
Journal of Machine Learning Research 17 (2016) 1-37 Submitted 5/16; Published 9/16

Neural Autoregressive Distribution Estimation

Benigno Uria benigno.uria@gmail.com

Google DeepMind

London, UK

Marc-Alexandre Côté marc-alexandre.cote@usherbrooke.ca

Department of Computer Science

Université de Sherbrooke

Sherbrooke, J1K 2R1, QC, Canada

Karol Gregor karol.gregor@gmail.com

Google DeepMind

London, UK

Iain Murray i.murray@ed.ac.uk

School of Informatics

University of Edinburgh

Edinburgh EH8 9AB, UK

Hugo Larochelle hlarochelle@twitter.com

Twitter

141 Portland St, Floor 6

Cambridge MA 02139, USA

Editor: Ruslan Salakhutdinov

Abstract

We present Neural Autoregressive Distribution Estimation (NADE) models, which are
neural network architectures applied to the problem of unsupervised distribution and
density estimation. They leverage the probability product rule and a weight sharing
scheme inspired from restricted Boltzmann machines, to yield an estimator that is both
tractable and has good generalization performance. We discuss how they achieve competitive
performance in modeling both binary and real-valued observations. We also present how
deep NADE models can be trained to be agnostic to the ordering of input dimensions used
by the autoregressive product rule decomposition. Finally, we also show how to exploit the
topological structure of pixels in images using a deep convolutional architecture for NADE.

Keywords: deep learning, neural networks, density modeling, unsupervised learning

1. Introduction

Distribution estimation is one of the most general problems addressed by machine learning.
From a good and flexible distribution estimator, in principle it is possible to solve a variety
of types of inference problem, such as classification, regression, missing value imputation,
and many other predictive tasks.

Currently, one of the most common forms of distribution estimation is based on directed
graphical models. In general these models describe the data generation process as sampling

c©2016 Benigno Uria, Marc-Alexandre Côté, Karol Gregor, Iain Murray, Hugo Larochelle.

Uria, Côté, Gregor, Murray, and Larochelle

a latent state h from some prior p(h), followed by sampling the observed data x from some
conditional p(x |h). Unfortunately, this approach quickly becomes intractable and requires
approximations when the latent state h increases in complexity. Specifically, computing
the marginal probability of the data, p(x) =

∑
h
p(x |h) p(h), is only tractable under fairly

constraining assumptions on p(x |h) and p(h).

Another popular approach, based on undirected graphical models, gives probabilities of
the form p(x) = exp {φ(x)} /Z, where φ is a tractable function and Z is a normalizing con-
stant. A popular choice for such a model is the restricted Boltzmann machine (RBM), which
substantially out-performs mixture models on a variety of binary data sets (Salakhutdinov
and Murray, 2008). Unfortunately, we often cannot compute probabilities p(x) exactly in
undirected models either, due to the normalizing constant Z.

In this paper, we advocate a third approach to distribution estimation, based on autore-
gressive models and feed-forward neural networks. We refer to our particular approach as
Neural Autoregressive Distribution Estimation (NADE). Its main distinguishing property
is that computing p(x) under a NADE model is tractable and can be computed efficiently,
given an arbitrary ordering of the dimensions of x.

The NADE framework was first introduced for binary variables by Larochelle and
Murray (2011), and concurrent work by Gregor and LeCun (2011). The framework was
then generalized to real-valued observations (Uria et al., 2013), and to versions based on
deep neural networks that can model the observations in any order (Uria et al., 2014).
This paper pulls together an extended treatement of these papers, with more experimental
results, including some by Uria (2015). We also report new work on modeling 2D images by
incorporating convolutional neural networks into the NADE framework. For each type of
data, we’re able to reach competitive results, compared to popular directed and undirected
graphical model alternatives.

2. NADE

We consider the problem of modeling the distribution p(x) of input vector observations x.
For now, we will assume that the dimensions of x are binary, that is xd ∈ {0, 1} ∀d. The
model generalizes to other data types, which is explored later (Section 3) and in other work
(Section 8).

NADE begins with the observation that any D-dimensional distribution p(x) can be
factored into a product of one-dimensional distributions, in any order o (a permutation of
the integers 1, . . . , D):

p(x) =
D∏

d=1

p(xod |xo<d
). (1)

Here o<d contains the first d − 1 dimensions in ordering o and xo<d
is the corresponding

subvector for these dimensions. Thus, one can define an ‘autoregressive’ generative model of
the data simply by specifying a parameterization of all D conditionals p(xod |xo<d

).

Frey et al. (1996) followed this approach and proposed using simple (log-)linear logistic
regression models for these conditionals. This choice yields surprisingly competitive results,
but are not competitive with non-linear models such as an RBM. Bengio and Bengio (2000)
proposed a more flexible approach, with a single-layer feed-forward neural network for each

2

Neural Autoregressive Distribution Estimation

conditional. Moreover, they allowed connections between the output of each network and
the hidden layer of networks for the conditionals appearing earlier in the autoregressive
ordering. Using neural networks led to some improvements in modeling performance, though
at the cost of a really large model for very high-dimensional data.

In NADE, we also model each conditional using a feed-forward neural network. Specifi-
cally, each conditional p(xod |x<d) is parameterized as follows:

p(xod =1 |xo<d
) = sigm (V od,·hd + bod) (2)

hd = sigm
(
W ·,o<d

xo<d
+ c
)
, (3)

where sigm (a) = 1/(1 + e−a) is the logistic sigmoid, and with H as the number of hidden
units, V ∈ R

D×H , b ∈ R
D, W ∈ R

H×D, c ∈ R
H are the parameters of the NADE model.

The hidden layer matrix W and bias c are shared by each hidden layer hd (which are all
of the same size). This parameter sharing scheme (illustrated in Figure 1) means that NADE
has O(HD) parameters, rather than O(HD2) required if the neural networks were separate.
Limiting the number of parameters can reduce the risk of over-fitting. Another advantage is
that all D hidden layers hd can be computed in O(HD) time instead of O(HD2). Denoting
the pre-activation of the dth hidden layer as ad = W ·,o<d

xo<d
+c, this complexity is achieved

by using the recurrence

h1 =sigm (a1) , where a1 = c (4)

hd =sigm (ad) , where ad = W ·,o<d
xo<d

+ c = W ·,od−1
xod−1

+ ad−1 (5)

for d ∈ {2, . . . , D},

where Equation 5 given vector ad−1 can be computed in O(H). Moreover, the computation
of Equation 2 given h is also O(H). Thus, computing p(x) from D conditional distributions
(Equation 1) costs O(HD) for NADE. This complexity is comparable to that of regular
feed-forward neural network models.

NADE can be trained by maximum likelihood, or equivalently by minimizing the average
negative log-likelihood,

1

N

N∑

n=1

− log p(x(n)) =
1

N

N∑

n=1

D∑

d=1

− log p(x(n)od
|x(n)

o<d
), (6)

usually by stochastic (minibatch) gradient descent. As probabilities p(x) cost O(HD),
gradients of the negative log-probability of training examples can also be computed in
O(HD). Algorithm 1 describes the computation of both p(x) and the gradients of − log p(x)
with respect to NADE’s parameters.

2.1 Relationship with the RBM

The proposed weight-tying for NADE isn’t simply motivated by computational reasons. It
also reflects the computations of approximation inference in the RBM.

Denoting the energy function and distribution under an RBM as

E(x,h) = −h⊤Wx− b⊤x− c⊤h (7)

p(x,h) = exp {−E(x,h)} /Z , (8)

3

Uria, Côté, Gregor, Murray, and Larochelle

500 units

784 units

...

784 units

...

... ...

...

...

...

...

Figure 1: Illustration of a NADE model. In this example, in the input layer, units with
value 0 are shown in black while units with value 1 are shown in white. The
dashed border represents a layer pre-activation.The outputs x̂O give predictive
probabilities for each dimension of a vector xO, given elements earlier in some
ordering. There is no path of connections between an output and the value being
predicted, or elements of xO later in the ordering. Arrows connected together
correspond to connections with shared (tied) parameters.

computing all conditionals

p(xod |xo<d
) =

∑

xo>d
∈{0,1}D−d

∑

h∈{0,1}H

exp {−E(x,h)} /Z(xo<d
) (9)

Z(xo<d
) =

∑

xo≥d
∈{0,1}D−d+1

∑

h∈{0,1}H

exp {−E(x,h)} (10)

is intractable. However, these could be approximated using mean-field variational inference.
Specifically, consider the conditional over xod , xo>d

and h instead:

p(xod ,xo>d
,h |xo<d

) = exp {−E(x,h)} /Z(xo<d
). (11)

A mean-field approach could first approximate this conditional with a factorized distribution

q(xod ,xo>d
,h |xo<d

) = µi(d)
xod (1− µd(d))

1−xod

∏

j>d

µj(d)
xoj (1− µj(d))

1−xoj

∏

k

τk(d)
hk(1− τk(d))

1−hk , (12)

where µj(d) is the marginal probability of xoj being equal to 1, given xo<d
. Similarly, τk(d)

is the marginal for hidden variable hk. The dependence on d comes from conditioning on
xo<d

, that is on the first d−1 dimensions of x in ordering o.

For some d, a mean-field approximation is obtained by finding the parameters µj(d) for
j ∈ {d, . . . , D} and τk(d) for k ∈ {1, . . . , H} which minimize the KL divergence between
q(xod ,xo>d

,h |xo<d
) and p(xod ,xo>d

,h |xo<d
). This is usually done by finding message

4

Neural Autoregressive Distribution Estimation

Algorithm 1 Computation of p(x) and learning gradients for NADE.

Input: training observation vector x and ordering o of the input dimensions.
Output: p(x) and gradients of − log p(x) on parameters.

Computing p(x)
a1 ← c

p(x)← 1
for d from 1 to D do

hd ← sigm (ad)
p(xod =1 |xo<d

)← sigm (V od,·hd + bod)
p(x)← p(x)

(
p(xod =1 |xo<d

)xod + (1− p(xod =1 |xo<d
))1−xod

)

ad+1 ← ad +W ·,odxod
end for

Computing gradients of − log p(x)
δaD ← 0
δc← 0
for d from D to 1 do

δbod ←
(
p(xod =1 |xo<d

)− xod
)

δV od,· ←
(
p(xod =1 |xo<d

)− xod
)
h⊤
d

δhd ←
(
p(xod =1 |xo<d

)− xod
)
V ⊤

od,·

δc← δc+ δhd ⊙ hd ⊙ (1− hd)
δW ·,od ← δadxod
δad−1 ← δad + δhd ⊙ hd ⊙ (1− hd)

end for
return p(x), δb, δV , δc, δW

passing updates that each set the derivatives of the KL divergence to 0 for some of the
parameters of q(xod ,xo>d

,h |xo<d
) given others.

For some d, let us fix µj(d) = xod for j < d, leaving only µj(d) for j > d to be found.
The KL-divergence develops as follows:

KL(q(xod ,xo>d
,h |xo<d

) || p(xod ,xo>d
,h |xo<d

))

= −
∑

xod
,xo>d

,h

q(xod ,xo>d
,h |xo<d

) log p(xod ,xo>d
,h |xo<d

)

+
∑

xod
,xo>d

,h

q(xod ,xo>d
,h |xo<d

) log q(xod ,xo>d
,h |xo<d

)

= logZ(xo<d
)−

∑

j

∑

k

τk(d)Wk,ojµj(d)−
∑

j

bojµj(d)−
∑

k

ckτk(d)

+
∑

j≥d

(µj(d) logµj(d) + (1− µj(d)) log(1− µj(d)))

+
∑

k

(τk(d) log τk(d) + (1− τk(d)) log(1− τk(d))) .

5

Uria, Côté, Gregor, Murray, and Larochelle

Then, we can take the derivative with respect to τk(d) and set it to 0, to obtain:

0 =
∂KL(q(xod ,xo>d

,h |xo<d
) || p(xod ,xo>d

,h |xo<d
))

∂τk(d)

0 = −ck −
∑

j

Wk,ojµj(d) + log

(
τk(d)

1− τk(d)

)

τk(d)

1− τk(d)
= exp

ck +

∑

j

Wk,ojµj(d)

 (13)

τk(d) =
exp

{
ck +

∑
j Wk,ojµj(d)

}

1 + exp
{
ck +

∑
j Wk,ojµj(d)

}

τk(d) = sigm

ck +

∑

j≥d

Wk,ojµj(d) +
∑

j<d

Wk,ojxoj

 . (14)

where in the last step we have used the fact that µj(d) = xoj for j < d. Equation 14 would
correspond to the message passing updates of the hidden unit marginals τk(d) given the
marginals of input µj(d).

Similarly, we can set the derivative with respect to µj(d) for j ≥ d to 0 and obtain:

0 =
∂KL(q(xod ,xo>d

,h |xo<d
) || p(xod ,xo>d

,h |xo<d
))

∂µj(d)

0 = −bod −
∑

k

τk(d)Wk,oj + log

(
µj(d)

1− µj(d)

)

µj(d)

1− µj(d)
= exp

{
boj +

∑

k

τk(d)Wk,oj

}

µj(d) =
exp

{
boj +

∑
k τk(d)Wk,oj

}

1 + exp
{
boj +

∑
k τk(d)Wk,oj

}

µj(d) = sigm

(
boj +

∑

k

τk(d)Wk,oj

)
. (15)

Equation 15 would correspond to the message passing updates of the input marginals µj(d)
given the hidden layer marginals τk(d). The complete mean-field algorithm would thus
alternate between applying the updates of Equations 14 and 15, right to left.

We now notice that Equation 14 corresponds to NADE’s hidden layer computation
(Equation 3) where µj(d) = 0 ∀j ≥ d. Also, Equation 15 corresponds to NADE’s output
layer computation (Equation 2) where j = d, τk(d) = hd,k and W⊤ = V . Thus, in short,
NADE’s forward pass is equivalent to applying a single pass of mean-field inference to
approximate all the conditionals p(xod |xo<d

) of an RBM, where initially µj(d) = 0 and
where a separate matrix V is used for the hidden-to-input messages. A generalization of
NADE based on this connection to mean field inference has been further explored by Raiko
et al. (2014).

6

Neural Autoregressive Distribution Estimation

3. NADE for Non-Binary Observations

So far we have only considered the case of binary observations xi. However, the framework
of NADE naturally extends to distributions over other types of observations.

In the next section, we discuss the case of real-valued observations, which is one of the
most general cases of non-binary observations and provides an illustrative example of the
technical considerations one faces when extending NADE to new observations.

3.1 RNADE: Real-Valued NADE

A NADE model for real-valued data could be obtained by applying the derivations shown
in Section 2.1 to the Gaussian-RBM (Welling et al., 2005). The resulting neural network
would output the mean of a Gaussian with fixed variance for each of the conditionals in
Equation 1. Such a model is not competitive with mixture models, for example on perceptual
data sets (Uria, 2015). However, we can explore alternative models by making the neural
network for each conditional distribution output the parameters of a distribution that’s not
a fixed-variance Gaussian.

In particular, a mixture of one-dimensional Gaussians for each autoregressive conditional
provides a flexible model. Given enough components, a mixture of Gaussians can model any
continuous distribution to arbitrary precision. The resulting model can be interpreted as a
sequence of mixture density networks (Bishop, 1994) with shared parameters. We call this
model RNADE-MoG. In RNADE-MoG, each of the conditionals is modeled by a mixture of
Gaussians:

p(xod |xo<d
) =

C∑

c=1

πod,c N (xod ; µod,c, σ
2
od,c

), (16)

where the parameters are set by the outputs of a neural network:

πod,c =
exp

{
z
(π)
od,c

}

∑C
c=1 exp

{
z
(π)
od,c

} (17)

µod,c =z(µ)od,c
(18)

σod,c =exp
{
z(σ)od,c

}
(19)

z(π)od,c
=b(π)od,c

+

H∑

k=1

V
(π)
od,k,c

hd,k (20)

z(µ)od,c
=b(µ)od,c

+

H∑

k=1

V
(µ)
od,k,c

hd,k (21)

z(σ)od,c
=b(σ)od,c

+
H∑

k=1

V
(σ)
od,k,c

hd,k (22)

Parameter sharing conveys the same computational and statistical advantages as it does
in the binary NADE.

7

Uria, Côté, Gregor, Murray, and Larochelle

Different one dimensional conditional forms may be preferred, for example due to limited
data set size or domain knowledge about the form of the conditional distributions. Other
choices, like single variable-variance Gaussians, sinh-arcsinh distributions, and mixtures of
Laplace distributions, have been examined by Uria (2015).

Training an RNADE can still be done by stochastic gradient descent on the parameters
of the model with respect to the negative log-density of the training set. It was found
empirically (Uria et al., 2013) that stochastic gradient descent leads to better parameter

configurations when the gradient of the mean
(

∂J
∂µod,c

)
was multiplied by the standard

deviation (σod,c).

4. Orderless and Deep NADE

The fixed ordering of the variables in a NADE model makes the exact calculation of arbitrary
conditional probabilities computationally intractable. Only a small subset of conditional
distributions, those where the conditioned variables are at the beginning of the ordering and
marginalized variables at the end, are computationally tractable.

Another limitation of NADE is that a naive extension to a deep version, with multiple
layers of hidden units, is computationally expensive. Deep neural networks (Bengio, 2009;
LeCun et al., 2015) are at the core of state-of-the-art models for supervised tasks like image
recognition (Krizhevsky et al., 2012) and speech recognition (Dahl et al., 2013). The same
inductive bias should also provide better unsupervised models. However, extending the
NADE framework to network architectures with several hidden layers, by introducing extra
non-linear calculations between Equations 3 and 2, increases its complexity to cubic in the
number of units per layer. Specifically, the cost becomes O(DH2L), where L stands for the
number of hidden layers and can be assumed to be a small constant, D is the number of
variables modeled, and H is the number of hidden units, which we assumed to be of the
same order as D. This increase in complexity is caused by no longer being able to share
hidden layer computations across the conditionals in Equation 1, after the non-linearity in
the first layer.

In this section we describe an order-agnostic training procedure, DeepNADE (Uria et al.,
2014), which will address both of the issues above. This procedure trains a single deep
neural network that can assign a conditional distribution to any variable given any subset of
the others. This network can then provide the conditionals in Equation 1 for any ordering
of the input observations. Therefore, the network defines a factorial number of different
models with shared parameters, one for each of the D! orderings of the inputs. At test time,
given an inference task, the most convenient ordering of variables can be used. The models
for different orderings will not be consistent with each other: they will assign different
probabilities to a given test vector. However, we can use the models’ differences to our
advantage by creating ensembles of NADE models (Section 4.1), which results in better
estimators than any single NADE. Moreover, the training complexity of our procedure
increases linearly with the number of hidden layers O(H2L), while remaining quadratic in
the size of the network’s layers.

8

Neural Autoregressive Distribution Estimation

We first describe the model for an L-layer neural network modeling binary variables. A
conditional distribution is obtained directly from a hidden unit in the final layer:

p(xod =1 |xo<d
,θ, o<d, od) = h(L)

od
. (23)

This hidden unit is computed from previous layers, all of which can only depend on the xo<d

variables that are currently being conditioned on. We remove the other variables from the
computation using a binary mask,

mo<d
= [11∈o<d

, 12∈o<d
, . . . , 1D∈o<d

], (24)

which is element-wise multiplied with the inputs before computing the remaining layers as
in a standard neural network:

h(0) = x⊙mo<d
(25)

a(ℓ) = W (ℓ)h(ℓ−1) + b(ℓ) (26)

h(ℓ) = σ
(
a(ℓ)

)
(27)

h(L) = sigm
(
a(L)

)
. (28)

The network is specified by a free choice of the activation function σ (·), and learnable

parameters W (ℓ) ∈ R
H(ℓ)×H(ℓ−1)

and b(ℓ) ∈ R
H(ℓ)

, where H(l) is the number of units in the
ℓ-th layer. As layer zero is the masked input, H(0) = D. The final L-th layer needs to be
able to provide predictions for any element (Equation 23) and so also has D units.

To train a DeepNADE, the ordering of the variables is treated as a stochastic variable
with a uniform distribution. Moreover, since we wish DeepNADE to provide good predictions
for any ordering, we optimize the expected likelihood over the ordering of variables:

J (θ) = E
o∈D!
− log p(X |θ, o) ∝ E

o∈D!
E

x∈X
− log p(x |θ, o), (29)

where we’ve made the dependence on the ordering o and the network’s parameters θ explicit,
D! stands for the set of all orderings (the permutations of D elements) and x is a uniformly
sampled data point from the training set X . Using NADE’s expression for the density of a
data point in Equation 1 we have

J (θ) = E
o∈D!

E
x∈X

D∑

d=1

− log p(xod |xo<d
,θ, o), (30)

where d indexes the elements in the ordering, o, of the variables. By moving the expectation
over orderings inside the sum over the elements of the ordering, the ordering can be split in
three parts: o<d (the indices of the d−1 first dimensions in the ordering), od (the index of
the d-th variable) and o>d (the indices of the remaining dimensions). Therefore, the loss
function can be rewritten as:

J (θ) = E
x∈X

D∑

d=1

E
o<d

E
od

E
o>d

− log p(xod |xo<d
,θ, o<d, od, o>d). (31)

9

Uria, Côté, Gregor, Murray, and Larochelle

The value of each of these terms does not depend on o>d. Therefore, it can be simplified as:

J (θ) = E
x∈X

D∑

d=1

E
o<d

E
od
− log p(xod |xo<d

,θ, o<d, od). (32)

In practice, this loss function will have a very high number of terms and will have to
be approximated by sampling x, d and o<d. The innermost expectation over values of od
can be calculated cheaply, because all of the neural network computations depend only on
the masked input xo<d

, and can be reused for each possible od. Assuming all orderings are
equally probable, we will estimate J (θ) by:

Ĵ (θ) =
D

D − d+ 1

∑

od

− log p(xod |xo<d
,θ, o<d, od), (33)

which is an unbiased estimator of Equation 29. Therefore, training can be done by descent
on the gradient of Ĵ (θ).

For binary observations, we use the cross-entropy scaled by a factor of D
D−d+1 as the

training loss which corresponds to minimizing Ĵ :

J (x) =
D

D − d+ 1
m⊤

o≥d

(
x⊙ log

(
h(L)

)
+ (1− x)⊙ log

(
1− h(L)

))
. (34)

Differentiating this cost involves backpropagating the gradients of the cross-entropy only
from the outputs in o≥d and rescaling them by D

D−d+1 .
The resulting training procedure resembles that of a denoising autoencoder (Vincent

et al., 2008). Like the autoencoder, D outputs are used to predict D inputs corrupted by a

random masking process (mo<d
in Equation 25). A single forward pass can compute h

(L)
o≥d

,
which provides a prediction p(xod = 1 |xo<d

,θ, o<d, od) for every masked variable, which
could be used next in an ordering starting with o<d. Unlike the autoencoder, the outputs
for variables corresponding to those provided in the input (not masked out) are ignored.

In this order-agnostic framework, missing variables and zero-valued observations are
indistinguishable by the network. This shortcoming can be alleviated by concatenating the
inputs to the network (masked variables x ⊙mo<d

) with the mask mo<d
. Therefore we

advise substituting the input described in Equation 25 with

h(0) = concat(x⊙mo<d
,mo<d

). (35)

We found this modification to be important in order to obtain competitive statistical
performance (see Table 3). The resulting neural network is illustrated in Figure 2.

4.1 Ensembles of NADE Models

As mentioned, the DeepNADE parameter fitting procedure effectively produces a factorial
number of different NADE models, one for each ordering of the variables. These models will
not, in general, assign the same probability to any particular data point. This disagreement
is undesirable if we require consistent inferences for different inference problems, as it will
preclude the use of the most convenient ordering of variables for each inference task.

10

Neural Autoregressive Distribution Estimation

...

500 units

...

500 units
...

784 units

...

784 units

...

784 units

...

784 units

1568 units

...
...

...

784 units

Figure 2: Illustration of a DeepNADE model with two hidden layers. The dashed border
represents a layer pre-activation. Units with value 0 are shown in black while
units with value 1 are shown in white. A mask mo<d

specifies a subset of variables
to condition on. A conditional or predictive probability of the remaining variables
is given in the final layer. The output units with a corresponding input mask of
value 1 (shown with dotted contour) are not involved in DeepNADE’s training
loss (Equation 34).

However, it is possible to use this variability across the different orderings to our
advantage by combining several models. A usual approach to improve on a particular
estimator is to construct an ensemble of multiple, strong but different estimators, e.g.
using bagging (Ormoneit and Tresp, 1995) or stacking (Smyth and Wolpert, 1999). The
DeepNADE training procedure suggests a way of generating ensembles of NADE models:
take a set of uniformly distributed orderings {o(k)}Kk=1 over the input variables and use the

average probability 1
K

∑K
k=1 p(x | θ, o

(k)) as an estimator.

The use of an ensemble increases the test-time cost of density estimation linearly with
the number of orderings used. The complexity of sampling does not change however: after
one of the K orderings is chosen at random, the single corresponding NADE is sampled.
Importantly, the cost of training also remains the same, unlike other ensemble methods such
as bagging. Furthermore, the number of components can be chosen after training and even
adapted to a computational budget on the fly.

5. ConvNADE: Convolutional NADE

One drawback of NADE (and its variants so far) is the lack of a mechanism for truly
exploiting the high-dimensional structure of the data. For example, when using NADE
on binarized MNIST, we first need to flatten the 2D images before providing them to the
model as a vector. As the spatial topology is not provided to the network, it can’t use this
information to share parameters and may learn less quickly.

11

Uria, Côté, Gregor, Murray, and Larochelle

Recently, convolutional neural networks (CNN) have achieved state-of-the-art perfor-
mance on many supervised tasks related to images Krizhevsky et al. (2012). Briefly, CNNs
are composed of convolutional layers, each one having multiple learnable filters. The outputs
of a convolutional layer are feature maps and are obtained by the convolution on the input
image (or previous feature maps) of a linear filter, followed by the addition of a bias and
the application of a non-linear activation function. Thanks to the convolution, spatial
structure in the input is preserved and can be exploited. Moreover, as per the definition of
a convolution the same filter is reused across all sub-regions of the entire image (or previous
feature maps), yielding a parameter sharing that is natural and sensible for images.

The success of CNNs raises the question: can we exploit the spatial topology of the
inputs while keeping NADE’s autoregressive property? It turns out we can, simply by
replacing the fully connected hidden layers of a DeepNADE model with convolutional layers.
We thus refer to this variant as Convolutional NADE (ConvNADE).

First we establish some notation that we will use throughout this section. Without loss
of generality, let the input X ∈ {0, 1}NX×NX be a square binary image of size NX and every

convolution filter W
(ℓ)
ij ∈ R

N
(ℓ)
W

×N
(ℓ)
W connecting two feature maps H

(ℓ−1)
i and H

(ℓ)
j also

be square with their size N
(ℓ)
W varying for each layer ℓ. We also define the following mask

M o<d
∈ {0, 1}NX×NX , which is 1 for the locations of the first d− 1 pixels in the ordering o.

Formally, Equation 26 is modified to use convolutions instead of dot products. Specifically
for an L-layer convolutional neural network that preserves the input shape (explained below)
we have

p(xod =1 |xo<d
,θ, o<d, od) = vec

(
H

(L)
1

)
od
, (36)

with

H
(0)
1 = X ⊙M o<d

(37)

A
(ℓ)
j = b

(ℓ)
j +

H(ℓ−1)∑

i=1

H
(ℓ−1)
i ⊛W

(ℓ)
ij (38)

H
(ℓ)
j = σ

(
A

(ℓ)
j

)
(39)

H
(L)
j = sigm

(
A

(L)
j

)
, (40)

where H(ℓ) is the number of feature maps output by the ℓ-th layer and b(l) ∈ R
H(l)

,

W (ℓ) ∈ R
H(ℓ−1)×H(ℓ)×N

(ℓ)
W

×N
(ℓ)
W , with ⊙ denoting the element-wise multiplication, σ (·) being

any activation function and vec (X)→ x is the concatenation of every row in X. Note that
H(0) corresponds to the number of channels the input images have.

For notational convenience, we use ⊛ to denote both “valid” convolutions and “full”
convolutions, instead of introducing bulky notations to differentiate these cases. The “valid”
convolutions only apply a filter to complete patches of the image, resulting in a smaller image

(its shape is decreased to NX −N
(ℓ)
W + 1). Alternatively, “full” convolutions zero-pad the

contour of the image before applying the convolution, thus expanding the image (its shape

is increased to NX +N
(ℓ)
W − 1). Which one is used should be self-explanatory depending on

the context. Note that we only use convolutions with a stride of 1.

12

Neural Autoregressive Distribution Estimation

Moreover, in order for ConvNADE to output conditional probabilities as shown in

Equation 36, the output layer must have only one feature map H
(L)
1 , whose dimension

matches the dimension of the input X. This can be achieved by carefully combining layers
that use either “valid” or “full” convolutions.

To explore different model architectures respecting that constraint, we opted for the
following strategy. Given a network, we ensured the first half of its layers was using “valid”
convolutions while the other half would use “full” convolutions. In addition to that, we
made sure the network was symmetric with respect to its filter shapes (i.e. the filter shape
used in layer ℓ matched the one used in layer L− ℓ).

For completeness, we wish to mention that ConvNADE can also include pooling and
upsampling layers, but we did not see much improvement when using them. In fact, recent
research suggests that these types of layers are not essential to obtain state-of-the-art
results (Springenberg et al., 2015).

The flexibility of DeepNADE allows us to easily combine both convolutional and fully
connected layers. To create such hybrid models, we used the simple strategy of having two
separate networks, with their last layer fused together at the end. The ‘convnet’ part is
only composed of convolutional layers whereas the ‘fullnet’ part is only composed of fully
connected layers. The forward pass of both networks follows respectively Equations 37–39
and Equations 25–27. Note that in the ‘fullnet’ network case, x corresponds to the input
image having been flattened.

In the end, the output layer g of the hybrid model corresponds to the aggregation of
the last layer pre-activation of both ‘convnet’ and ‘fullnet’ networks. The conditionals are
slightly modified as follows:

p(xod =1 |xo<d
,θ, o<d, od) = god

(41)

g = sigm
(
vec

(
A

(L)
1

)
+ a(L)

)
. (42)

The same training procedure as for DeepNADE model can also be used for ConvNADE.
For binary observations, the training loss is similar to Equation 34, with h(L) being substi-
tuted for g as defined in Equation 42.

As for the DeepNADE model, we found that providing the mask M o<d
as an input

to the model improves performance (see Table 4). For the ‘convnet’ part, the mask was
provided as an additional channel to the input layer. For the ‘fullnet’ part, the inputs were
concatenated with the mask as shown in Equation 35.

The final architecture is shown in Figure 3. In our experiments, we found that this type
of hybrid model works better than only using convolutional layers (see Table 4). Certainly,
more complex architectures could be employed but this is a topic left for future work.

6. Related Work

As we mentioned earlier, the development of NADE and its extensions was motivated by
the question of whether a tractable distribution estimator could be designed to match a
powerful but intractable model such as the restricted Boltzmann machine.

The original inspiration came from the autoregressive approach taken by fully visible
sigmoid belief networks (FVSBN), which were shown by Frey et al. (1996) to be surprisingly

13

Uria, Côté, Gregor, Murray, and Larochelle

...

784 units

24 pixels

24
 p

ix
el

s

28 pixels

28
 p

ix
el

s

...

500 units

28 pixels

28 pixels

...

500 units

28 pixels

28
 p

ix
el

s

24 pixels

24
 p

ix
el

s

18 pixels

18
 p

ix
el

s

4@5x5 (valid) 8@7x7 (valid) 4@7x7 (full) 1@5x5 (full)

...

784 units

28 pixels

28 pixels

1568 units

...
...

28 pixels

28 pixels

Figure 3: Illustration of a ConvNADE that combines a convolutional neural network with
three hidden layers and a fully connected feed-forward neural network with two
hidden layers. The dashed border represents a layer pre-activation. Units with
a dotted contour are not valid conditionals since they depend on themselves i.e.
they were given in the input.

competitive, despite the simplicity of the distribution family for its conditionals. Bengio
and Bengio (2000) later proposed using more powerful conditionals, modeled as single layer
neural networks. Moreover, they proposed connecting the output of each dth conditional to
all of the hidden layers of the d− 1 neural networks for the preceding conditionals. More
recently, Germain et al. (2015) generalized this model by deriving a simple procedure for
making it deep and orderless (akin to DeepNADE, in Section 4). We compare with all of
these approaches in Section 7.1.

There exists, of course, more classical and non-autoregressive approaches to tractable
distribution estimation, such as mixture models and Chow–Liu trees (Chow and Liu, 1968).
We compare with these as well in Section 7.1.

This work also relates directly to the recently growing literature on generative neural
networks. In addition to the autoregressive approach described in this paper, there exists
three other types of such models: directed generative networks, undirected generative
networks and hybrid networks.

Work on directed generative networks dates back to the original work on sigmoid belief
networks (Neal, 1992) and the Helmholtz machine (Hinton et al., 1995; Dayan et al., 1995).
Helmholtz machines are equivalent to a multilayer sigmoid belief network, with each using
binary stochastic units. Originally they were trained using Gibbs sampling and gradient
descent (Neal, 1992), or with the so-called wake sleep algorithm (Hinton et al., 1995). More
recently, many alternative directed models and training procedures have been proposed.
Kingma and Welling (2014); Rezende et al. (2014) proposed the variational autoencoder
(VAE), where the model is the same as the Helmholtz machine, but with real-valued
(usually Gaussian) stochastic units. Importantly, Kingma and Welling (2014) identified
a reparameterization trick making it possible to train the VAE in a way that resembles
the training of an autoencoder. This approach falls in the family of stochastic variational
inference methods, where the encoder network corresponds to the approximate variational

14

Neural Autoregressive Distribution Estimation

posterior. The VAE optimizes a bound on the likelihood which is estimated using a single
sample from the variational posterior, though recent work has shown that a better bound
can be obtained using an importance sampling approach (Burda et al., 2016). Gregor
et al. (2015) later exploited the VAE approach to develop DRAW, a directed generative
model for images based on a read-write attentional mechanism. Goodfellow et al. (2014)
proposed an adversarial approach to training directed generative networks, that relies on
a discriminator network simultaneously trained to distinguish between data and model
samples. Generative networks trained this way are referred to as Generative Adversarial
Networks (GAN). While the VAE optimizes a bound of the likelihood (which is the KL
divergence between the empirical and model distributions), it can be shown that the earliest
versions of GANs optimize the Jensen–Shannon (JS) divergence between the empirical and
model distributions. Li et al. (2015) instead propose a training objective derived from
Maximum Mean Discrepancy (MMD; Gretton et al., 2007). Recently, the directed generative
model approach has been very successfully applied to model images (Denton et al., 2015;
Sohl-Dickstein et al., 2011).

The undirected paradigm has also been explored extensively for developing powerful gen-
erative networks. These include the restricted Boltzmann machine (Smolensky, 1986; Freund
and Haussler, 1992) and its multilayer extension, the deep Boltzmann machine (Salakhut-
dinov and Hinton, 2009), which dominate the literature on undirected neural networks.
Salakhutdinov and Murray (2008) provided one of the first quantitative evidence of the
generative modeling power of RBMs, which motivated the original parameterization for
NADE (Larochelle and Murray, 2011). Efforts to train better undirected models can vary in
nature. One has been to develop alternative objectives to maximum likelihood. The proposal
of Contrastive Divergence (CD; Hinton, 2002) was instrumental in the popularization of the
RBM. Other proposals include pseudo-likelihood (Besag, 1975; Marlin et al., 2010), score
matching (Hyvärinen, 2005; Hyvärinen, 2007a,b), noise contrastive estimation (Gutmann
and Hyvärinen, 2010) and probability flow minimization (Sohl-Dickstein et al., 2011). An-
other line of development has been to optimize likelihood using Robbins–Monro stochastic
approximation (Younes, 1989), also known as Persistent CD (Tieleman, 2008), and develop
good MCMC samplers for deep undirected models (Salakhutdinov, 2009, 2010; Desjardins
et al., 2010; Cho et al., 2010). Work has also been directed towards proposing improved
update rules or parameterization of the model’s energy function (Tieleman and Hinton, 2009;
Cho et al., 2013; Montavon and Müller, 2012) as well as improved approximate inference of
the hidden layers (Salakhutdinov and Larochelle, 2010). The work of Ngiam et al. (2011)
also proposed an undirected model that distinguishes itself from deep Boltzmann machines
by having deterministic hidden units, instead of stochastic.

Finally, hybrids of directed and undirected networks are also possible, though much less
common. The most notable case is the Deep Belief Network (DBN; Hinton et al., 2006),
which corresponds to a sigmoid belief network for which the prior over its top hidden layer
is an RBM (whose hidden layer counts as an additional hidden layer). The DBN revived
interest in RBMs, as they were required to successfully initialize the DBN.

NADE thus substantially differs from this literature focusing on directed and undirected
models, benefiting from a few properties that these approaches lack. Mainly, NADE does not
rely on latent stochastic hidden units, making it possible to tractably compute its associated
data likelihood for some given ordering. This in turn makes it possible to efficiently produce

15

Uria, Côté, Gregor, Murray, and Larochelle

Name # Inputs Train Valid. Test

Adult 123 5000 1414 26147
Connect4 126 16000 4000 47557
DNA 180 1400 600 1186
Mushrooms 112 2000 500 5624
NIPS-0-12 500 400 100 1240
OCR-letters 128 32152 10000 10000
RCV1 150 40000 10000 150000
Web 300 14000 3188 32561

Table 1: Statistics on the binary vector data sets of Section 7.1.

exact samples from the model (unlike in undirected models) and get an unbiased gradient
for maximum likelihood training (unlike in directed graphical models).

7. Results

In this section, we evaluate the performance of our different NADE models on a variety of
data sets. The code to reproduce the experiments of the paper is available on GitHub1. Our
implementation is done using Theano (Team et al., 2016).

7.1 Binary Vectors Data Sets

We start by evaluating the performance of NADE models on a set of benchmark data sets
where the observations correspond to binary vectors. These data sets were mostly taken
from the LIBSVM data sets web site2, except for OCR-letters3 and NIPS-0-12 4. Code to
download these data sets is available here: http://info.usherbrooke.ca/hlarochelle/
code/nade.tar.gz. Table 1 summarizes the main statistics for these data sets.

For these experiments, we only consider tractable distribution estimators, where we can
evaluate p(x) on test items exactly. We consider the following baselines:

• MoB: A mixture of multivariate Bernoullis, trained using the EM algorithm. The
number of mixture components was chosen from {32, 64, 128, 256, 512, 1024} based on
validation set performance, and early stopping was used to determine the number of
EM iterations.

• RBM: A restricted Boltzmann machine made tractable by using only 23 hidden units,
trained by contrastive divergence with up to 25 steps of Gibbs sampling. The validation
set performance was used to select the learning rate from {0.005, 0.0005, 0.00005}, and
the number of iterations over the training set from {100, 500, 1000}.

1. http://github.com/MarcCote/NADE
2. http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
3. http://ai.stanford.edu/~btaskar/ocr/
4. http://www.cs.nyu.edu/~roweis/data.html

16

Neural Autoregressive Distribution Estimation

• FVSBN: Fully visible sigmoid belief network, that models each conditional p(xod |xo<d
)

with logistic regression. The ordering of inputs was selected randomly. Training was by
stochastic gradient descent. The validation set was used for early stopping, as well as
for choosing the base learning rate η ∈ {0.05, 0.005, 0.0005}, and a decreasing schedule
constant γ from {0, 0.001, 0.000001} for the learning rate schedule η/(1 + γt) for the
tth update.

• Chow–Liu: A Chow–Liu tree is a graph over the observed variables, where the
distribution of each variable, except the root, depends on a single parent node. There
is an O(D2) fitting algorithm to find the maximum likelihood tree and conditional
distributions (Chow and Liu, 1968). We adapted an implementation provided by
Harmeling and Williams (2011), who found Chow–Liu to be a strong baseline.

The maximum likelihood parameters are not defined when conditioning on events that
haven’t occurred in the training set. Moreover, conditional probabilities of zero are
possible, which could give infinitely bad test set performance. We re-estimated the
conditional probabilities on the Chow–Liu tree using Lidstone or “add-α” smoothing:

p(xd=1 |xparent=z) =
count(xd=1 |xparent=z) + α

count(xparent=z) + 2α
, (43)

selecting α for each data set from {10−20, 0.001, 0.01, 0.1} based on performance on
the validation set.

• MADE (Germain et al., 2015): Generalization of the neural network approach of
Bengio and Bengio (2000), to multiple layers. We consider a version using a single
(fixed) input ordering and another trained on multiple orderings from which an ensemble
was constructed (which was inspired from the order-agnostic approach of Section 4)
that we refer to as MADE-E. See Germain et al. (2015) for more details.

We compare these baselines with the two following NADE variants:

• NADE (fixed order): Single layer NADE model, trained on a single (fixed) randomly
generated order, as described in Section 2. The sigmoid activation function was used
for the hidden layer, of size 500. Much like for FVSBN, training relied on stochastic
gradient descent and the validation set was used for early stopping, as well as for
choosing the learning rate from {0.05, 0.005, 0.0005}, and the decreasing schedule
constant γ from {0,0.001,0.000001}.

• NADE-E: Single layer NADE trained according to the order-agnostic procedure
described in Section 4. The rectified linear activation function was used for the
hidden layer, also of size 500. Minibatch gradient descent was used for training, with
minibatches of size 100. The initial learning rate, chosen among {0.016, 0.004, 0.001,
0.00025, 0.0000675}, was linearly decayed to zero over the course of 100, 000 parameter
updates. Early stopping was used, using Equation 34 to get a stochastic estimate of
the validation set average log-likelihood. An ensemble using 16 orderings was used to
compute the test-time log-likelihood.

17

Uria, Côté, Gregor, Murray, and Larochelle

Model Adult Connect4 DNA Mushrooms NIPS-0-12 OCR-letters RCV1 Web

MoB -20.44 -23.41 -98.19 -14.46 -290.02 -40.56 -47.59 -30.16
RBM -16.26 -22.66 -96.74 -15.15 -277.37 -43.05 -48.88 -29.38
FVSBN -13.17 -12.39 -83.64 -10.27 -276.88 -39.30 -49.84 -29.35
Chow–Liu -18.51 -20.57 -87.72 -20.99 -281.01 -48.87 -55.60 -33.92
MADE -13.12 -11.90 -83.63 -9.68 -280.25 -28.34 -47.10 -28.53
MADE-E -13.13 -11.90 -79.66 -9.69 -277.28 -30.04 -46.74 -28.25

NADE -13.19 -11.99 -84.81 -9.81 -273.08 -27.22 -46.66 -28.39
NADE-E -13.19 -12.58 -82.31 -9.69 -272.39 -27.32 -46.12 -27.87

Table 2: Average log-likelihood performance of tractable distribution baselines and NADE
models, on binary vector data sets. The best result is shown in bold, along with
any other result with an overlapping confidence interval.

Table 2 presents the results. We observe that NADE restricted to a fixed ordering of
the inputs achieves very competitive performance compared to the baselines. However, the
order-agnostic version of NADE is overall the best method, being among the top performing
model for 5 data sets out of 8.

The performance of fixed-order NADE is surprisingly robust to variations of the chosen
input ordering. The standard deviation on the average log-likelihood when varying the
ordering was small: on Mushrooms, DNA and NIPS-0-12, we observed standard deviations
of 0.045, 0.05 and 0.15, respectively. However, models with different orders can do well on
different test examples, which explains why ensembling can still help.

7.2 Binary Image Data Set

We now consider the case of an image data set, constructed by binarizing the MNIST digit
data set. Each image has been stochastically binarized according to their pixel intensity as
generated by Salakhutdinov and Murray (2008). This benchmark has been a popular choice
for the evaluation of generative neural network models. Here, we investigate two questions:

1. How does NADE compare to intractable generative models?

2. Does the use of a convolutional architecture improve the performance of NADE?

For these experiments, in addition to the baselines already described in Section 7.1, we
consider the following:

• DARN (Gregor et al., 2014): This deep generative autoencoder has two hidden
layers, one deterministic and one with binary stochastic units. Both layers have 500
units (denoted as nh = 500). Adaptive weight noise (adaNoise) was either used or
not to avoid the need for early stopping (Graves, 2011). Evaluation of exact test
probabilities is intractable for large latent representations. Hence, Monte Carlo was
used to approximate the expected description length, which corresponds to an upper
bound on the negative log-likelihood.

18

Neural Autoregressive Distribution Estimation

Model − log p ≈

MoBernoullis K=10 168.95
MoBernoullis K=500 137.64
Chow–Liu tree 134.99
MADE 2hl (32 masks) 86.64
RBM (500 h, 25 CD steps) 86.34
DBN 2hl 84.55
DARN nh = 500 84.71
DARN nh = 500 (adaNoise) 84.13
NADE (fixed order) 88.33

DeepNADE 1hl (no input masks) 99.37
DeepNADE 2hl (no input masks) 95.33
DeepNADE 1hl 92.17
DeepNADE 2hl 89.17
DeepNADE 3hl 89.38
DeepNADE 4hl 89.60

EoNADE 1hl (2 orderings) 90.69
EoNADE 1hl (128 orderings) 87.71
EoNADE 2hl (2 orderings) 87.96
EoNADE 2hl (128 orderings) 85.10

Table 3: Negative log-likelihood test results of models ignorant of the 2D topology on the
binarized MNIST data set.

• DRAW (Gregor et al., 2015): Similar to a variational autoencoder where both the
encoder and the decoder are LSTMs, guided (or not) by an attention mechanism. In
this model, both LSTMs (encoder and decoder) are composed of 256 recurrent hidden
units and always perform 64 timesteps. When the attention mechanism is enabled,
patches (2× 2 pixels) are provided as inputs to the encoder instead of the whole image
and the decoder also produces patches (5× 5 pixels) instead of a whole image.

• Pixel RNN (Oord et al., 2016): NADE-like model for natural images that is based
on convolutional and LSTM hidden units. This model has 7 hidden layers, each
composed of 16 units. Oord et al. (2016) proposed a novel two-dimensional LSTM,
named Diagonal BiLSTM, which is used in this model. Unlike our ConvNADE, the
ordering is fixed before training and at test time, and corresponds to a scan of the
image in a diagonal fashion starting from a corner at the top and reaching the opposite
corner at the bottom.

We compare these baselines with some NADE variants. The performance of a basic
(fixed-order, single hidden layer) NADE model is provided in Table 3 and samples are
illustrated in Figure 4. More importantly, we will focus on whether the following variants
achieve better test set performance:

• DeepNADE: Multiple layers (1hl, 2hl, 3hl or 4hl) trained according to the order-
agnostic procedure described in Section 4. Information about which inputs are masked

19

Uria, Côté, Gregor, Murray, and Larochelle

was either provided or not (no input masks) to the model. The rectified linear
activation function was used for all hidden layers. Minibatch gradient descent was
used for training, with minibatches of size 1000. Training consisted of 200 iterations of
1000 parameter updates. Each hidden layer was pre-trained according to Algorithm 2.
We report an average of the average test log-likelihoods over ten different random
orderings.

• EoNADE: This variant is similar to DeepNADE except for the log-likelihood on
the test set, which is instead computed from an ensemble that averages predictive
probabilities over 2 or 128 orderings. To clarify, the DeepNADE results report the
typical performance of one ordering, by averaging results after taking the log, and so
do not combine the predictions of the models like EoNADE does.

• ConvNADE: Multiple convolutional layers trained according to the order-agnostic
procedure described in Section 4. The exact architecture is shown in Figure 5(a).
Information about which inputs are masked was either provided or not (no input
masks). The rectified linear activation function was used for all hidden layers. The
Adam optimizer (Kingma and Ba, 2015) was used with a learning rate of 10−4. Early
stopping was used with a look ahead of 10 epochs, using Equation 34 to get a stochastic
estimate of the validation set average log-likelihood. An ensemble using 128 orderings
was used to compute the log-likelihood on the test set.

• ConvNADE + DeepNADE: This variant is similar to ConvNADE except for the
aggregation of a separate DeepNADE model at the end of the network. The exact
architecture is shown in Figure 5(b). The training procedure is the same as with
ConvNADE.

Algorithm 2 Pre-training of a NADE with n hidden layers on data set X.

procedure PRETRAIN(n,X)
if n = 1 then

return RANDOM-ONE-HIDDEN-LAYER-NADE

else
nade ← PRETRAIN(n− 1, X)
nade ← REMOVE-OUTPUT-LAYER(nade)
nade ← ADD-A-NEW-HIDDEN-LAYER(nade)
nade ← ADD-A-NEW-OUTPUT-LAYER(nade)
nade ← TRAIN-ALL(nade,X,iters=20) ⊲ Train for 20 iterations.
return nade

end if
end procedure

Table 3 presents the results obtained by models ignorant of the 2D topology, such as
the basic NADE model. Addressing the first question, we observe that the order-agnostic
version of NADE with two hidden layers is competitive with intractable generative models.
Moreover, examples of the ability of DeepNADE to solve inference tasks by marginalization
and conditional sampling are shown in Figure 6.

20

Neural Autoregressive Distribution Estimation

Figure 4: Left: samples from NADE trained on binarized MNIST. Right: probabilities
from which each pixel was sampled. Ancestral sampling was used with the same
fixed ordering used during training.

Model − log p ≤

DRAW (without attention) 87.40
DRAW 80.97
Pixel RNN 79.20

ConvNADE+DeepNADE (no input masks) 85.25
ConvNADE 81.30
ConvNADE+DeepNADE 80.82

Table 4: Negative log-likelihood test results of models exploiting 2D topology on the binarized
MNIST data set.

Now, addressing the second question, we can see from Table 4 that convolutions do
improve the performance of NADE. Moreover, we observe that providing information about
which inputs are masked is essential to obtaining good results. We can also see that combining
convolutional and fully-connected layers helps. Even though ConvNADE+DeepNADE
performs slightly worse than Pixel RNN, we note that our proposed approach is order-
agnostic, whereas Pixel RNN requires a fixed ordering. Figure 7 shows samples obtained
from the ConvNADE+DeepNADE model using ancestral sampling on a random ordering.

7.3 Real-Valued Observations Data Sets

In this section, we compare the statistical performance of RNADE to mixtures of Gaus-
sians (MoG) and factor analyzers (MFA), which are surprisingly strong baselines in some
tasks (Tang et al., 2012; Zoran and Weiss, 2012).

21

Uria, Côté, Gregor, Murray, and Larochelle

Image

64@8x8(valid)

64@4x4(valid)

64@6x6(valid)

64@7x7(valid)

64@4x4(full)

64@6x6(full)

64@7x7(full)

1@8x8(full)

Output

(a) ConvNADE

Image

64@8x8(valid)

64@4x4(valid)

64@6x6(valid)

64@7x7(valid)

64@4x4(full)

64@6x6(full)

64@7x7(full)

1@8x8(full)

Output

500

500

784

+

(b) ConvNADE + DeepNADE

Figure 5: Network architectures for binarized MNIST. (a) ConvNADE with 8 convolutional
layers (depicted in blue). The number of feature maps for a given layer is given
by the number before the “@” symbol followed by the filter size and the type of
convolution is specified in parentheses. (b) The same ConvNADE combined with
a DeepNADE consisting of three fully-connected layers of respectively 500, 500
and 784 units.

22

Neural Autoregressive Distribution Estimation

-61.21 -36.33

-84.40 -46.22

-96.68 -66.26

-86.37 -73.31

-93.35 -79.40

-45.84 -41.88

Figure 6: Example of marginalization and sampling. The first column shows five examples
from the test set of the MNIST data set. The second column shows the density of
these examples when a random 10×10 pixel region is marginalized. The right-most
five columns show samples for the hollowed region. Both tasks can be done easily
with a NADE where the pixels to marginalize are at the end of the ordering.

0 50 100 150 200

0

50

100

150

200

Samples

Figure 7: Left: samples from ConvNADE+DeepNADE trained on binarized MNIST. Right:
probabilities from which each pixel was sampled. Ancestral sampling was used
with a different random ordering for each sample.

23

Uria, Côté, Gregor, Murray, and Larochelle

7.3.1 Low-dimensional data

We start by considering three UCI data sets (Bache and Lichman, 2013), previously used
to study the performance of other density estimators (Silva et al., 2011; Tang et al., 2012),
namely: red wine, white wine and parkinsons. These are low dimensional data sets (see
Table 5) with hard thresholds and non-linear dependencies that make it difficult to fit
mixtures of Gaussians or factor analyzers.

Following Tang et al. (2012), we eliminated discrete-valued attributes and an attribute
from every pair with a Pearson correlation coefficient greater than 0.98. We normalized each
dimension of the data by subtracting its training-subset sample mean and dividing by its
standard deviation. All results are reported on the normalized data.

We use full-covariance Gaussians and mixtures of factor analysers as baselines. Models
were compared on their log-likelihood on held-out test data. Due to the small size of the
data sets (see Table 5), we used 10-folds, using 90% of the data for training, and 10% for
testing.

We chose the hyperparameter values for each model by doing per-fold cross-validation,
using a ninth of the training data as validation data. Once the hyperparameter values
have been chosen, we train each model using all the training data (including the validation
data) and measure its performance on the 10% of held-out testing data. In order to avoid
overfitting, we stopped the training after reaching a training likelihood higher than the one
obtained on the best validation-wise iteration of the best validation run. Early stopping
was important to avoid overfitting the RNADE models. It also improved the results of the
MFAs, but to a lesser degree.

The MFA models were trained using the EM algorithm (Ghahramani and Hinton, 1996;
Verbeek, 2005). We cross-validated the number of components and factors. We also selected
the number of factors from 2, 4, . . . D, where choosing D results in a mixture of Gaussians,
and the number of components was chosen among 2, 4, . . . 50. Cross-validation selected fewer
than 50 components in every case.

We report the performance of several RNADE models using different parametric forms for
the one-dimensional conditionals: Gaussian with fixed variance (RNADE-FV), Gaussian with
variable variance (RNADE-Gaussian), sinh-arcsinh distribution (RNADE-SAS), mixture
of Gaussians (RNADE-MoG), and mixture of Laplace distributions (RNADE-MoL). All
RNADE models were trained by stochastic gradient descent, using minibatches of size 100, for
500 epochs, each epoch comprising 10 minibatches. We fixed the number of hidden units to 50,
and the non-linear activation function of the hidden units to ReLU. Three hyperparameters
were cross-validated using grid-search: the number of components on each one-dimensional
conditional (only applicable to the RNADE-MoG and RNADE-MoL models) was chosen from
{2, 5, 10, 20}, the weight-decay (used only to regularize the input to hidden weights) from
{2.0, 1.0, 0.1, 0.01, 0.001, 0}, and the learning rate from {0.1, 0.05, 0.025, 0.0125}. Learning
rates were decreased linearly to reach 0 after the last epoch.

The results are shown in Table 6. RNADE with mixture of Gaussian conditionals was
among the statistically significant group of best models on all data sets. As shown in
Figure 8, RNADE-SAS and RNADE-MoG models are able to capture hard thresholds and
heteroscedasticity.

24

Neural Autoregressive Distribution Estimation

−20 0 20 40 60 80

x6

−50

0

50

100

150

200

250

300

x
7

RNADE-FV

−20 0 20 40 60 80

x6

−50

0

50

100

150

200

250

300

x
7

RNADE-Gaussian

−20 0 20 40 60 80

x6

−50

0

50

100

150

200

250

300

x
7

RNADE-SAS

−20 0 20 40 60 80

x6

−50

0

50

100

150

200

250

300

x
7

RNADE-MoG K=20

Figure 8: Scatter plot of dimensions x7 vs x6 of the red wine data set. A thousand data
points from the data set are shown in black in all subfigures. As can be observed,
this conditional distribution p(x7 |x6) is heteroscedastic, skewed and has hard
thresholds. In red, a thousand samples from four RNADE models with different
one-dimensional conditional forms are shown. Top-left: In red, one thousand
samples from a RNADE-FV model. Top-right: In red, one thousand samples
from a RNADE-Gaussian model. Bottom-left: In red, one thousand samples
from a RNADE-SAS (sinh-arcsinh distribution) model. Bottom-right: In red,
one thousand samples from a RNADE-MoG model with 20 components per one-
dimensional conditional. The RNADE-SAS and RNADE-MoG models successfully
capture all the characteristics of the data.

25

Uria, Côté, Gregor, Murray, and Larochelle

Red wine White wine Parkinsons

Dimensionality 11 11 15
Total number of data points 1599 4898 5875

Table 5: Dimensionality and size of the UCI data sets used in Section 7.3.1

Model Red wine White wine Parkinsons

Gaussian −13.18 −13.20 −10.85
MFA −10.19 −10.73 −1.99
RNADE-FV −12.29 −12.50 −8.87
RNADE-Gaussian −11.99 −12.20 −3.47
RNADE-SAS −9.86 −11.22 −3.07
RNADE-MoG −9.36 −10.23 −0.90
RNADE-MoL −9.46 −10.38 −2.63

Table 6: Average test set log-likelihoods per data point for seven models on three UCI data
sets. Performances not in bold can be shown to be significantly worse than at
least one of the results in bold as per a paired t-test on the ten mean-likelihoods
(obtained from each data fold), with significance level 0.05.

7.3.2 Natural image patches

We also measured the ability of RNADE to model small patches of natural images. Following
the work of Zoran and Weiss (2011), we use 8-by-8-pixel patches of monochrome natural
images, obtained from the BSDS300 data set (Martin et al., 2001; Figure 9 gives examples).

Pixels in this data set can take a finite number of brightness values ranging from 0 to 255.
We added uniformly distributed noise between 0 and 1 to the brightness of each pixel. We
then divided by 256, making the pixels take continuous values in the range [0, 1]. Adding
noise prevents deceivingly high-likelihood solutions that assign narrow high-density spikes
around some of the possible discrete values.

We subtracted the mean pixel value from each patch. Effectively reducing the dimen-
sionality of the data. Therefore we discarded the 64th (bottom-right) pixel, which would be
perfectly predictable and models could fit arbitrarily high densities to it. All of the results
in this section were obtained by fitting the pixels in a raster-scan order.

Experimental details follow. We trained our models by using patches randomly drawn
from 180 images in the training subset of BSDS300. We used the remaining 20 images in the
training subset as validation data. We used 1000 random patches from the validation subset
to early-stop training of RNADE. We measured the performance of each model by their
log-likelihood on one million patches drawn randomly from the test subset of 100 images
not present in the training data. Given the larger scale of this data set, hyperparameters of
the RNADE and MoG models were chosen manually using the performance of preliminary
runs on the validation data, rather than by grid search.

26

Neural Autoregressive Distribution Estimation

All RNADE models reported use ReLU activations for the hidden units. The RNADE
models were trained by stochastic gradient descent, using 25 data points per minibatch, for
a total of 1,000 epochs, each comprising 1,000 minibatches. The learning rate was initialized
to 0.001, and linearly decreased to reach 0 after the last epoch. Gradient momentum with
factor 0.9 was used, but initiated after the first epoch. A weight decay rate of 0.001 was
applied to the input-to-hidden weight matrix only. We found that multiplying the gradient of
the mean output parameters by the standard deviation improves results of the models with
mixture outputs5. RNADE training was early stopped but didn’t show signs of overfitting.
Even larger models might perform better.

The MoG models were trained using 1,000 iterations of minibatch EM. At each iteration
20,000 randomly sampled data points were used in an EM update. A step was taken
from the previous parameters’ value towards the parameters resulting from the M-step:
θt = (1 − η)θt−1 + ηθEM . The step size, η, was scheduled to start at 0.1 and linearly
decreased to reach 0 after the last update. The training of the MoG was early-stopped and
also showed no signs of overfitting.

The results are shown in Table 7. We report the average log-likelihood of each model for
a million image patches from the test set. The ranking of RNADE models is maintained
when ordered by validation likelihood: the model with best test-likelihood would have been
chosen using crossvalidation across all the RNADE models shown in the table. We also
compared RNADE with a MoG trained by Zoran and Weiss (downloaded from Daniel
Zoran’s website) from which we removed the 64th row and column of each covariance matrix.
There are two differences in the set-up of our experiments and those of Zoran and Weiss.
First, we learned the means of the MoG components, while Zoran and Weiss (2011) fixed
them to zero. Second, we held-out 20 images from the training set to do early-stopping and
hyperparameter optimisation, while they used the 200 images for training.

The RNADE-FV model with fixed conditional variances obtained very low statistical
performance. Adding an output parameter per dimension to have variable standard deviations
made our models competitive with MoG with 100 full-covariance components. However, in
order to obtain results superior to the mixture of Gaussians model trained by Zoran and
Weiss, we had to use richer conditional distributions: one-dimensional mixtures of Gaussians
(RNADE-MoG). On average, the best RNADE model obtained 3.3 nats per patch higher
log-density than a MoG fitted with the same training data.

In Figure 9, we show one hundred examples from the test set, one hundred examples from
Zoran and Weiss’ mixture of Gaussians, and a hundred samples from our best RNADE-MoG
model. Similar patterns can be observed in the three cases: uniform patches, edges, and
locally smooth noisy patches.

7.3.3 Speech acoustics

We also measured the ability of RNADE to model small patches of speech spectrograms,
extracted from the TIMIT data set (Garofolo et al., 1993). The patches contained 11 frames
of 20 filter-banks plus energy; totalling 231 dimensions per data point. A good generative
model of speech acoustics could be used, for example, in denoising, or speech detection tasks.

5. Empirically, we found this to work better than regular gradients and also better than multiplying by the
variances, which would provide a step with the right units.

27

Uria, Côté, Gregor, Murray, and Larochelle

Model Test log-likelihood

MoG K=200 (Zoran and Weiss, 2012)a 152.8
MoG K=100 144.7
MoG K=200 150.4
MoG K=300 150.4

RNADE-FV h=512 100.3
RNADE-Gaussian h=512 143.9
RNADE-Laplace h=512 145.9
RNADE-SASb h=512 148.5

RNADE-MoG K=2 h=512 149.5
RNADE-MoG K=2 h=1024 150.3
RNADE-MoG K=5 h=512 152.4
RNADE-MoG K=5 h=1024 152.7
RNADE-MoG K=10 h=512 153.5
RNADE-MoG K=10 h=1024 153.7

RNADE-MoL K=2 h=512 149.3
RNADE-MoL K=2 h=1024 150.1
RNADE-MoL K=5 h=512 151.5
RNADE-MoL K=5 h=1024 151.4
RNADE-MoL K=10 h=512 152.3
RNADE-MoL K=10 h=1024 152.5

Table 7: Average per-example log-likelihood of several mixture of Gaussian and RNADE
models on 8×8 pixel patches of natural images. These results are reported in nats
and were calculated using one million patches. Standard errors due to the finite test
sample size are lower than 0.1 nats in every case. h indicates the number of hidden
units in the RNADE models, and K the number of one-dimensional components for
each conditional in RNADE or the number of full-covariance components for MoG.

a. This model was trained using the full 200 images in the BSDS training data set, the rest of the models
were trained using 180, reserving 20 for hyperparameter crossvalidation and early-stopping.

b. Training an RNADE with sinh-arcsinh conditionals required the use of a starting learning rate 20 times
smaller to avoid divergence during training. For this reason, this model was trained for 2000 epochs.

28

Neural Autoregressive Distribution Estimation

Figure 9: Top: 100 8×8 patches from the BSDS test set. Center: 100 samples from
a mixture of Gaussians with 200 full-covariance components. Bottom: 100
samples from an RNADE with 1024 hidden units and 10 Gaussian components
per conditional. All data and samples were drawn randomly and sorted by their
density under the RNADE.

29

Uria, Côté, Gregor, Murray, and Larochelle

Model Test LogL

MoG N=50 110.4
MoG N=100 112.0
MoG N=200 112.5
MoG N=300 112.5

RNADE-Gaussian 110.6
RNADE-Laplace 108.6
RNADE-SAS 119.2
RNADE-MoG K=2 121.1
RNADE-MoG K=5 124.3
RNADE-MoG K=10 127.8
RNADE-MoL K=2 116.3
RNADE-MoL K=5 120.5
RNADE-MoL K=10 123.3

Table 8: Log-likelihood of several MoG and RNADE models on the core-test set of TIMIT
measured in nats. Standard errors due to the finite test sample size are lower than
0.4 nats in every case. RNADE obtained a higher (better) log-likelihood.

We fitted the models using the standard TIMIT training subset, which includes recordings
from 605 speakers of American English. We compare RNADE with a mixture of Gaussians
by measuring their log-likelihood on the complete TIMIT core-test data set: a held-out set
of 25 speakers.

The RNADE models have 512 hidden units, ReLU activations, and a mixture of 20
one-dimensional Gaussian components per output. Given the large scale of this data set,
hyperparameter choices were again made manually using validation data. The same training
procedures for RNADE and mixture of Gaussians were used as for natural image patches.

The RNADE models were trained by stochastic gradient descent, with 25 data points
per minibatch, for a total of 200 epochs, each comprising 1,000 minibatches. The learning
rate was initialized to 0.001 and linearly decreased to reach 0 after the last epoch. Gradient
momentum with momentum factor 0.9 was used, but initiated after the first epoch. A weight
decay rate of 0.001 was applied to the input-to-hidden weight matrix only. Again, we found
that multiplying the gradient of the mean output parameters by the standard deviation
improved results. RNADE training was early stopped but didn’t show signs of overfitting.

As for the MoG model, it was trained exactly as in Section 7.3.2.

The results are shown in Table 8. The best RNADE (which would have been selected
based on validation results) has 15 nats higher likelihood per test example than the best
mixture of Gaussians. Examples from the test set, and samples from the MoG and RNADE-
MoG models are shown in Figure 10. In contrast with the log-likelihood measure, there are
no marked differences between the samples from each model. Both sets of samples look like
blurred spectrograms, but RNADE seems to capture sharper formant structures (peaks of
energy at the lower frequency bands characteristic of vowel sounds).

30

Neural Autoregressive Distribution Estimation

Figure 10: Top: 60 data points from the TIMIT core-test set. Center: 60 samples from a
MoG model with 200 components. Bottom: 60 samples from an RNADE with
10 Gaussian output components per dimension. For each data point displayed,
time is shown on the horizontal axis, the bottom row displays the energy feature,
while the others display the Mel filter bank features (in ascending frequency
order from the bottom). All data and samples were drawn randomly and sorted
by density under the RNADE model.

31

Uria, Côté, Gregor, Murray, and Larochelle

8. Conclusion

We’ve described the Neural Autoregressive Distribution Estimator, a tractable, flexible
and competitive alternative to directed and undirected graphical models for unsupervised
distribution estimation.

Since the publication of the first formulation of NADE (Larochelle and Murray, 2011),
it has been extended to many more settings, other than those described in this paper.
Larochelle and Lauly (2012); Zheng et al. (2015b) adapted NADE for topic modeling of
documents and images, while Boulanger-Lewandowski et al. (2012) used NADE for modeling
music sequential data. Theis and Bethge (2015) and Oord et al. (2016) proposed different
NADE models for images than the one we presented, applied to natural images and based
on convolutional and LSTM hidden units. Zheng et al. (2015a) used a NADE model to
integrate an attention mechanism into an image classifier. Bornschein and Bengio (2015)
showed that NADE could serve as a powerful prior over the latent state of directed graphical
model. These are just a few examples of many possible ways one can leverage the flexibility
and effectiveness of NADE models.

References

Kevin Bache and Moshe Lichman. UCI machine learning repository, 2013. http://archive.
ics.uci.edu/ml.

Yoshua Bengio. Learning deep architectures for AI. Foundations and Trends in Machine

Learning, 2(1):1–127, 2009.

Yoshua Bengio and Samy Bengio. Modeling high-dimensional discrete data with multi-layer
neural networks. In Advances in Neural Information Processing Systems 12, pages 400–406.
MIT Press, 2000.

Julian Besag. Statistical analysis of non-lattice data. The Statistician, 24(3):179–195, 1975.

Christopher M. Bishop. Mixture density networks. Technical Report NCRG 4288, Neural
Computing Research Group, Aston University, Birmingham, 1994.

Jörg Bornschein and Yoshua Bengio. Reweighted wake-sleep. In Proceedings of the 3rd

International Conference on Learning Representations. arXiv:1406.2751, 2015.

Nicolas Boulanger-Lewandowski, Yoshua Bengio, and Pascal Vincent. Modeling temporal
dependencies in high-dimensional sequences: Application to polyphonic music generation
and transcription. In Proceedings of the 29th International Conference on Machine

Learning, pages 1159–1166. Omnipress, 2012.

Yuri Burda, Ruslan Salakhutdinov, and Roger Grosse. Importance weighted autoen-
coders. In Proceedings of the 4th International Conference on Learning Representations.
arXiv:1509.00519v3, 2016.

KyungHyun Cho, Tapani Raiko, and Alexander Ilin. Parallel tempering is efficient for learning
restricted Boltzmann machines. In Proceedings of the International Joint Conference on

Neural Networks. IEEE, 2010.

32

Neural Autoregressive Distribution Estimation

KyungHyun Cho, Tapani Raiko, and Alexander Ilin. Enhanced gradient for training restricted
Boltzmann machines. Neural Computation, 25:805–31, 2013.

C.K. Chow and C.N. Liu. Approximating discrete probability distributions with dependence
trees. IEEE Transactions on Information Theory, 14(3):462–467, 1968.

George E. Dahl, Tara N. Sainath, and Geoffrey E. Hinton. Improving deep neural networks
for LVCSR using rectified linear units and dropout. IEEE International Conference on

Acoustics, Speech and Signal Processing, pages 8609–8613, 2013.

Peter Dayan, Geoffrey E. Hinton, Radford M. Neal, and Richard S. Zemel. The Helmholtz
machine. Neural Computation, 7:889–904, 1995.

Emily L. Denton, Soumith Chintala, Arthur Szlam, and Rob Fergus. Deep generative
image models using a Laplacian pyramid of adversarial networks. In Advances in Neural

Information Processing Systems 28, pages 1486–1494. Curran Associates, Inc., 2015.

Guillaume Desjardins, Aaron Courville, Yoshua Bengio, Pascal Vincent, and Olivier Delalleau.
Tempered Markov chain Monte Carlo for training of restricted Boltzmann machine.
Proceedings of the 13th International Conference on Artificial Intelligence and Statistics,

JMLR W&CP, 9:145–152, 2010.

Yoav Freund and David Haussler. Unsupervised learning of distributions on binary vectors
using two layer networks. In Advances in Neural Information Processing Systems 4, pages
912–919. Morgan-Kaufmann, 1992.

Brendan J. Frey, Geoffrey E. Hinton, and Peter Dayan. Does the wake-sleep algorithm learn
good density estimators? In Advances in Neural Information Processing Systems 8, pages
661–670. MIT Press, 1996.

J. Garofolo, L. Lamel, W. Fisher, J. Fiscus, D. Pallett, N. Dahlgren, and V. Zue. DARPA
TIMIT acoustic-phonetic continuous speech corpus CD-ROM. NIST, 1993.

Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. MADE: Masked
autoencoder for distribution estimation. Proceedings of the 32nd International Conference

on Machine Learning, JMLR W&CP, 37:881–889, 2015.

Zoubin Ghahramani and Geoffrey E. Hinton. The EM algorithm for mixtures of factor
analyzers. Technical Report CRG-TR-96-1, University of Toronto, 1996.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron C. Courville, and Yoshua Bengio. Generative adversarial nets. In Advances

in Neural Information Processing Systems 27, pages 2672–2680, 2014.

Alex Graves. Practical variational inference for neural networks. In Advances in Neural

Information Processing Systems 24, pages 2348–2356. Curran Associates, Inc., 2011.

Karol Gregor and Yann LeCun. Learning representations by maximizing compression.
Technical report, arXiv:1108.1169, 2011.

33

Uria, Côté, Gregor, Murray, and Larochelle

Karol Gregor, Andriy Mnih, and Daan Wierstra. Deep autoregressive networks. Proceedings
of the 31st International Conference on Machine Learning, JMLR W&CP, 32:1242–1250,
2014.

Karol Gregor, Ivo Danihelka, Alex Graves, Danilo Jimenez Rezende, and Daan Wierstra.
DRAW: a recurrent neural network for image generation. Proceedings of the 32nd Inter-

national Conference on Machine Learning, JMLR W&CP, 37:1462–1471, 2015.

Arthur Gretton, Karsten M. Borgwardt, Malte Rasch, Bernhard Schölkopf, and Alex J.
Smola. A kernel method for the two-sample-problem. In Advances in Neural Information

Processing Systems 19, pages 513–520. MIT Press, 2007.

Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new estimation
principle for unnormalized statistical models. In Proceedings of the Thirteenth International

Conference on Artificial Intelligence and Statistics, pages 297–304, 2010.

Stefan Harmeling and Christopher K.I. Williams. Greedy learning of binary latent trees.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(6):1087–1097, 2011.

Geoffrey E. Hinton. Training products of experts by minimizing contrastive divergence.
Neural Computation, 14:1771–1800, 2002.

Geoffrey E. Hinton, Peter Dayan, Brendan J. Frey, and Radford M. Neal. The wake-sleep
algorithm for unsupervised neural networks. Science, 268:1161–1558, 1995.

Geoffrey E. Hinton, Simon Osindero, and Yee Whye Teh. A fast learning algorithm for deep
belief nets. Neural Computation, 18:1527–1554, 2006.

Aapo Hyvärinen. Estimation of non-normalized statistical models by score matching. Journal
of Machine Learning Research, 6:695–709, 2005.

Aapo Hyvärinen. Some extensions of score matching. Computational Statistics and Data

Analysis, 51:2499–2512, 2007a.

Aapo Hyvärinen. Connections between score matching, contrastive divergence, and pseudo-
likelihood for continuous-valued variables. IEEE Transactions on Neural Networks, 18:
1529–1531, 2007b.

Diederik P. Kingma and Jimmy Lei Ba. Adam: a method for stochastic optimiza-
tion. In Proceedings of the 3rd International Conference on Learning Representations.
arXiv:1412.6980v5, 2015.

Diederik P. Kingma and Max Welling. Auto-encoding variational Bayes. In Proceedings of

the 2nd International Conference on Learning Representations. arXiv:1312.6114v10, 2014.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in Neural Information Processing Systems 25,
pages 1097–1105. Curran Associates, Inc., 2012.

34

Neural Autoregressive Distribution Estimation

Hugo Larochelle and Stanislas Lauly. A neural autoregressive topic model. In Advances

in Neural Information Processing Systems 25, pages 2708–2716. Curran Associates, Inc.,
2012.

Hugo Larochelle and Iain Murray. The neural autoregressive distribution estimator. Proceed-
ings of the 14th International Conference on Artificial Intelligence and Statistics, JMLR

W&CP, 15:29–37, 2011.

Yann LeCun, Yoshua Bengio, and Geoffrey E. Hinton. Deep learning. Nature, 521(7553):
436–444, 2015.

Yujia Li, Kevin Swersky, and Richard S. Zemel. Generative moment matching networks.
Proceedings of the 32nd International Conference on Machine Learning, JMLR W&CP,
37:1718–1727, 2015.

Benjamin Marlin, Kevin Swersky, Bo Chen, and Nando de Freitas. Inductive principles for
restricted Boltzmann machine learning. In Proceedings of the Thirteenth International

Conference on Artificial Intelligence and Statistics, 2010.

D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural
images and its application to evaluating segmentation algorithms and measuring ecological
statistics. In International Conference on Computer Vision, volume 2, pages 416–423.
IEEE, July 2001.

Grégoire Montavon and Klaus-Robert Müller. Deep Boltzmann machines and the centering
trick. In Neural Networks: Tricks of the Trade, Second Edition, pages 621–637. Springer,
2012.

Radford M. Neal. Connectionist learning of belief networks. Artificial Intelligence, 56:71–113,
1992.

Jiquan Ngiam, Zhenghao Chen, Pang Wei Koh, and Andrew Y. Ng. Learning deep energy
models. In Proceedings of the 28th International Conference on Machine Learning, pages
1105–1112. Omnipress, 2011.

Aäron Van Den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural
networks. Proceedings of the 33rd International Conference on Machine Learning, JMLR

W&CP, 2016. To appear. arXiv:1601.06759v2.

Dirk Ormoneit and Volker Tresp. Improved Gaussian mixture density estimates using
Bayesian penalty terms and network averaging. In Advances in Neural Information

Processing Systems 8, pages 542–548. MIT Press, 1995.

Tapani Raiko, Li Yao, Kyunghyun Cho, and Yoshua Bengio. Iterative neural autoregressive
distribution estimator (NADE-k). In Advances in Neural Information Processing Systems

27, pages 325–333. Curran Associates, Inc., 2014.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation
and approximate inference in deep generative models. Proceedings of the 31st International

Conference on Machine Learning, JMLR W&CP, 32:1278–1286, 2014.

35

Uria, Côté, Gregor, Murray, and Larochelle

Ruslan Salakhutdinov. Learning in Markov random fields using tempered transitions.
In Advances in Neural Information Processing Systems 22, pages 1598–1606. Curran
Associates, Inc., 2009.

Ruslan Salakhutdinov. Learning deep Boltzmann machines using adaptive MCMC. In
Proceedings of the 27th International Conference on Machine Learning, pages 943–950.
Omnipress, 2010.

Ruslan Salakhutdinov and Geoffrey E. Hinton. Deep Boltzmann machines. Proceedings

of the Twelfth International Conference on Artificial Intelligence and Statistics, JMLR

W&CP, 5:448–455, 2009.

Ruslan Salakhutdinov and Hugo Larochelle. Efficient learning of deep Boltzmann machines.
Proceedings of the 13th International Conference on Artificial Intelligence and Statistics,

JMLR W&CP, 9:693–700, 2010.

Ruslan Salakhutdinov and Iain Murray. On the quantitative analysis of deep belief networks.
In Proceedings of the 25th International Conference on Machine Learning, pages 872–879.
Omnipress, 2008.

Ricardo Silva, Charles Blundell, and Yee Whye Teh. Mixed cumulative distribution networks.
Proceedings of the 14th International Conference on Artificial Intelligence and Statistics,

JMLR W&CP, 15:670–678, 2011.

Paul Smolensky. Information processing in dynamical systems: Foundations of harmony
theory. In D.E. Rumelhart and J.L. McClelland, editors, Parallel Distributed Processing:

Volume 1: Foundations, volume 1, chapter 6, pages 194–281. MIT Press, Cambridge, 1986.

Padhraic Smyth and David Wolpert. Linearly combining density estimators via stacking.
Machine Learning, 36(1-2):59–83, 1999.

Jascha Sohl-Dickstein, Peter Battaglino, and Michael R. DeWeese. Minimum probability
flow learning. In Proceedings of the 28th International Conference on Machine Learning,
pages 905–912. Omnipress, 2011.

Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. Striving
for simplicity: the all convolutional net. In Proceedings of the 3rd International Conference

on Learning Representations. arXiv:1412.6806v3, 2015.

Yichuan Tang, Ruslan Salakhutdinov, and Geoffrey E. Hinton. Deep mixtures of factor
analysers. In Proceedings of the 29th International Conference on Machine Learning,
pages 505–512. Omnipress, 2012.

The Theano Development Team, Rami Al-Rfou, Guillaume Alain, Amjad Almahairi, Christof
Angermueller, Dzmitry Bahdanau, Nicolas Ballas, Frédéric Bastien, Justin Bayer, Anatoly
Belikov, et al. Theano: A python framework for fast computation of mathematical
expressions. arXiv preprint arXiv:1605.02688, 2016.

36

Neural Autoregressive Distribution Estimation

Lucas Theis and Matthias Bethge. Generative image modeling using spatial lstms. In Ad-

vances in Neural Information Processing Systems 28, pages 1927–1935. Curran Associates,
Inc., 2015.

Tijmen Tieleman. Training restricted Boltzmann machines using approximations to the
likelihood gradient. In Proceedings of the 25th International Conference on Machine

Learning, pages 1064–1071. Omnipress, 2008.

Tijmen Tieleman and Geoffrey E. Hinton. Using fast weights to improve persistent contrastive
divergence. In Proceedings of the 26th International Conference on Machine Learning,
pages 1033–1040. Omnipress, 2009.

Benigno Uria. Connectionist multivariate density-estimation and its application to speech

synthesis. PhD thesis, The University of Edinburgh, 2015.

Benigno Uria, Iain Murray, and Hugo Larochelle. RNADE: The real-valued neural autore-
gressive density-estimator. In Advances in Neural Information Processing Systems 26,
pages 2175–2183. Curran Associates, Inc., 2013.

Benigno Uria, Iain Murray, and Hugo Larochelle. A deep and tractable density estimator.
Proceedings of the 31st International Conference on Machine Learning, JMLR W&CP, 32:
467–475, 2014.

Jakob Verbeek. Mixture of factor analyzers Matlab implementation, 2005. http://lear.
inrialpes.fr/~verbeek/software.php.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting
and composing robust features with denoising autoencoders. In Proceedings of the 25th

International Conference on Machine Learning, pages 1096–1103. Omnipress, 2008.

Max Welling, Michal Rosen-Zvi, and Geoffrey E. Hinton. Exponential family harmoniums
with an application to information retrieval. In Advances in Neural Information Processing

Systems 17, pages 1481–1488. MIT Press, 2005.

Laurent Younes. Parameter inference for imperfectly observed Gibbsian fields. Probability
Theory Related Fields, 82:625–645, 1989.

Yin Zheng, Richard S. Zemel, Yu-Jin Zhang, and Hugo Larochelle. A neural autoregressive
approach to attention-based recognition. International Journal of Computer Vision, 113
(1):67–79, 2015a.

Yin Zheng, Yu-Jin Zhang, and Hugo Larochelle. A deep and autoregressive approach for
topic modeling of multimodal data. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 38(6):1056–1069, 2015b.

Daniel Zoran and Yair Weiss. From learning models of natural image patches to whole image
restoration. In International Conference on Computer Vision, pages 479–486. IEEE, 2011.

Daniel Zoran and Yair Weiss. Natural images, Gaussian mixtures and dead leaves. In Advances

in Neural Information Processing Systems 25, pages 1745–1753. Curran Associates, Inc.,
2012.

37

