however, the number
of interconnections is very large, i.e., .

A second approach is based on a multilevel activation func-
tion with plateaus, in place of two as in the usual sigmoidal
function [4], [5]. The resulting neural network presents stable
equilibria with multivalued components, corresponding to the
different gray levels. The number of neurons is; the number of
interconnections is . For networks with multilevel sigmoidal
functions, sophisticated but heavy design methods have been
proposed.

A third approach is based on complex-valued neural networks
[6], [7]. The neuron state can assume one ofcomplex values,
with unit magnitude and different phases, regularly spaced be-
tween 0 and 2. Each phase angle corresponds to a different
gray level of the image pixel. The number of neurons is;
the number of interconnections is . For networks with com-
plex-valued neurons, only the simple Hebb rule is available, at
the best of our knowledge. It is well known that Hebb rule gives
poor performance in the case of binary images, as concerns both
storage capacity and noise suppression.

A different approach, investigated in this paper, consists in
the decomposition of the image into binary images, stored

Manuscript received March 7, 2002; revised October 21, 2002.
G. Costantini and D. Casali are with the Department of Electronic Engi-

neering, University of Rome “Tor Vergata,” Rome, Italy.
R. Perfetti is with the Dipartimento di Ingegneria Elettronica e dell’Infor-

mazione, Università di Perugia, 06125 Perugia, Italy (e-mail: perfetti@diei.
unipg.it).

Digital Object Identifier 10.1109/TNN.2003.810596

using independentbinaryneural networks. The total number
of interconnections is , but each independent network has
only interconnections. The networks can be implemented
via parallel hardware, both for learning and recall, with con-
siderable saving in time. This approach retains the two main
advantages of binary neural networks: the robustness of the
steady state solutions, with respect to noise and to inaccuracies
of implementation; the availability of efficient and simple
design methods.

Several neural models have been proposed in the literature
to realize binary associative memories. Among these, the
brain-state-in-a-box (BSB) neural network is frequently used
[8]–[12]. The connection weights of BSB neural networks
can be computed by solving a set of linear constraints. This
approach was developed by different researchers, using it-
erative algorithms [10], analog “designer” networks [11], or
semidefinite programs for linear matrix inequalities [12]. In
this paper, we use the algorithm proposed in [13], which faces
an important, rarely addressed, problem, i.e., the precision re-
quired to implement the neural network using digital hardware.
To this end, we compute weights with controlled precision,
so that the digital hardware implementation of the associative
memory will exhibit the same storage and retrieval performance
of simulations.

This paper is organized as follows. The BSB neural model
and the proposed learning algorithm, are shortly summarized in
Section II. In Section III, the decomposition of gray-scale im-
ages into binary ones is discussed. In Section IV, the algorithm
used to generate random gray-scale images for simulations, is
outlined. Section V presents some design examples and simula-
tion results. Some comments in Section VI conclude the paper.

II. BSB MODEL AND LEARNING ALGORITHM

To implement a binary associative memory, we use the BSB
neural model described by the following difference equation:

(1)

, is the state vector at time.
is the number of neurons. is the weight
matrix. is a vector valued function, whoseth component is
defined as

if

if

if (2)

Several analysis results are available for the above neural model.
In the following, we review only the most significant; the proof
can be found in [10].

1045-9227/03$17.00 © 2003 IEEE

704 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 3, MAY 2003

Fig. 1. Proposed architecture in the case of 16 gray levels.

Property 1

Let for . Then, only the vertices of
can be asymptotically stable equilibria of system (1).

As a consequence, if has nonnegative diagonal terms, only
binary steady-state solutions can be observed.

Property 2

Let , . is an asymptotically stable
equilibrium point of system (1) iff

(3)

Constraints (3) represent existence and stability conditions for
a given binary equilibrium point. They can be used as design
constraints, by solving (3) with respect to the weights, for a
given set of desired binary equilibrium points .

Property 3

Let , for . Assume that is
an asymptotically stable equilibrium point of system (1). Then,
none of the vectors at Hamming distance one from,
is an equilibrium point.

A zero-diagonal connection matrix guarantees the absence of
two or more equilibria at Hamming distance one, i.e., in close
proximity. Even if a trajectory starting at not necessarily con-
verges to , the condition , , is a prerequisite
to obtain large basins of attraction for the stored patterns [10].
Moreover, setting to zero the diagonal entries ofwe avoid the
trivial solution (all the vertices of

would be asymptotically stable equilibria [8]).
The design of a binary associative memory, based on model

(1), can be formulated as follows. Find the connection matrix
so that:

• a given set of binary vectors represent
as many asymptotically stable equilibria of system (1);

• the attractivity of the desired equilibria is as large as pos-
sible;

• the number of not desired stable equilibria is as small as
possible.

Taking into account the properties above, the design can be for-
mulated as a constraint satisfaction problem: findsuch that

(4)

Fig. 2. Gray coding.

Fig. 3. Description of the RMD algorithm.

Fig. 4. Two images generated by the modified RMD algorithm.

In order to compute the weights satisfying constraints (4), we
use the following iteration [13]:

(5)

where

if if

(6)

Each term of the sums in (5) can be1 or zero. As a conse-
quence, the learning algorithm (5) has the following properties.

1) Only additions are required for its implementation.
2) Starting from , the weights can be represented

as , where is a positive integer.

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 3, MAY 2003 705

Fig. 5. Gray-level distribution for image in Fig. 4(a).

Hence, all the weights (at each iteration) have finite preci-
sion. The required number of bits is , where

is the maximum value of .
3) The algorithm can be implemented or simulated on a dig-

ital hardware, without numerical errors, since no rounding
or truncation is required to represent the weights. A digital
implementation of the algorithm is described in [13].

Asymptotic convergence of (5) to a solution of (4) is not guar-
anteed, since the iteration can approach a limit cycle in the so-
lution space [13]. In our experiments, the algorithm is stopped
when all the terms become nonnegative, for everyand

. If this condition is not reached within a given number of iter-
ations, we say that the desired patterns cannot be stored with the
stability margin . By choosing sufficiently small, we obtain
satisfactory performance, as it will be shown in Section V.

III. D ECOMPOSITION OFGRAY SCALE IMAGES

Let consider an image with pixels and gray levels.
Each pixel can be represented by bits, , being

. So the image can be decomposed intobinary
images, each with pixels. Each binary image can be stored
into a binary associative memory, calledlayer, designed as
explained in Section II. The recall process will recover a stored
binary pattern in each layer. By combining the binary compo-
nents in each layer, we can reconstruct the original image. In
Fig. 1 the case is shown. Each pixel is represented by

bits. Four neural networks are used, each storing one
bit for each pixel. The four networks are not coupled, so a full
parallel implementation is possible, both for computation of
the weights, and for the recall process.

The coding strategy is of crucial importance. The usual
binary-weighted coding entails a high sensitivity to additive
Gaussian noise. Additive Gaussian noise with zero mean, gives
a high probability of jumping from a quantization interval
to an adjacent one. However, this jump could correspond to
the reversing of several bits. For example, moving from the
integer 3 to the integer 4, all the bits change (). As a
consequence, gaussian noise amplifies the Hamming distance
between the stored pattern and its noisy version, in each layer.

To circumvent this problem, we used the reflected-binary or
Gray code, which has the property that only one bit can change,
moving from one quantization interval to an adjacent one. The
input-output relation for a three-bit Gray coding is shown in
Fig. 2.

Now, moving from integer 3 to integer 4, only one bit
changes (). Using the Gray code, zero-mean addi-

Fig. 6. Image used to test the RMD algorithm.

tive gaussian noise results in the minimal Hamming distance,
in each layer, between the stored pattern and its noisy version.
As a consequence, the probability of correct recall is improved.

IV. RANDOM MIDPOINT DISPLACEMENTALGORITHM

To test the proposed associative memory design for gray-
scale images, we need a reliable method to generate random im-
ages, whose gray levels distribution is similar to that of real-life
images. To this end, we modified the random midpoint displace-
ment (RMD) algorithm invented by Mulvey [14], widely used in
different fileds to generate fractal pseudorandom images, called
plasmas.

The RMD can be outlined as follows.

1) Consider a rectangle with the same size as the image to be
generated [Fig. 3(a)]. Pick at random the gray levels of the
four pixels A,B,C and D.

2) Divide the rectangle into four sub-rectangles, as shown in
Fig. 3(b). The intensity of pixel E is computed as the mean
intensity value between pixels A and B, plus a small signed
random value, proportional to the size of segment AB. The
intensity of the remaining pixels F, G, and H is computed
the same way. Finally, the central pixel intensity is obtained
by adding a random value to the mean of the four intensities
E, F, G, and H.

3) Iterate Step 2 for each subrectangle, until the subrectangles
have the pixel size.

The images generated by this algorithm share some useful
features. In particular, nearby pixels have similar intensities, and
the mean value of the intensity is varying over the image. The
images generated by the RMD have a smooth appearance, but
using a threshold we can create objects with definite contours.
For example, if all the intensities below a given threshold are set
to zero, we obtain black objects on a smooth background.

706 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 3, MAY 2003

Fig. 7. Gray-level distribution for image in Fig. 6.

The intensity distribution of real-life images is characterized
by some sharp peaks, with irregular size and position. To gen-
erate images with this property, we modified the RMD algo-
rithm. As said above, using a threshold we can get black ob-
jects. We used this objects as “holes” through which we can see
a secondplasmaimage below the first, generated with the same
algorithm. Using different thresholds, we obtain several holes
which can be filled with differentplasmaimages. Using this
procedure we can closely approximate a practical image his-
togram.

Two examples of images generated by the modified RMD al-
gorithm, with 256 gray levels, are shown in Fig. 4. Fig. 5 shows
the histogram corresponding to Fig. 4(a). For sake of compar-
ison, Fig. 7 shows the histogram of the image in Fig. 6.

V. EXPERIMENTAL RESULTS

Some design examples are presented to show the effective-
ness of the proposed method. In all the following examples we
assume in (1) and in (5).

A. Example 1

In this example we try to store 50 gray-scale images of size
25 25, with gray levels (bits). The images are
stored using four neural networks with25 neurons
each.

The images are generated by the modified RMD algorithm,
described in Section IV. Table I summarizes the results of this
experiment. The first column shows the value of. The second
column represents the maximum magnitude of the connection
weights . The number of bits needed to represent the
weights is shown in the third column (see Section II). The last
column shows the number of iterations needed for the conver-
gence of the learning algorithm. In all the cases the 50 images
were stored correctly (all the constraints were satisfied).

Increasing , more iterations are required for convergence,
and an increasing number of bits is required to represent the
weights (Table I). Hence, the learning time and the space
(memory) required by the network, increase with. However,
the increased weight precision, improves the recall, as it will
be shown in the following examples. So, the choice ofis a
trade-off between network complexity and noise suppression
capacity.

B. Example 2

The design objective is to store 32 images with 5050
pixels, gray levels, and then recall them starting from

TABLE I
RESULTS OFEXAMPLE 1

corrupted versions. The images were randomly generated by
the modified RMD algorithm described above, and stored
using four neural networks with 2500 neurons each. We used
two different values for ,i.e., 100 and 500; storage of the 32
images is accomplished in both cases. Then, we tried to recall
the stored images, starting from a noisy version. Noisy initial
states were generated by adding zero mean Gaussian noise,
with standard deviation , to each pixel of the stored
images. We observed an improvement of error correction while
increasing . Using , the stored images were correctly
retrieved only in a few cases. Using we obtained a
probability of correct recall of about 98%.

C. Example 3

The design objective is to store two images with 200200
pixels and gray levels. The images arelennaandstefan,
shown in Fig. 8. Due to computer memory limitations, we par-
tition each image into 16 parts, each of size 5050. This way
we obtain 32 images 50 50 which can be stored using four
neural networks with 2500 neurons each. We used three dif-
ferent values of ,i.e., 100, 250, 800; storage is accomplished
with the values outlined in Table II.

Then, we tried to recall the stored images starting from a cor-
rupted version. Noisy initial states were generated by adding to
each pixel of the stored images, a zero mean Gaussian noise,
with standard deviation. Some examples of noisy images are
shown in Fig. 9.

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 3, MAY 2003 707

Fig. 8. Images stored in example 3.

TABLE II
RESULTS OFEXAMPLE 3

Fig. 9. Noisy versions of images in Fig. 8, with� = 1:7.

The recall results are summarized below.

– , . The four networks reached a stable
state within a maximum of 56 iterations. Only 24 out
of 32 images were correctly recalled.

– , . The four networks reached a stable
state within a maximum of seven iterations. All the 32
images were correctly recalled. By recombining them
we obtain the two full-size images in Fig. 8.

– , . The four networks reached a stable
state within a maximum of 47 iterations. Only 14 im-
ages were correctly recalled.

– , . The four networks reached a stable
state within a maximum of ten iterations. All the 32
images were correctly recalled. By recombining them
we obtain the two full-size images in Fig. 8.

VI. COMMENTS AND CONCLUSION

A neural architecture, storing gray-scale images, has been
proposed. The design examples show a reliable image retrieval
in presence of zero-mean additive Gaussian noise, for images
with 16 gray levels. Simulation results, not included here, show
a worse performance in the case of images with 256 gray levels.

Different methods have been proposed in the literature to
store multivalued images into a neural associative memory.

However, only few experimental results, on real images, are
available, since these approaches have been investigated mainly
from a theoretical viewpoint.

In the case of complex-valued networks, an estimation of
storage capacity is available, but only for networks designed by
the Hebb rule. The capacity depends on the ratio, where
is the number of stored images. The storage probability, derived
in [7], is comparable to our experimental results. However, the
ratio used in our experiments is quite low, due to computer
memory limitations and computation time. An investigation on
the capacity should be carried out with higher ratios.

The main advantages of the proposed decomposition ap-
proach, with respect to existing methods, can be summarized
as follows. Learning is easier, since several efficient and robust
methods are available for binary neural networks; even some
methods developed for bidirectional associative memories, as
that proposed in [15], [16], could be adapted to this scope. The

networks evolve in parallel; so, a parallel implementation is
possible both for storage and retrieval, giving the same learning
and recall speed of a binary neural network withneurons.

REFERENCES

[1] J. A. Anderson, J. W. Silverstein, S. A. Ritz, and R. S. Jones, “Distinctive
features, categorical perception and probability learning: Some applica-
tions of a neural model,”Psych. Rev., no. 84, pp. 413–451, 1977.

[2] Y. Kamp and M. Hasler,Recursive Neural Networks for Associative
Memory. Chichester, U.K.: Wiley, 1990.

[3] J. M. Zurada,Introduction to Artificial Neural Systems. St. Paul, MN:
West, 1992.

[4] J. Si and A. N. Michel, “Analysis and syntehsis of discrete-time neural
networks with multilevel threshold functions,” inProc. ISCAS, 1991, pp.
1461–1464.

[5] J. M. Zurada, I. Cloete, and E. van der Poel, “Generalized Hopfield net-
works for associative memories with multi-valued stable states,”Neuro-
computing, vol. 13, pp. 135–149, 1996.

[6] N. N. Aizenberg and I. N. Aizenberg, “CNN based on multi-valued
neuron as a model of associative memory for grey-scale images,”Proc.
IEEE Int. Workshop Cellular Neural Networks Applications, pp. 36–41,
1992.

[7] S. Jankowski, A. Lozowski, and J. M. Zurada, “Complex-valued multi-
state neural associative memory,”IEEE Trans. Neural Networks, vol. 7,
pp. 1491–1496, Nov. 1996.

[8] S. Hui and S. H. Zak, “Dynamical analysis of the brain-state-in-a-box
(BSB) neural models,”IEEE Trans. Neural Networks, vol. 3, pp.
86–100, May 1992.

[9] W. E. Lillo, D. C. Miller, S. Hui, and S. H. Zak, “Synthesis of brain-
state-in-a-box (BSB) based associative memories,”IEEE Trans. Neural
Networks, pp. 730–737, Sept. 1994.

[10] R. Perfetti, “A synthesis procedure for brain-state-in-a-box neural net-
works,” IEEE Trans. Neural Networks, vol. 6, pp. 1071–1080, Sept.
1995.

[11] H. Y. Chan and S. H. Zak, “On neural networks that design neural asso-
ciative memories,”IEEE Trans. Neural Networks, vol. 8, pp. 360–372,
Mar. 1997.

[12] J. Park, H. Cho, and D. Park, “On the design of BSB neural associative
memories using semidefinite programming,”Neural Comput., no. 11,
pp. 1985–1994, 1999.

[13] R. Perfetti and G. Costantini, “Multiplierless digital learning algorithm
for cellular neural networks,”IEEE Trans. Circuits Syst. I, vol. 48, pp.
630–635, May 2001.

[14] W.-C. Lau, A. Erramilli, J. L. Wang, and W. Willinger, “Self-similar
traffic generation: The random midpoint displacement algorithm and its
properties,” inIEEE Int. Conf. Communications, ‘Gateway to Global-
ization’, vol. 1, Seattle, 1995, pp. 466–472.

[15] Y. Wu and D. A. Pados, “A feedforward bidirectional associative
memory,” IEEE Trans. Neural Networks, vol. 11, pp. 859–866, July
2000.

[16] J. Park, C.-H. Kwon, and D. Park, “An optimization-based design proce-
dure for asymmetric bidirectional associative memories,”IEEE Trans.
Neural Networks, vol. 12, pp. 169–170, Jan. 2001.

