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Abstract 

Successful listening crucially depends on intact attentional filters that separate relevant 

from irrelevant information. Research into their neurobiological implementation has 

focused on two potential auditory filter strategies: the lateralization of alpha power and 

selective neural speech tracking. However, the functional interplay of the two neural 

filter strategies and their potency to index listening success in an ageing population 

remains unclear. Using electroencephalography and a dual-talker task in a 

representative sample of listeners (N=155; age=39–80 years), we here demonstrate an 

often-missed link from single-trial behavioural outcomes back to trial-by-trial changes 

in neural attentional filtering. First, we observe preserved attentional–cue-driven 

modulation of both neural filters across chronological age and hearing levels. Second, 

neural filter states vary independently of one another, demonstrating complementary 

neurobiological solutions of spatial selective attention. Stronger neural speech tracking 

but not alpha lateralization boosts trial-to-trial behavioural performance. Our results 

highlight the translational potential of neural speech tracking as an individualized 

neural marker of adaptive listening behaviour.  
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Introduction 

Real-life listening is characterized by the concurrence of sound sources that compete 

for our attention1. Successful speech comprehension thus relies on the differentiation 

of relevant and irrelevant inputs. Here, the concept of neural attentional ‘filters’ serves 

as an important and pervasive algorithmic metaphor of how auditory attention is 

implemented at the neural level2-4. Neural attentional filters can be instantiated by 

different mechanistic principles and recent studies have predominantly focused on two 

potential but nonexclusive neural filter strategies originating from distinct research 

traditions:  

From the visual domain stems an influential line of research that supports a role 

of alpha-band (~8–12 Hz) oscillatory activity in the implementation of controlled, top-

down suppression of behaviourally-irrelevant information5-8. Importantly, across 

modalities, it was shown that spatial-attention tasks are neurally supported by a 

hemispheric lateralization of alpha power over occipital, parietal but also the respective 

sensory cortices9-18. This suggests that asymmetric alpha modulation could act as a filter 

mechanism by modulating sensory gain already in early processing stages. 

In addition, a prominent line of research focuses on the role of low-frequency 

(1–8 Hz) neural activity in auditory and, broadly speaking, perisylvian cortex in the 

selective representation of speech input (“neural speech tracking”). Slow cortical 

dynamics temporally align with (or “track’’) auditory input signals to prioritize the neural 

representation of behaviourally-relevant sensory information19-22 (see also refs.23,24 for 

the neural tracking of contextual semantic information). In human speech 

comprehension, a key finding is the preferential neural tracking of attended compared 

to ignored speech in superior temporal brain areas close to auditory cortex25-29. 

However, with few exceptions9, these two proposed neural auditory filter 

strategies have been studied independently of one another (but see refs. 30,31 for recent 

results on visual attention). Also, they have often been studied using tasks that are 

difficult to relate to natural, conversation-related listening situations32,33. 

We thus lack understanding whether or how modulations in lateralized alpha 

power and the neural tracking of attended versus ignored speech in wider auditory 

cortex interact in the service of successful listening behaviour. Moreover, few studies 

using more real-life listening and speech-tracking measures were able to explicitly 

address the functional relevance of the discussed neural filter strategies, that is, their 

potency to explain behavioural listening success27,28. 

As part of an ongoing large-scale project on the neural and cognitive 

mechanisms supporting adaptive listening behaviour in healthy ageing, the current 

study aims at closing these gaps by leveraging the statistical power and 

representativeness of our large, age-varying participant sample. We use a dichotic 

listening paradigm to enable a synergistic look at concurrent single-trial changes in 

lateralized alpha power and neural speech tracking.  

More specifically, our linguistic variant of a classic Posner paradigm34 emulates 

a challenging dual-talker listening situation in which speech comprehension is 

supported by two different listening cues35,36. Of particular interest for the present 
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scientific endeavour is the spatial-attention cue that guides auditory attention in space. 

We additionally manipulated the semantic predictability of upcoming speech via a 

semantic category cue. While the effects of the semantic cue are of secondary 

importance for the present research questions, its manipulation still allows insights into 

whether semantic predictability modulates the engagement of neural attentional filter 

mechanisms, and how it affects listening success in a large cohort of middle-aged and 

older adults.  Previous research has shown that the sensory analysis of speech and, to a 

lesser degree, the modulation of alpha power are influenced by the availability of 

higher-order linguistic information37-42. 

Varying from trial to trial, both cues were presented either in an informative or 

uninformative version. This manipulation allowed us to understand how concurrent 

changes in the neural dynamics of selective attention and the resulting listening 

behaviour are connected. 

We focus on four main research questions (see Fig. 1). Note that in addressing 

these, we model additional known influences on listening success: age, hearing loss, as 

well as hemispheric asymmetries in speech processing due to the well-known right-ear 

advantage43,44.  
 

First, informative listening cues should increase listening success: These cues allow the 

listener to deploy auditory selective attention (compared to divided attention), and to 

generate more specific (compared to only general) semantic predictions, respectively.  

Second, we asked how the different cue–cue combinations would modulate the 

two key neurobiological measures of selective attention—alpha lateralization and 

neural speech tracking. We aimed to replicate previous findings of increased alpha 

lateralization and a preferential tracking of the target compared to the distractor speech 

signal under selective (compared to divided) spatial attention. At the same time, we 

capitalized on our age-varying sample to quantify the hitherto contested dependence 

of these neurobiological filters on participants’ chronological age and hearing loss14,45-

47. 

Third, an important and often neglected research question pertains to a direct, 

trial-by-trial relationship of these two candidate neural measures: Do changes in alpha 

lateralization impact the degree to which attended and ignored speech signals are 

neurally tracked by low-frequency cortical responses? 

Our final research question is arguably the most relevant one for all translational 

aspects of auditory attention; it has thus far only been answered indirectly when 

deeming these neurobiological filter mechanisms “attentional”:  To what extent do 

alpha lateralization and neural speech tracking allow us to explain behavioural 

outcome—that is, listening success—at the individual level and in a single trial?  

Here, we show how an attentional cue modulates neural speech tracking and 

alpha lateralization independently of age and hearing levels. We demonstrate the co-

existence of largely independent neural filters that pose complementary 

neurobiological implementations of selective attention. Stronger neural speech 

tracking but not alpha lateralization increases trial-to-trial listening performance. This 
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emphasizes the potential of neural speech tracking as a diagnostic neural measure of 

an individual’s listening success. 

 

Results 

We recorded and source-localized electroencephalography (EEG) signals in an age-

varying sample of healthy middle-aged and older adults (N=155; age=39–80 years, see 

Supplementary Fig. 1) who performed a challenging dichotic listening task. In this 

linguistic variant of a classic Posner paradigm35, participants listened to two concurrent 

five-word sentences spoken by the same female talker and were asked to identify the 

final word in one of the two sentences. Sentence pairs were temporally aligned to the 

onset of these task-relevant final words which led to slightly asynchronous sentence 

onsets. 

Importantly, sentence presentation was preceded by two visual cues. First, a 

spatial-attention cue encouraged the use of either selective or divided attention by 

providing informative or uninformative instructions about the to-be-attended, and thus 

later probed, ear. The second cue indicated the semantic category that applied to both 

final target words. The provided category could represent a general or specific level, 

thus allowing for more or less precise prediction of the upcoming speech signal (Fig. 2a, 

b). While this listening task does not tap into the most naturalistic forms of speech 

comprehension, it still approximates a dual-talker listening situation to probe the neural 

underpinnings of successful selective listening35. 

Using generalized linear mixed-effects models on single-trial data, we focus on 

two key neurobiological instantiations of auditory attention: the lateralization of 8–12 

Hz alpha power, emerging from auditory as well as parietal cortex, and the differential 

neural tracking of attended versus ignored speech by slow (1–8 Hz) auditory cortical 

responses. We investigate the how spatial cues, age, and hearing status modulate 

behaviour and neural filters, whether neural filters operate independently, and to which 

extent they influence selective listening success. 

 

Informative spatial cues improve listening success 

For behavioural performance, we tested the impact of informative versus uninformative 

cues on listening success. Overall, participants achieved a mean accuracy of 87.8 % ± sd 

9.1 % with a mean reaction time of 1742 ms ± sd 525 ms; as response speed: 0.62 s-1 ± sd 

0.17 s–1. 

As expected, behaviour depended on the different combinations of listening 

cues (Fig. 2c,d). Informative compared to uninformative spatial-attention cues yielded a 

strong behavioural benefit. In selective-attention trials, participants responded more 

accurately and faster (accuracy: generalized linear mixed-effects model (GLMM); odds 

ratio (OR)=3.5, std. error  (SE) =.12, p<.001; response speed: linear mixed-effects model 

(LMM); β=.57, SE=.04, p<.001; see Supplementary Tables 1 and 2). That is, when cued to 
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one of the two sides, participants responded on average 261 ms faster and their 

probability of giving a correct answer increased by 6 %. 

Also, participants responded generally faster in trials in which they were given 

a specific, more informative semantic cue (LMM; β=.2, SE=.03, p<.001), most likely 

reflecting a semantic priming effect that led to faster word recognition. Contrary to our 

expectations, a more informative semantic cue did not lead to more accurate responses 

(GLMM; OR=1.1, SE=.11, p=.69). 

As in a previous fMRI implementation of this task35, we did not find evidence for 

any interactive effects of the two listening cues on either accuracy (GLMM; OR=1.3, 

SE=.21, p=.36) or response speed (LMM; β=.09, SE=.06, p=.31). Moreover, the breakdown 

of error trials revealed a significantly higher proportion of spatial stream confusions (6 

% ± sd 8.3 %) compared to random errors (3 % ± sd 3.4 %; paired t-test on logit-

transformed proportions: t155 = 6.53, p<.001; see Supplementary Fig. 2). The increased 

rate of spatial stream confusions (i.e., responses in which the last word of the to-be-

ignored sentence was chosen) attests to the distracting nature of dichotic sentence 

presentation and thus heightened task difficulty.  

 

Spatial attention modulates both alpha  lateralization and neural speech tracking in 

auditory cortex 

In line with our second research question, following source projection of EEG data, we 

probed whether the presence of an informative spatial attention cue would lead to 

reliable modulation of both alpha power and neural speech tracking within an a priori 

defined auditory region of interest (ROI; see Supplementary Fig. 3 and Supplementary 

Methods for details). 

For alpha power, we expected an attention-induced lateralization due to a 

decrease in power contralateral and concomitant increase in power ipsilateral to the 

focus of attention. For neural speech tracking, we expected stronger neural tracking of 

attended compared to ignored speech under selective attention but no such systematic 

difference in the neural tracking of probed and unprobed sentences in divided-

attention trials. Accordingly, our analyses of alpha power and neural speech tracking 

focused on attentional modulation index measures that contrast the relative strength 

of neural responses to target versus distractor stimuli. In line with previous results, we 

expected alpha lateralization to be present throughout the auditory sentence 

presentation but to potentially increase around the task-relevant final word12,14,48. 

We compared alpha power changes ipsi- and contralateral to the probed ear to 

derive a temporally-resolved single-trial measure of alpha power lateralization [alpha 

lateralization index (ALI) = (α-poweripsi − α-powercontra) / (α-poweripsi + α-powercontra)]15. 

As shown in Figure 3a, an informative spatial cue—that is, the instruction to pay 

attention to a given side—elicited a pronounced lateralization of 8–12 Hz alpha power 

within the auditory ROI. Lateralization of alpha power was evident following the spatial 

cue itself and during dichotic sentence presentation with its strongest peak around final 

word presentation. 
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As expected, the statistical analysis of alpha lateralization during sentence 

presentation (time window: 3.5–6.5 s; see control analysis section below for results on 

the final word period) revealed a significant modulation by attention that was 

additionally influenced by the probed ear (LMM; spatial cue x probed ear: β=.13, SE=.02, 

p<.001; Fig. 3b). Follow-up analysis showed a significant difference in alpha 

lateralization between selective- and divided-attention trials when the right ear but not 

when the left was probed (LMM, right ear probed: β=.12, SE=.01, p<.001; LMM, left ear 

probed: β=–.016, SE=.013, p=.55; see Supplementary Table 3). This pattern suggests that 

when given an uninformative spatial cue, participants presumably payed overall more 

attention to the left-ear stimulus leading to an increase in alpha lateralization for 

probed-left compared to probed-right trials. 

Notably, we did not find any evidence for a modulation by the semantic cue nor 

any joint influence of the spatial and semantic cue on alpha lateralization during 

sentence presentation (LMM; semantic cue main effect: β=–.01, SE=.01, p=.53, spatial x 

semantic cue: β=–.02, SE=.02, p=.53). 

Not least, the extent of overall as well as attention-specific alpha lateralization 

was unaffected by participants’ chronological age and hearing loss (p-values > .27 for 

main effects of age, PTA, and their respective interactions with the spatial-attention cue; 

see also Supplementary Table 6 for a corresponding analysis of alpha power during the 

interval of the final word).  

 

In close correspondence to the alpha-power analysis, we investigated whether changes 

in attention or semantic predictability would modulate the neural tracking of attended 

versus ignored speech. We used linear backward (‘decoding’) models to reconstruct the 

onset envelopes of the to-be-attended and ignored sentences (for simplicity hereafter 

referred to as attended and ignored) from neural activity in the auditory ROI. 

Reconstruction models were trained on selective-attention trials only, but then utilized 

to reconstruct attended (probed) and ignored (unprobed) envelopes for both attention 

conditions (see Methods, Fig. 4a and Supplementary Fig. 4 for details). 

In line with previous studies26,28,49, the forward transformed temporal response 

functions (TRFs) show increased encoding of attended compared to ignored speech in 

the time window covering the N1TRF  and P2TRF component (see Fig. 4b, left panel). Here, 

however, this was observed particularly for right-ear inputs processed in the left 

auditory ROI.  

Further attesting to the validity of our reconstruction models, reconstructed 

attended envelopes were overall more similar to the envelope of the to-be-attended 

sentence than to that of the to-be-ignored sentence, and vice versa for the 

reconstructed ignored envelopes (see Fig. 4b, right panel).  

 

As shown in Figure 4c, the differential neural tracking of attended and ignored 

envelopes (probed and unprobed envelopes under divided attention) was modulated 

by attention. Following an informative spatial cue, the neural tracking index becomes 
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increasingly positive during the second half of sentence presentation with its highest 

peaks around final word onset.  

The statistical analysis of single-trial index values averaged for the time interval 

of final word presentation confirmed this pattern: The difference in the neural tracking 

of attended and ignored sentence was generally more pronounced under selective 

compared to divided attention (see control analysis section below for results on the 

entire sentence presentation). However, this effect was also modulated by differences 

in sentence onset: The difference in neural speech tracking between the two attention 

conditions was reduced when the attended/probed sentence started ahead of the 

distractor sentence. This effect was driven by an increase in differential neural speech 

tracking for divided attention in such trials: in absence of an informative spatial cue, 

participants’ attention was captured by the sentence with the earlier onset. 

Consequently, we observed overall more positive index values when the earlier 

sentence was probed compared to when it was not probed (LMM, earlier onset x spatial 

cue: β=–.05, SE=.02, p=.049, see Fig. 4d and Supplementary Table 4 for full model 

details). 

We also found a neural correlate of the known right-ear advantage for verbal 

materials, that is, an overall stronger tracking of left-ear inputs. This effect was 

independent of spatial-attention cueing (LMM; probed ear main effect: β=–.03, SE=.01, 

p=.023; spatial cue x probed ear: β=.02, SE=.02, p=.54). As for alpha power, we did not 

observe any modulation of neural tracking by the semantic cue, nor any joint influence 

of the spatial and semantic cue (LMM; semantic cue main effect: β=–.01, SE=.01, p=.53, 

interaction spatial x semantic cue: β=–.02, SE=.02, p=.53). 

Again, participants’ age and hearing status did not prove significant predictors 

of neural speech tracking (p-values > .54 for main effects of age, PTA, and their 

respective interactions with the spatial-attention cue, see also Supplementary Table 7 

for a corresponding analysis of neural tracking during the entire sentence presentation). 

 

Trial-to-trial neural speech tracking is independent of synchronous alpha 

lateralization 

Our third major goal was to investigate whether neural speech tracking versus the 

modulation of alpha power reflect two dependent neural mechanisms of auditory 

attention at all. We asked whether neural speech tracking could be explained by 

auditory alpha lateralization either at the state level (i.e., within an individual from trial 

to trial) or at the trait level (i.e., between individual mean levels; see Statistical analysis 

for details). If modulations of alpha power over auditory cortices indeed act as a neural 

filter mechanism to selectively gate processing during early stages of sensory analysis 

then heightened levels of alpha lateralization should lead to a more differentiated 

neural tracking of the attended vs. ignored speech and thus more a positive neural 

tracking index (cf. Fig. 5a).  

However, in the analysis of the task-relevant final word period, we did not find 

evidence for an effect of alpha lateralization on neural speech tracking at neither the 
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state nor the trait level (Fig. 5b, LMM; ALI within-subject effect: β=−.008, SE=.005, p=.35;  

ALI between-subject effect: β=−.0007, SE=.007, p=.98; see Supplementary Table 5). This 

notable absence of an alpha lateralization–neural speech tracking relationship held 

irrespective of spatial-attention condition or probed ear (all p-values>.35). 

To complement our fine-grained single-trial level investigation into the brain-

brain relationship with a coarser, yet time-resolved analysis, we related the temporal 

dynamics of both neural measures in an exploratory between-subjects cross-correlation 

analysis. As shown in Figure 5c, under selective attention, neural speech tracking and 

alpha lateralization follow different temporal trajectories with neural speech tracking 

peaking earlier than alpha lateralization around final word presentation. The average 

cross-correlation of the two neural time courses during sentence presentation confirms 

a systematic temporal delay with fluctuations in neural speech tracking leading those in 

alpha power by about 520 ms (see Fig. 5d).  
 

Neural speech tracking but not alpha lateralization explains listening behaviour 

Having established the functional independence of alpha lateralization and neural 

speech tracking at the single-trial level, the final piece of our investigation was to probe 

their relative functional importance for behavioural outcome.  

Using the same (generalized) linear mixed-effects models as in testing our first 

research question (Q1 in Fig.1), we investigated whether changes in task performance 

could be explained by the independent (i.e., as main effects) or joint influence (i.e., as an 

interaction) of neural measures. Again, we modelled the influence of the two neural 

filter strategies on behaviour at the state and trait level50.  

For response accuracy, our most important indicator of listening success, we 

observed an effect of trial-by-trial variation in neural speech tracking both during the 

presentation of the final word and across the entire sentence: participants had a higher 

chance of responding correctly in trials in which they neurally tracked the cued/probed 

sentence more strongly than the distractor sentence (see Fig. 6a, left panel). For changes 

in neural speech tracking extracted from the entire sentence presentation, this effect 

occurred independently of other modelled influences (GLMM; main effect neural 

tracking (within-subject effect): OR=1.06, SE=.02, p=.03; see Supplementary Table 12) 

while it was generally less pronounced and additionally modulated by the probed ear 

for the period of the task-relevant final word (GLMM; probed ear x neural tracking 

(within-subject effect): OR=1.1, SE=.04, p=.03; see Supplementary Table 1).  

The data held no evidence for any direct effects of trial-to-trial or participant-to-

participant variation in alpha lateralization during sentence or final word presentation 

on accuracy (all p-values > .18; see Supplementary Tables 1 and 12). We also did not find 

evidence for any joint effects of alpha power and neural speech tracking extracted from 

either of the two time windows (all p-values >.33). Importantly, the absence of an effect 

did not hinge on differences in neural measures across spatial-cue, or probed-ear levels 

as relevant interactions of neural measures with these predictors were included in the 

model (all p-values > .55). 
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The observed effects of neural filters on response speed depended on the 

analysed time window: while participants with relatively higher average levels of neural 

speech tracking during sentence presentation responded overall faster (LMM, neural 

tracking (between-subject effect): β=0.08, SE=.03, p=.01; see Fig 6a, right panel and 

Supplementary Table 13), we found a combined effect of neural dynamics during final 

word presentation. Under selective but not divided attention, response speed 

depended on a combination of trial-to-trial variation in both alpha lateralization and 

neural speech tracking (LMM; spatial cue x ALI (within-subject effect) x neural tracking 

index (within-subject effect): β=0.08, SE=.03, p=.01; see Supplementary Table 2). In short, 

responses were fastest in trials where relatively elevated levels in either neural speech 

tracking or alpha lateralization were paired with relatively reduced levels in the 

respective other neural measure thus highlighting the influence of two independent 

complementary filter solutions (see also Supplementary Fig. 5).  

 

In line with the literature on listening behaviour in ageing adults51,52, the 

behavioural outcome was further reliably predicted by age, hearing loss, and probed 

ear. We observed that participants’ performance varied in line with the well-attested 

right-ear advantage (REA, also referred to as left-ear disadvantage) in the processing of 

linguistic materials44. More specifically, participants responded both faster and more 

accurately when they were probed on the last word presented to the right compared to 

the left ear (response speed: LMM; β=.08, SE=.013, p<.001; accuracy: GLMM; OR=1.25, 

SE=.07, p=.006; see also Supplementary Fig. 6).  

Increased age led to less accurate and slower response (accuracy: GLMM; 

OR=.80, SE=.08, p=.025; response speed: LMM; β=–.15, SE=.03, p<.001). In contrast, 

increased hearing loss led to less accurate (GMM; OR=.75, SE=.08, p=.002) but not slower 

responses (LMM; β=–.05, SE=.03, p=.21, see Supplementary Tables 1–2, and 

Supplementary Fig. 7). 

 

Control analyses 

We ran additional control analyses to validate our main set of results. First, we asked 

whether the observed independence of alpha lateralization and neural speech tracking 

hinged on the precise time window and cortical site from neural measures were 

extracted. One set of control models thus included alpha lateralization during spatial-

cue rather than sentence presentation as a predictor of neural speech tracking during 

sentence and final word presentation. Next, we related the two neural filters during the 

entire sentence presentation rather than only during the final word.  

Second, we tested the hypothesis that neural speech tracking might be driven 

not primarily by alpha-power modulations emerging in auditory cortices, but rather by 

those generated in domain-general attention networks in parietal cortex53. We therefore 

ran control models including alpha lateralization within the inferior parietal lobule. 

However, none of these additional analyses found evidence for an effect of alpha 
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lateralization on neural speech tracking (see Supplementary Tables 8–11 and 

Supplementary Fig. 8).  

Third, we asked whether our neural speech tracking results were impacted by 

the range of time lags used for reconstruction, or by the specific decoder model 

underlying the neural tracking index. Reconstructing envelopes using a shorter time 

window (50–250 ms) did not significantly change the resulting neural tracking index 

values (LMM, β = .002, SE = .007, p = .84; see also Supplementary Fig. 9). In a separate 

analysis, we calculated the neural tracking index using only the attended decoder 

model, and probed its influence on behaviour. The results are overall in line with our 

main conclusions and particularly underscore the impact of neural speech tracking on 

response accuracy (see Supplementary Tables 14–17 for details). 

 Finally,  we tested whether changes in age or hearing loss would modulate the 

relationship of neural tracking and alpha lateralization with listening behaviour. 

However, the inclusion of the respective interaction terms did not further improve the 

statistical models of accuracy and response speed (all p-values > .44). 
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Discussion 

We have utilized the power of a representative sample of middle-aged and older 

listeners to explicitly address the question of how the two most eminent 

neurobiological implementations of attentional filtering, typically studied in isolation, 

relate to one another, and how they jointly shape listening success. In addition, we 

leveraged our age-varying sample to ask how chronological age and hearing loss affect 

the fidelity of neural filter strategies and their influence on behaviour. 

In our dichotic listening task, we source-localized the electroencephalogram, 

and primarily focused on systematic spatial-cue-driven changes within auditory cortex 

in alpha lateralization and the neural tracking of attended versus ignored speech. These 

results provide large-sample support for their suggested roles as neural instantiations 

of selective attention. 

First, an informative spatial-attention cue not only boosted both neural 

measures but also consistently boosted behavioural performance. Listening behaviour 

was additionally influenced by both trial-to-trial and individual-to-individual variation 

in neural speech tracking, with relatively stronger tracking of the target sentence 

leading to better performance. An informative semantic cue led to faster responses but 

did not affect the two neural measures, thus most likely reflecting a priming effect 

speeding up the analysis of response alternatives rather than the differential processing 

of the sentences themselves. 

Second, when related at the single-trial, single-subject level, the two neural 

attentional filter mechanisms were found to operate statistically independently of each 

other. This underlines their functional segregation and speaking to two distinct 

neurobiological implementations. Yet, when related in a coarser, between-subjects 

analysis across time, peaks in selective neural tracking systematically preceded those in 

alpha lateralization.  

Importantly, while chronological age and hearing loss reliably decreased 

behavioural performance they did not systematically affect the fidelity of neural filter 

strategies nor their influence on behaviour. 

 

Neural speech tracking but not alpha lateralization predicts listening success 

The present study explicitly addressed the often overlooked question of how 

neural filter states (i.e., fluctuations from trial-to-trial) impact behaviour, here single-trial 

listening success54-57. Using a sophisticated linear-model approach that probed the 

impact of both state- and trait-level modulation of neural filters on behaviour, we only 

found evidence for a direct influence of neural speech tracking but not alpha 

lateralization on behavioural performance even though all three measures were 

robustly modulated by the presence of a spatial cue (see Fig. 6). What could be the 

reason for this differential impact of neural measures on behaviour? 

To date, the behavioural relevance of selective neural speech tracking is still 

poorly supported given the emphasis on more naturalistic, yet more complex language 

stimuli58,59. While these stimuli provide a window onto the most natural forms of speech 
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comprehension, they are not easily paired with fine-grained measures of listening 

behaviour. This makes it particularly challenging to establish a direct link between 

differential neural speech tracking and listening success23,25,26,49,60. Nevertheless, there is 

preliminary evidence linking stronger neural tracking to improved comprehension 

when it is tested at a comparably high level28 (i.e., content questions on longer speech 

segments). Our current results thus provide important additional fine-grained and 

temporally resolved support to the functional relevance of selective neural speech 

tracking for moment-to-moment listening behaviour61-63. 

Despite a vast number of studies investigating the role of (lateralized) alpha 

oscillations in attentional tasks, the circumstances under which their top-down 

modulation may affect the behavioural outcome are still insufficiently understood31. 

Rather, the presence of a stable brain–behaviour relationship hinges on several factors.  

First, the link of neural filter state to behaviour seems to be impacted by age: 

most evidence linking increased alpha lateralization to better task performance in 

spatial-attention tasks stems from smaller samples of young adults12,15,64,65. By contrast, 

the presence of such a systematic relationship in middle-age and older adults is 

obscured by considerable variability in age-related changes at the neural (and to some 

extent also behavioural) level14,66-69 (see discussion below). 

Second, previous findings differ along (at least) two dimensions: (i) whether the 

functional role of alpha lateralization is studied during attention cueing, stimulus 

anticipation, or stimulus presentation9,66,70, and (ii) whether behaviour is related to the 

overall strength of alpha lateralization or its stimulus-driven rhythmic modulation12,14. 

Depending on these factors, the observed brain–behaviour relations may relate to 

different top-down and bottom-up processes of selective auditory attention.  

Third, as shown in a recent study by Wöstmann et al.70, the neural processing of 

target and distractor are supported by two uncorrelated lateralized alpha responses 

emerging from different neural networks. Notably, their results provide initial evidence 

for the differential behavioural relevance of neural responses related to target selection 

and distractor suppression, respectively.  

In summary, it is still a matter of debate by which mechanistic pathway, and at 

which processing stage the modulation of alpha power will impact behaviour. While it 

is (often implicitly) assumed that alpha oscillations impact behaviour via a modulation 

of neural excitability and thus early sensory processing, there is little evidence that 

shows a direct influence of alpha oscillation on changes in neural excitability and on 

subsequent behaviour31,71.  

Lastly, the increase in alpha lateralization around final word presentation could 

at least partially reflect post-perceptual processes associated with response selection 

rather than the perceptual analysis itself72. The observed combined influence of neural 

tracking and alpha lateralization on response speed but not accuracy would seem 

compatible with such an interpretation (but see also ref.73 for the combined influence of 

non-lateralized alpha power and neural speech tracking on intelligibility in a non-spatial 

listening task). 
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Taken together, our results underscore the impact of prioritized sensory 

encoding of relevant sounds via selective neural speech tracking on listening 

performance and highlight the difficulty in establishing a comparable link for a neural 

signature as multifaceted as alpha oscillations74-76. 

 

Are fluctuations in lateralized alpha power and neural speech tracking functionally 

connected? 

We investigated attention-related changes in two neural filter strategies that (i) involve 

neurophysiological signals operating at different frequency regimes, (ii) are assumed to 

support auditory attention by different neural mechanisms, and (iii) are typically studied 

in isolation6,22. Here, we found both neural filter strategies to be impacted by the same 

spatial-attention cue which afforded insights into their neurobiological dependence. 

There is preliminary evidence, mostly from between-subjects analyses, 

suggesting that the two neural filter strategies may exhibit a systematic 

relationship9,14,32,33,77. How the two neural filter strategies may be connected 

mechanistically is thus still an open question. We here asked whether concurrent 

changes in neural filter states would imply a neural hierarchy in which alpha-driven 

controlled inhibition modulates the amplification of behaviourally relevant sensory 

information via selective neural speech tracking78-80.  

Our in-depth trial-by-trial analysis revealed independent modulation of alpha 

power and neural speech tracking. At the same time, in our exploratory between-

subjects cross-correlation analysis we observed a systematic temporal delay with peaks 

in neural speech tracking leading those in alpha lateralization. While the direction and 

duration of this delay were closely in line with previous findings12,14, at this coarser level 

of analysis, they speak against a hierarchy of neural processing in which lateralized alpha 

responses govern the differential neural tracking of attended versus ignored speech81. 

Our single-trial results are well in line with recent reports of independent 

variation in alpha band activity and steady-state (SSR) or frequency following responses 

(FFR) in studies of visual spatial attention30,31,82. Additionally, the inclusion of single-trial 

alpha lateralization as an additional training feature in a recent speech-tracking study 

failed to improve the decoding of attention83. The results from our most fine-grained 

single-trial level of analysis thus speak against a consistent, linear relationship of 

momentary neural filter states. We observed instead the co-existence of two 

complementary but seemingly independent neurobiological solutions to the 

implementation of auditory selective attention. 

 

How can this finding be reconciled with findings from previous electrophysiological 

studies9,32,33 pointing towards a functional trade-off between neurobiological 

attentional filter mechanisms? And what could be an advantage to independent neural 

solutions for selective auditory attention? 

Our between-subjects cross-correlation analysis appears to provide at least 

tentative support for a systematic relationship in which peaks in neural speech tracking 
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precede those in alpha lateralization. A closer inspection of the group-level temporal 

modulation of neural measures throughout sentence presentation, however, reveals 

some important differences to previous results. Whereas earlier studies reported an 

acyclic waxing and waning of neural entrainment and alpha power in response to 

rhythmic auditory stimulation12,14,33, in the current study, the two neural measures show 

different temporal dynamics: neural speech tracking gradually increases leading up to 

the final word, while alpha lateralization peaks at sentence and final word onset. The 

temporal dynamics of alpha lateralization, in particular, may point to strategic 

intermittent engagement of spatial attention in line with task demands48. 

Do these differences in temporal dynamics of the two neural filters challenge 

the existence of a systematic single-trial brain–brain relationship? Yes, but they also 

point to a potential benefit of independent neural filter solutions. If the two neural 

measures of auditory attention were indeed functionally unconnected as suggested by 

the current results, they would allow for a wider range of neural filter state 

configurations to flexibly adapt to the current task demands and behavioural goals. The 

co-existence of two independent but complementary filter mechanisms operating 

either via the selective amplification of relevant or via the controlled inhibition of 

irrelevant sounds, enables different modes of auditory attention to serve a listener’s 

goal in the face of complex real-life listening situations20,84,85. 
 

Do age and hearing loss affect neural filter strategies?  

The detrimental effects of increasing age and associated hearing loss on speech 

comprehension in noisy listening situations are well attested86 and borne out by the 

current results. However, the extent to which the neural implementations of attentional 

filtering are affected by age and hearing loss, and in how far they may constitute neural 

markers of age-related speech comprehension problems, remains poorly understood51. 

 As in a previous study on a subset of the current sample, we found the fidelity 

of alpha lateralization unchanged with age14. Other studies on auditory attention, 

however, have observed diminished and less sustained alpha lateralization for older 

compared to younger adults that were to some extend predictive of behaviour66,87,88. 

 Our observation of preserved neural speech tracking across age and hearing 

levels only partially agree with earlier findings. They are in line with previous reports of 

differential neural tracking of attended and ignored speech for hearing impaired older 

adults that mirrored the attentional modulation observed for younger or older normal-

hearing adults45-47,89. As revealed by follow-up analysis (see Supplementary Tables 18–

19), however, our data do not provide evidence for a differential impact of hearing loss 

on the neural tracking of attended or ignored speech as found in some of these studies. 

We also did not find evidence for overall increased levels of cortical neural tracking with 

age as observed in earlier studies90,91. 

The discrepancy in results may be explained by differences in (i) the studied 

populations (i.e., whether groups of younger and older participants were contrasted 

compared to the modelling of continuous changes in age and hearing loss), (ii) whether 
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natural stories or short Matrix sentence speech materials were used92, or (iii) by 

differences in task details. In sum, the results suggest that the commonly observed 

adverse effects of age and hearing loss on speech-in-noise processing are not readily 

paired with concomitant changes at the neural level.  

  

In a representative, age-varying sample of listeners, we underscore the functional 

significance of lateralized alpha power and neural speech tracking to spatial attention. 

Our results point to the co-existence of two independent yet complementary neural 

filter mechanisms to be flexibly engaged depending on a listener’s attentional goals. 

However, we see no direct, behaviourally relevant impact of alpha power modulation 

on early sensory gain processes.  

Only for neural speech tracking, we establish a mechanistic link from trial-to-trial 

neural filtering during the concurrent sound input to the ensuing behavioural outcome. 

This link exists irrespective of age and hearing status, which points to the potency of 

neural speech tracking to serve as an individualized marker of comprehension problems 

in clinical settings and as a basis for translational neurotechnological advances.  

This key advance notwithstanding, the notable absence of an association 

between alpha lateralization and listening behaviour also highlights the level of 

complexity associated with establishing statistically robust relationships of complex 

neural signatures and behaviour in the deployment of auditory attention. To 

understand how the brain enables successful selective listening it is necessary that 

studies go beyond characterization of neurobiological filter mechanisms alone, and 

further jointly account for the variability in both neural states and behavioural 

outcomes93.  
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Methods 

Data collection 

The analysed data are part of an ongoing large-scale study on the neural and cognitive 

mechanisms supporting adaptive listening behaviour in healthy middle-aged and older 

adults (“The listening challenge: How ageing brains adapt (AUDADAPT)”; 

https://cordis.europa.eu/project/rcn/197855_en.html). This project encompasses the 

collection of different demographic, behavioural, and neurophysiological measures 

across two time points. The analyses carried out on the data aim at relating adaptive 

listening behaviour to changes in different neural dynamics35,36.  
 

Participants and procedure 

A total of N = 155 right-handed German native speakers (median age 61 years; age range 

39–80 years; 62 males; see Supplementary Fig. 1 for age distribution) were included in 

the analysis. Handedness was assessed using a translated version of the Edinburgh 

Handedness Inventory94. All participants had normal or corrected-to-normal vision, did 

not report any neurological, psychiatric, or other disorders and were screened for mild 

cognitive impairment using the German version of the 6-Item Cognitive Impairment 

Test (6CIT95).  

During the EEG measurement, participants performed six blocks of a 

demanding dichotic listening task (see Fig. 2 and Supplementary Methods for details on 

sentence materials). 

As part of our the overarching longitudinal study on adaptive listening 

behaviour in healthy aging adults, prior to the EEG session, participants also underwent 

a session consisting of a general screening procedure, detailed audiometric 

measurements, and a battery of cognitive tests and personality profiling (see ref.14 for 

details). Only participants with normal hearing or age-adequate mild-to-moderate 

hearing loss were included (see Supplementary Fig. 1 for individual audiograms). As part 

of this screening procedure an additional 17 participants were excluded prior to EEG 

recording due to non-age-related hearing loss or a medical history. Three participants 

dropped out of the study prior to EEG recording and an additional 9 participants were 

excluded from analyses after EEG recording: three due to incidental findings after 

structural MR acquisition, and six due to technical problems during EEG recording or 

overall poor EEG data quality. Participants gave written informed consent and received 

financial compensation (8€ per hour). Procedures were approved by the ethics 

committee of the University of Lübeck and were in accordance with the Declaration of 

Helsinki.  

 

Dichotic listening task 

In a recently established35 linguistic variant of a classic Posner paradigm34, participants 

listened to two competing, dichotically presented five-word sentences. They were 

probed on the sentence-final noun in one of the two sentences. All sentences had the 
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followed the same sentence structure and had an average length of 2512 ms (range: 

2183–2963 ms).  

Sentences were spoken by the same female talker. Root mean (mean) square 

intensity (– 26 dB Full Scale, FS) was equalized across all individual sentences and they 

were masked by continuous speech-shaped noise at a signal-to-noise-ratio of 0 dB. 

Noise onset was presented with a 50 ms linear onset ramp and preceded sentence onset 

by 200 ms. Each sentence pair was temporally aligned by the onset of the two task-

related sentence-final nouns. This, however led to slight differences in the onset on the 

individual sentences. Crucially, the range and average sentence onset difference was 

similar for trials in which the probed (to-be-attended) sentence began earlier and those 

in which the unprobed (to-be-ignored) sentence began earlier (probed first: range: 0–

580 ms, 162.1 ms ± 124.6; unprobed first: 0–560 ms, 180.6 ms ± 127.2). All participants 

listened to the same 240 sentence pairs but in subject-specific randomized order. In 

addition, across participants we balanced the assignment of sentences to the right and 

left ear, respectively. Details on stimulus construction and recording can be found in the 

Supplementary Methods. 

Critically, two visual cues preceded auditory presentation. First, a spatial-

attention cue either indicated the to-be-probed ear, thus invoking selective attention, 

or did not provide any information about the to-be-probed ear, thus invoking divided 

attention. Second, a semantic cue specified a general or a specific semantic category for 

the final word of both sentences, thus allowing to utilize a semantic prediction. Cue 

levels were fully crossed in a 2×2 design and presentation of cue combinations varied 

on a trial-by-trial level (Fig. 2a). The trial structure is exemplified in Figure 2b.  

Each trial started with the presentation of a fixation cross in the middle of the 

screen (jittered duration: mean 1.5 s, range 0.5–3.5 s). Next, a blank screen was shown 

for 500 ms followed by the presentation of the spatial cue in the form of a circle 

segmented equally into two lateral halves. In selective-attention trials, one half was 

black, indicating the to-be-attended side, while the other half was white, indicating the 

to-be-ignored side. In divided-attention trials, both halves appeared in grey. After a 

blank screen of 500 ms duration, the semantic cue was presented in the form of a single 

word that specified the semantic category of both sentence-final words. The semantic 

category could either be given at a general (natural vs. man-made) or specific level (e.g. 

instruments, fruits, furniture) and thus provided different degrees of semantic 

predictability. Each cue was presented for 1000 ms.  

After a 500 ms blank-screen period, the two sentences were presented 

dichotically along with a fixation cross displayed in the middle of the screen. Finally, 

after a jittered retention period, a visual response array appeared on the left or right side 

of the screen, presenting four word choices. The location of the response array indicated 

which ear (left or right) was probed. Participants were instructed to select the final word 

presented on the to-be-attended side using the touch screen. Among the four 

alternatives were the two actually presented nouns as well as two distractor nouns from 

the same cued semantic category. Note that because the semantic cue applied to all 
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four alternative verbs, it could not be used to post-hoc infer the to-be-attended 

sentence-final word.   

Stimulus presentation was controlled by PsychoPy Standalone v2.096. The visual 

scene was displayed using a 24” touch screen (ViewSonic TD2420) positioned within an 

arm’s length. Auditory stimulation was delivered using in-ear headphones (EARTONE 

3A) at sampling rate of 44.1 kHz. Following instructions, participants performed a few 

practice trials to familiarize themselves with the listening task. To account for differences 

in hearing acuity within our group of participants, individual hearing thresholds for a 

500-ms fragment of the dichotic stimuli were measured using the method of limits. All 

stimuli were presented 50 dB above the individual sensation level. During the 

experiment, each participant completed 60 trials per cue-cue condition, resulting in 240 

trials in total. The cue conditions were equally distributed across six blocks of 40 trials 

each (~ 10 min) and were presented in random order. Participants took short breaks 

between blocks. 

 

Behavioural data analysis 

We evaluated participants’ behavioural performance in the listening task with respect 

to accuracy and response speed. For the binary measure of accuracy, we excluded trials 

in which participants failed to answer within the given 4-s response window (‘timeouts’). 

Spatial stream confusions, that is trials in which the sentence-final word of the to-be-

ignored speech stream were selected, and random errors were jointly classified as 

incorrect answers. The analysis of response speed, defined as the inverse of reaction 

time, was based on correct trials only. Single-trial behavioural measures were subjected 

to (generalized) linear mixed-effects analysis and regularized regression (see Statistical 

analysis). 

 

EEG data analysis 

The preprocessed continuous EEG data (see Supplementary Methods for details on data 

collection and preprocessing) were high-pass-filtered at 0.3 Hz (finite impulse response 

(FIR) filter, zero-phase lag, order 5574, Hann window) and low-pass-filtered at 180 Hz 

(FIR filter, zero-phase lag, order 100, Hamming window). The EEG was cut into epochs of 

–2 to 8 s relative to the onset of the spatial-attention cue to capture cue presentation as 

well as the entire auditory stimulation interval.  

For the analysis of changes in alpha power, EEG data were down-sampled to 

fs=250 Hz. Spectro-temporal estimates of single-trial data were then obtained for a time 

window of −0.5 to 6.5 s (relative to the onset of the spatial-attention cue) at frequencies 

ranging from 8 to 12 Hz (Morlet’s wavelets; number of cycles = 6). 

For the analysis of the neural encoding of speech by low-frequency activity, the 

continuous preprocessed EEG were down-sampled to fs=125 Hz and filtered between 

fc=1 and 8 Hz (FIR filters, zero-phase lag, order: 8fs/fc and 2fs/fc, Hamming window). The 
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EEG was cut to yield individual epochs covering the presentation of auditory stimuli, 

beginning at noise onset until the end of auditory presentation.  

Following EEG source and forward model construction (see Supplementary 

Methods for details), sensor-level single-trial data in each of our two analysis routines 

were projected to source space by matrix-multiplication of the spatial filter weights. To 

increase signal-to-noise ratio in source estimates and computationally facilitate source-

level analyses, source-projected data were averaged across grid-points per cortical area 

defined according to the HCP functional parcellation template97,98. This parcellation 

provides a symmetrical delineation of each hemisphere into 180 parcels for a total of 

360 parcels. We constrained the analysis of neural measures to an a priori defined, 

source-localized auditory region of interest (ROI) as well as one control ROI in the inferior 

parietal lobule (see Supplementary Methods for details). The described analyses were 

carried out using the Fieldtrip toolbox (v. 2017-04-28) in Matlab 2016b, and the Human 

Connectome Project Workbench software (v1.5) as well as FreeSurfer (v.6.0). 

 

Attentional modulation of alpha power 

Absolute source power was calculated as the square-amplitude of the spectro-temporal 

estimates. Since oscillatory power values typically follow a highly skewed, non-normal 

distribution, we applied a nonlinear transformation of the Box-Cox family (powertrans = 

(powerp −1)/p with p=0.5) to minimize skewness and to satisfy the assumption of 

normality for parametric statistical tests involving oscillatory power values99. To quantify 

attention-related changes in 8–12 Hz alpha power, per ROI, we calculated the single-

trial, temporally resolved alpha lateralization index as follows12,14,15. 

 
ALI = (α-poweripsi − α-powercontra)/(α-poweripsi + α-powercontra)  (1) 

 

To account for overall hemispheric power differences that were independent of 

attention modulation, we first normalized single-trial power by calculating per parcel 

and frequency the whole-trial (–0.5–6.5 s) power averaged across all trials and 

subtracted it from single trials. We then used a robust variant of the index that applies 

the inverse logit transform [(1 / (1+ exp(−x))] to both inputs to scale them into a 

common, positive-only [0;1]-bound space prior to index calculation.  

For visualization and statistical analysis of cue-driven neural modulation, we 

then averaged the ALI across all parcels within the auditory ROI and extracted single-

trial mean values for the time window of sentence presentation (3.5–6.5 s), and treated 

them as the dependent measure in linear mixed-effects analysis (see Statistical Analysis 

below). They also served as continuous predictors in the statistical analysis of brain–

behaviour and brain–brain relationships. We performed additional analyses that 

focused on the ALI in auditory cortex during presentation of the sentence-final word 

and spatial-attention cue, respectively. Further control analyses included single-trial ALI 

during sentence and final-word presentation that were extracted from the inferior 

parietal ROI.  
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Estimation of envelope reconstruction models 

To investigate how low-frequency (i.e., < 8 Hz) fluctuations in EEG activity relate to the 

encoding of attended and ignored speech, we trained stimulus reconstruction models 

(also termed decoding or backward models) to predict the onset envelope (see 

Supplementary Methods for details) of the attended and ignored speech stream from 

EEG100,101. In this analysis framework, a linear reconstruction model g is assumed to 

represent the linear mapping from the recorded EEG signal, r(t,n), to the stimulus 

features, s(t): 

 

�̂�(𝑡) = ∑ ∑ 𝑔(𝜏, 𝑛)𝑟(𝑡 + 	𝜏, 𝑛)/0       (2) 

 

where sˆ(t) is the reconstructed onset envelope at time point t. We used all parcels within 

the bilateral auditory ROI and time lags τ in the range of –100 ms to 500 ms to compute 

envelope reconstruction models using ridge regression102: 

 

𝑔 = (𝑅2𝑅 + 	𝜆𝑚𝐼)67𝑅2𝑠       (3) 

 

where R is a matrix containing the sample-wise time-lagged replication of the neural 

response matrix r, λ is the ridge parameter for regularization, I is the identity matrix , and 

m is a subject-specific scalar representing the mean of the trace of RTR103,104. The same 

grid of ridge parameters (l = 10-5, 10-4, …1010) was used across subject, and m proved to 

be relatively stable across subjects (387.2 ± 0.18, mean ± sd). The optimal ridge value of 

l = 1 was determined based on the average Pearson’s correlation coefficient and mean 

squared error of the reconstructed and actually presented envelope across all trials and 

subjects.   

 

Compared to linear forward (‘encoding’) models that derive temporal response 

functions (TRFs) independently for each EEG channel or source, stimulus reconstruction 

models represent multivariate impulse response functions that exploit information 

from all time lags and EEG channels/sources simultaneously. To allow for a 

neurophysiological interpretation of backward model coefficients, we additionally 

transformed them into linear forward model coefficients105. All analyses were performed 

using the multivariate temporal response function (mTRF) toolbox100 (v1.5)  for Matlab 

(v. 2016b). 

Prior to model estimation, we split the data based on the two spatial attention 

conditions (selective vs. divided), resulting in 120 trials per condition. Envelope 

reconstruction models were trained on concatenated data from selective-attention 

trials, only. Prior to concatenation, single trials were zero-padded for 600ms to reduce  

discontinuity artefacts, and one trial was left out for subsequent testing. On each 

iteration, two different backward models were estimated, an envelope reconstruction 

model for the-be-attended speech stream (short: attended reconstruction model), and 

one for the to-be-ignored speech stream (short: ignored reconstruction model. 

Reconstruction models for attended and ignored speech signals were trained separately 

for attend-left and attend-right trials which yielded 120 decoders (60 attended, 60 
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ignored) per attentional setting. For illustrative purposes, we averaged the forward 

transformed models of attended and ignored speech per hemisphere across all 

participants (Fig. 4B).  

 

Evaluation of neural tracking strength 

We analysed how strongly the attended compared to ignored sentences were tracked 

by slow cortical dynamics by quantifying the envelope reconstruction accuracy for 

individual trials. To this end, we reconstructed the attended and ignored envelope of a 

given trial using a leave-one-out cross-validation procedure. The two envelopes of a 

given trial were reconstructed using the models trained on all but the current trial from 

the same attention condition. The reconstructed onset envelope obtained from each 

model was then compared to onset envelopes of the actually presented speech signals 

using a 248-ms sliding window (rectangular window, step size of 1 (8 ms) sample). The 

resulting time courses of Pearson-correlation coefficients, rattended and rignored, reflect a 

temporally resolved measure of single-trial neural tracking strength or reconstruction 

accuracy28 (see Fig. 4 and Supplementary Fig. 4). 

We proceeded in a similar fashion for divided-attention trials. Since these trials 

could not be categorized based on the to-be-attended and -ignored side, we split them 

based on the ear that was probed at the end the trial. Given that even in the absence of 

a valid attention cue, participants might still (randomly) focus their attention to one of 

the two streams, we wanted to quantify how strongly the probed and unprobed 

envelopes were tracked neurally. We used the reconstruction models trained on 

selective-attention trials to reconstruct the onset envelopes of divided-attention trials. 

Sentences presented in probed-left/unprobed-right trials were reconstructed using the 

attend-left/ignore-right reconstruction models while probed-right/unprobed-left trials 

used the reconstruction models trained on attend-right/ignore-left trials. 

 

Attentional modulation of neural tracking 

In close correspondence to the alpha lateralization index, we calculated a neural 

tracking index throughout sentence presentation. The index expresses the difference in 

neural tracking of the to-be-attended and ignored sentence (in divided attention: 

probed and unprobed, respectively)27: 

 
Neural tracking index = (rattended − rignored)/( rattended + rignored)  (4) 

 

Positive values of the resulting index indicate that the attended envelope was tracked 

more strongly than the ignored envelope, and vice versa for negative values. Since 

individual sentences differed in length, for visualization and statistical analysis, we 

mapped their resulting neural tracking time courses onto a common time axis 

expressed in relative (percent) increments between the start and end of a given 

stimulus. We first assigned each sample to one of 100 bins covering the length of the 

original sentence in 1% increments. We then averaged across neighbouring bins using 

a centred rectangular 3% sliding window (1% overlap). The same procedure was applied 
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to the time course of alpha power lateralization following up-sampling to 125 Hz. 

Single-trial measures for the interval of final word presentation were averaged across 

the final 35% of sentence presentation as this interval covered final word onset across 

all 240 sentence pairs. We used the single-trial neural tracking index as (in-)dependent 

variables in our linear mixed-effects analyses (see below).  
 

Statistical analysis 

We used (generalized) linear mixed-effect models to answer the research questions 

outlined in Figure 1. This approach allowed us to jointly model the impact of listening 

cues, neural filter strategies and various additional covariates known to influence 

behaviour. These included the probed ear (left/right), whether the later-probed 

sentence had the earlier onset (yes/no), as well as participants’ age and hearing acuity 

(pure-tone average across both ears). 

To arbitrate between state-level (i.e., within-subject) and trait-level (i.e., 

between-subject) effects, our models included two separate regressors for each of the 

key neural measures. Between-subject effect regressors consisted of neural measures 

that were averaged across all trials at the single-subject level, whereas the within-

subject effect was modelled by the trial-by-trial deviation from the subject-level mean50. 

Deviation coding was used for categorical predictors. All continuous variables 

were z-scored. For the dependent measure of accuracy, we used generalized linear 

mixed-effects model (binomial distribution, logit link function). For response speed, we 

used general linear mixed-effects model (gaussian distribution, identity link function). 

Given the sample size of N=155 participants, p-values for individual model terms are 

based on Wald t-as-z-values for linear models106 and on z-values and asymptotic Wald 

tests in generalized linear models. All reported p-values are corrected to control for the 

false discovery rate107. 

In lieu of a standardized measure of effect size for mixed-effects models, we 

report odds ratios (OR) for generalized linear models and standardized regression 

coefficients (β) for linear models along with their respective standard errors (SE).  

All analyses were performed in R (v.3.6.1)108  using the packages lme4 (v. 1.1-

23)109, and sjPlot (v2.8.5)110. 

 

Model selection 

To avoid known problems associated with a largely data-driven stepwise model 

selection that include the overestimation of coefficients111 or the selection of irrelevant 

predictors112, the inclusion of fixed effects was largely constrained by our a priori defined 

hypotheses. The influence of visual cues and of neural measures were tested in same 

brain–behaviour model. The brain–behaviour model of accuracy and response speed 

included random intercepts by subject and item. In a data-driven manner, we then 

tested whether model fit could be further improved by the inclusion of subject-specific 

random slopes for the effects of the spatial-attention cue, semantic cue, or probed ear. 

The change in model fit was assessed using likelihood ratio tests on nested models.  
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Data availability 

The complete neural and behavioral data required to reproduce the analyses 

supporting this work, as well as the auditory stimuli used in this study are publicly 

available in the study’s Open Science Framework repository (https://osf.io/nfv9e/). 

Source data are provided with this paper.  

 

Code availability 

Code for the analyses supporting this work is publicly available in the study’s Open 

Science Framework repository (https://osf.io/nfv9e/).  
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Figure legends 

 

Figure 1. Schematic illustration of addressed research questions. The dichotic 

listening task manipulated the attentional focus and semantic predictability of 

upcoming input using two separate visual cues. We investigated whether informative 

cues would enhance behavioural performance (Q1). In line with (Q2), we also examined 

the degree to which a spatial (and semantic) cue modulated the two auditory neural 

measures of interest: neural speech tracking and lateralization of auditory alpha power. 

Finally, we assessed (Q3) the co-variation of neural measures, and (Q4) their potency in 

explaining behavioural performance. Furthermore, we investigated the impact of age, 

hearing loss, and probed ear on listening success and its underlying neural strategies. 

Source data are provided as a Source Data file. 

 

 

Figure 2. Experimental design and behavioural benefit from informative cues. 

(a) Visualization of used 2×2 design35. Levels of spatial and semantic cue differed on a 

trial-by-trial basis. Note that the effects of the semantic cue were of secondary 

importance to the current analyses. Top row shows the informative [+] cue levels, 

bottom row the uninformative [–] cue levels. 

(b) Schematic representation of the trial structure. Successive display of the two visual 

cues precedes the dichotic presentation of two sentences spoken by the same female 

talker. After sentence presentation, participants had to select the final word from four 

alternative words. 

(c) Left: Accuracy per cue-cue combination. Coloured dots are individual (N=155 

participants) trial-averages, black dots and vertical lines show group means with 

bootstrapped 95% confidence intervals (CI). Right: Individual cue benefits displayed 

separately for the two cues (top: spatial cue, bottom: semantic cue). Black dots indicate 

individual (N=155) mean accuracy with bootstrapped 95 % CI. Histograms show the 

distribution of difference in accuracy for informative vs. uninformative levels. OR: Odds 

ratio parameter estimate from generalized linear mixed-effects models; two-sided Wald 

test (FDR-corrected); spatial cue: p=1.36×10–24; semantic cue: p=.68. 

(d) Left: Response speed per cue-cue combination. Coloured dots show individual 

(N=155 participants) mean speed, black dots and vertical lines show group means with 

bootstrapped 95% CI. Right: Individual cue benefits displayed separately for the two 

cues (top: spatial cue, bottom: semantic cue). Black dots indicate individual (N=155) 

mean speed with bootstrapped 95% CI. Box plots in (c) and (d) show median centre line, 

25th to 75th percentile hinges, whiskers indicate minimum and maximum within 1.5 × 

interquartile range. β: slope parameter estimate from general linear mixed-effects 

models; two-sided Wald test (FDR-corrected); spatial cue: p=4.49×10–48; semantic cue: 

p=2.49×10–9. Source data are provided as a Source Data file. 

 

 

Figure 3. Informative spatial cue elicits increased alpha power lateralization 

before and during speech presentation.  

(a) Grand-average (N=155 participants) whole-trial attentional modulation of 8–12 Hz 

auditory alpha power. Purple traces show the grand-average alpha lateralization index 

(ALI) for the informative (solid dark purple line) and uninformative spatial cue (dashed 

light purple line), each collapsed across semantic cue levels. Error bands indicate ± 1 

SEM. Positive values indicate relatively higher alpha power in the hemisphere ipsilateral 

to the attended/-probed sentence compared to the contralateral hemisphere. Shaded 

grey area shows the time window of sentence presentation. Brain models show auditory 

region of interest (red). 
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(b) ALI during sentence presentation (3.5–6.5 s) shown separately per spatial cue 

condition and probed ear (left plot) for N=155 participants. Coloured dots show trial-

averaged individual results, black dots and error bars indicate the grand-average and 

bootstrapped 95% confidence intervals. Box plots show median centre line, 25th to 75th 

percentile hinges, whiskers show minimum and maximum within 1.5 × interquartile 

range. For probed-right trials there was a significant difference in ALI between selective- 

and divided-attention trials (right plot). Black dots represent individual mean ALI values 

with bootstrapped 95% CI error bars. Histogram shows distribution of differences in ALI 

for informative vs. uninformative spatial-cue levels. β: slope parameter estimate from 

the corresponding general linear mixed-effects model; two-sided Wald test (FDR-

corrected, ***p=2.65×10–17. Source data are provided as a Source Data file. 

 

Figure 4. Neural speech tracking of attended and ignored sentences. 

(a) Schematic representation of linear backward model approach. Linear backward 

models estimated on selective-attention trials. Onset envelopes are reconstructed via 

convolution of auditory EEG responses with estimated backward models and compared 

actual envelopes to assess neural tracking strength and decoding accuracy (see 

Supplementary Methods). 

(b) Left: Grand average (N=155 participants, 95% confidence interval (CI) error bands) 

forward-transformed temporal response functions (TRFs) for attended (green) and 

ignored (yellow) speech in the left and right auditory ROI. Right: Single-subject (N=155 

participants; 95% CI error bars) mean Pearson correlation of reconstructed and 

presented envelopes shown separately for attended (top, green) and ignored speech 

(bottom, yellow).  

(c) Top: Grand average (N=155 participants) peri-stimulus time course of neural tracking 

index shown separately for selective (solid dark green curve) and divided attention 

(dashed light green curve) ± 1 SEM error band. Histograms show sentence and final 

word onsets. Shaded area indicates final word presentation interval used for statistical 

analysis. Bottom: Single-subject (N=155 participants) mean attended and ignored 

neural speech tracking during final word presentation for selective and divided 

attention, respectively. 

(d) Left: Neural tracking index shown per spatial-attention condition and for trials in 

which cued/probed sentences started ahead of (‘probed first’) or after the distractor 

(‘probed second’). Coloured dots represent single-subject average (N=155 participants), 

black dots and error bars indicate grand-average and bootstrapped 95 % CI. Box plots 

show median centre line, 25th to 75th percentile hinges, whiskers indicate minimum and 

maximum within 1.5 × interquartile range. Right: Significant difference in neural 

tracking between selective- and divided-attention trials in probed-second trials (top 

plot), and stronger neural tracking in probed-left trials. Black dots represent individual 

mean neural tracking index with bootstrapped 95% CI error bars for N=155 participants. 

Histogram shows distribution of differences in neural tracking in informative vs. 

uninformative spatial-cue trials, and probed-left vs. probed-right trials, respectively. β: 

slope parameter estimate from the corresponding general linear mixed-effects model; 

***p=1.22×10–9, *p=.0233 (two-sided Wald test, FDR-corrected). Source data are 

provided as a Source Data file. 

 

Figure 5. Relationship of alpha lateralization and neural speech tracking. 

(a) Hypothesized relationship of alpha power and neural speech tracking within the 

auditory region of interest. Changes in alpha lateralization are assumed to drive changes 

in neural tracking. Schematic representation for an attend-left trial.  

(b) Independence of neural speech tracking and alpha lateralization during the final 

word presentation as shown by the predictions from the same linear mixed effect 
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model. Plots show the predicted, non-significant effect of within- and between-subject 

variations in alpha lateralization on selective neural tracking, respectively. Blue lines 

indicates the respective predicted fixed effects with 95 % confidence interval, grey thin 

lines in the left plot show N=155 subject-specific random slopes (included for illustrative 

purposes only), and grey dots show average predictions per subject. β: slope parameter 

estimate from the corresponding general linear mixed-effects model, two-sided Wald 

test (FDR-corrected). 

(c) Grand-average time courses of alpha lateralization and neural speech tracking 

during sentence presentation mapped to the same peri-stimulus time axis. Shown 

separately for selective-attention (darker, solid curves) and divided-attention trials 

(lighter, dashed curves). Error bands reflect ± 1 SEM. Note how the peak in neural speech 

tracking under selective attention precedes the peak in alpha lateralization.  

(d) Mean normalized cross-correlation of trial-averaged neural speech tracking and 

alpha lateralization time courses. Upper and lower bound of shaded area reflect the 

97.5th and 2.5th percentile of surrogate data derived from 5000 independently permuted 

time courses of alpha power and neural speech tracking. Source data are provided as a 

Source Data file. 

 

Figure 6. Neural speech tracking predicts listening behavior. 

(a) Model predictions for the effect of neural tracking on behavior for N=155 

participants. Left panel shows the predicted group-level fixed effect (green line ± 95% 

CI) of trial-to-trial variation in neural tracking on accuracy. Grey thin lines indicate 

estimated subject-specific slopes. Right panel shows the predicted group-level fixed 

effect of neural tracking at the between-subject level on response speed (green line ± 

95% CI). Grey dots indicate subject-level model predictions.  OR = odds ratio, β = slope 

parameter estimate from the corresponding general linear mixed-effects model, two-

sided Wald test (FDR-corrected). 

(b) Summary of results. Black arrows highlight statistically significant effects from 

(generalized) single-trial linear mixed-effects modelling. Grey arrow connecting alpha 

power dynamics with neural tracking reflects their systematic temporal delay observed 

in the exploratory cross-correlation analysis. Notably, changes in age and hearing loss 

did not modulate the fidelity of the two key neural measures. Source data are provided 

as a Source Data file. 
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