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Abstract. Knowledge graph reasoning (KGR) aims to infer new knowledge or detect noises, which is essential for improving
the quality of knowledge graphs. Recently, various KGR techniques, such as symbolic- and embedding-based methods, have
been proposed and shown strong reasoning ability. Symbolic-based reasoning methods infer missing triples according to pre-
defined rules or ontologies. Although rules and axioms have proven effective, it is difficult to obtain them. Embedding-based
reasoning methods represent entities and relations as vectors, and complete KGs via vector computation. However, they mainly
rely on structural information and ignore implicit axiom information not predefined in KGs but can be reflected in data. That is,
each correct triple is also a logically consistent triple and satisfies all axioms. In this paper, we propose a novel NeuRal Axiom
Network (NeuRAN) framework that combines explicit structural and implicit axiom information without introducing additional
ontologies. Specifically, the framework consists of a KG embedding module that preserves the semantics of triples and five
axiom modules that encode five kinds of implicit axioms. These axioms correspond to five typical object property expression
axioms defined in OWL2, including ObjectPropertyDomain, ObjectPropertyRange, DisjointObjectProperties, IrreflexiveOb-
jectProperty and AsymmetricObjectProperty. The KG embedding module and axiom modules compute the scores that the triple
conforms to the semantics and the corresponding axioms, respectively. Compared with KG embedding models and CKRL, our
method achieves comparable performance on noise detection and triple classification and achieves significant performance on
link prediction. Compared with TransE and TransH, our method improves the link prediction performance on the Hits@1 metric
by 22.0% and 20.8% on WN18RR-10% dataset, respectively.

Keywords: Knowledge graph reasoning, knowledge graph embedding, noise detection, triple classification, link prediction

1. Introduction

Knowledge Graphs (KGs) are multi-relational directed graphs with entities and relations as nodes and edges.
Typically, knowledge graphs contain a large number of triples in the form of (subject entity, relation, object entity),
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abbreviated as (s, r, o). Existing KGs like DBpedia [19], Freebase [1], Wikidata [30], and YAGO [13], have played
a pivotal role in a broad range of applications, such as question answering [3] and recommender system [35]. Since
KGs are usually automatically constructed, they may inevitably suffer from incompleteness and incorrectness. For
example, 71% of people in Freebase have no place of birth, and 94% have no known parents [37]. While Wikipedia
is estimated to have 2.8% of its statements wrong [23]. Thus many knowledge graph reasoning methods have
been proposed and received increasing attention. There are two mainstream techniques, including symbolic- and
embedding-based methods.

Symbolic-based methods [5,10,11,40] use predefined logic rules or ontologies for KG reasoning and can achieve
good performance. For example, suppose the axiom DisjointObjectProperties(:hasParent :hasSpouse) that indicates
the relations hasSpouse and hasParent are disjoint has already defined, then it is impossible for the two triples
(Linda, hasSpouse, Bruce) and (Linda, hasParent, Bruce) to be correct at the same time. The reason is that a person’s
spouse can not be the parent of this person. Although such methods are more reliable and human-interpretable, they
require rich ontologies that are usually missing or incomplete in KGs. Moreover, it is tedious to define and maintain
axioms manually. Thus we explore how to encode implicit axioms with only triples for KG reasoning in this paper.

Embedding-based methods, such as translation-based methods [2,20,36], semantic-based methods [33,39] and
neural network methods [6,25,26], embed entities and relations into low-dimensional vector space. They use vector
computation to complete knowledge graphs, which is scalable and efficient. However, despite the success of embed-
ding models, they mainly focus on structural information and neglect implicit axiom information. Take the implicit
domain/range axiom as an example. For the correct triple (Linda, hasSpouse, Bruce), we can infer that it satisfies
domain/range axiom without the type of the subject entity Linda and the object entity Bruce, and domain/range of
the relation hasSpouse.

In this paper, we propose a neural axiom network framework NeuRAN for KG reasoning. This framework en-
codes explicit structural information through a knowledge graph embedding model and implicit axiom information
through neural networks. The main idea is that although ontology information is not explicitly defined in the given
KG, any correct triple satisfies all axioms. Thus, the score to measure the plausibility of each triple is composed of
a score from structural information and five axiom scores from axiom information. Here we consider five different
axioms corresponding to five typical object property expression axioms selected from OWL2 ontology language,1

including ObjectPropertyDomain, ObjectPropertyRange, DisjointObjectProperties, IrreflexiveObjectProperty and
AsymmetricObjectProperty. As domain and range axioms are related to type compatibility, we distinguish the type
and semantic embeddings. Each entity has a type embedding and a semantic embedding. Each relation has two type
embeddings (i.e., subject and object entity types excepted by the relation) and a semantic embedding. We encode
the inherent structure of triples via an embedding module to learn semantic embeddings of entities and relations. In
this paper, TransE and TransH are taken as examples of knowledge graph embedding modules to show the validity
of our method. Any KGE model can be the KGE module. We introduce five axiom modules to encode axioms
implicit in triples. The design of the axiom modules depends on the conditions that the axioms satisfy, as listed in
Table 1. Specifically, for a triple (s, r, o), domain/range axiom module concentrates on type compatibility between
subject/object entity type embedding expected by the relation and type embedding of the subject/object entity. Dis-
joint axiom module focuses on the compatibility of two relations with the same subject and object entity. Irreflexive
axiom module encodes whether the relation is irreflexive and whether s = o. Meanwhile, asymmetric axiom mod-
ule encodes whether the relation is asymmetric and whether (o, r, s) is also in the KG. For each axiom module, the
output is a probability score ranging from 0 to 1, indicating how well the triple satisfies the axiom. The closer the
value is to 1, the more likely the triple conforms to the axiom. For example in Fig. 1, the triple (United Kingdom,
occupation, novelist) violates domain axiom. Therefore, the expected subject entity type embedding of the relation
occupation and type embedding of the subject entity United Kingdom may get a low domain axiom score close to 0.

In summary, our main contributions are as follows:

– We raise the problem of neural axiom learning, in which axiom information is not given but can be reflected
by and learned from existing triples in KGs.

1https://www.w3.org/TR/owl2-primer/

https://www.w3.org/TR/owl2-primer/
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Table 1

Five types of object property expression axioms selected from OWL2 ontology language. OP is the short for ObjectProperty. OPE denotes Object
Property Expression, and x, y, z are entity variables. �I is a nonempty set called the object domain. ·OP is an object property interpretation
function. When translating axioms into examples in KG according to condition, we replace OPE in axioms with a relation

Object Property Axioms Condition Examples

OPDomain(OPE CE) ∀(x, y) ∈ (OPE)OP implies x ∈ (CE)C Domain(hasWife, Man)

OPRange(OPE CE) ∀(x, y) ∈ (OPE)OP implies y ∈ (CE)C Range(hasWife, Woman)

DisjointOP(OPE1 . . . OPEn) (OPEj )OP ∩ (OPEk)OP = ∅ for each 1 � j � n and each
1 � k � n such that j �= k

Disjoint(hasParent, hasSpouse)

IrreflexiveOP(OPE) ∀x : x ∈ �I implies (x, x) /∈ (OPE)OP Irreflexive(parentOf)

AsymmetricOP(OPE) ∀(x, y) ∈ (OPE)OP implies (y, x)/∈(OPE)OP Asymmetric(hasChild)

Fig. 1. In the hypothetical knowledge graph, there may exist erroneous triples. The reason for these errors is that the triples do not conform to
the axioms considered in this paper, including domain, range, disjoint, irreflexive and asymmetric axioms.

– We propose a framework NeuRAN that uses a knowledge graph embedding module and five axiom modules
to encode explicit structural and implicit axiom information, respectively.

– We evaluate NeuRAN on datasets with different ratios of noise. The experimental results demonstrate the
effectiveness of our method on knowledge graph reasoning.

2. Related work

We discuss the following three lines of research work closely relevant to this paper, including symbolic-based
reasoning, embedding-based reasoning and hybrid reasoning.

2.1. Symbolic-based reasoning

Symbolic-based reasoning methods aim at inferring new knowledge or detecting noises with the help of rules or
ontologies and show good reasoning ability. For example, inductive logic programing (ILP) has been used to mine
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logical rules and use the rules to learn a good predictor. However, it has limitations on the open-world assumption of
KGs. AMIE [11] and AMIE+ [10] make up for this shortcoming by introducing an altered confidence metric based
on the partial completeness assumption. With the rules generated with AMIE+, [14] proposes to discover inverse
and symmetric axioms by applying the predefined reasoning rules. Due to the incompleteness of rules and axioms,
and the time-consuming process of annotating them, existing methods using ontologies for reasoning are usually
accompanied by the enrichment of ontology information. For example, the work [9] presents a set of inductive
methods based on statistical inductive learning, consisting of correlation computing and association rule mining to
enrich ontologies with disjointness axioms. It evaluates the validity of association rule mining by computing the
precision and recall scores. Then [22] proposes an improvement of association rule mining for learning disjointness
axioms and applies the learned axioms to inconsistency detection. In addition to disjoint axioms, enriching DBpedia
ontology with domain and range restrictions and class disjointness axioms is also discussed [31]. The enhanced
ontologies are further used for error detection.

2.2. Embedding-based reasoning

Knowledge graph embedding methods embed entities and relations of a KG into a continuous vector space to pre-
serve the structure information of the KG. There are three categories of embedding models: translational distance,
semantic matching and neural network models. Translational distance models learn embeddings by translating a
subject entity to an object entity through a relation. For example, TransE [2] represents entities and relations in the
same vector space and assumes (s + r) to be close to o, where s, r , o are vector embeddings for s, r and o respec-
tively. However, it has difficulty dealing with complex relations. To overcome the flaws, TransH [36] introduces
relation-specific hyperplanes to allow entities to have different embeddings in different relations. TransR [20] builds
entity and relation embeddings in separate entity and relation spaces. TransD [16] constructs mapping matrices dy-
namically. Similarly, TorusE [8] and RotatE [29] use lie groups and rotations for translation, respectively. Semantic
matching models measure plausibility by matching the implicit semantics of entities and relations. DistMult [39]
uses a bilinear model to represent entities and relations. ComplEx [33] extends DistMult by introducing complex-
valued embeddings to better model asymmetric relations. HolE [27] uses the circular correlation of embeddings
to learn compositional representations and semantically matches circular correlation with the relation embedding.
Moreover, researchers have raised interest in applying neural networks for knowledge graph reasoning. ConvE [6]
and ConvKB [25] employ convolutional neural networks to achieve better link prediction performance. CapsE [26]
explores a capsule network to model triples. KGTtm [17] and CKRL [38] measure the trustworthiness or confidence
of triples.

2.3. Hybrid reasoning

There is also a line of work concerning hybrid methods for KG reasoning, such as the combination of symbolic-
and embedding-based reasoning, and the combination of symbolic and statistical reasoning. For the former methods,
TransC [21] learns the SubClassOf axiom between types by encoding each type as a sphere and each entity as a
vector. Besides, SetE [42] computes the two axioms SubClassOf and SubPropertyOf in subsumption by employing
linear programming methods on embeddings, focusing on domain, range or subClassOf axioms. Recently, IterE [41]
iteratively learns embeddings and rules, and considers seven object property expression axioms for rule learning. It
combines rule learning and embedding learning to improve the quality of sparse entity embeddings by injecting new
triples about sparse entities according to the scores of the axioms. As for the latter, the statistic-based methods, such
as SDType and SDValidate [28], exploit statistical distributions of types and relations. SDType deduces missing
type information based on the statistical distribution of types in the subject or object position of the relation. While
SDValidate measures the deviation between actual types of the subject/object entity and the apriori probabilities
given by the distribution. Furthermore, [4] first exploits a combination of entailment vectors, entailment weights,
and a consistency vector to encode knowledge as embeddings in ontology streams to deal with concept drifts. It
takes the concepts as input. The difference is that we design the axiom modules with the help of the definition of
axioms.
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3. Method

We begin this section by briefly describing some notations. We denote a knowledge graph as G = {(s, r, o) ⊂
E × R × E}, where s, o ∈ E , r ∈ R, E is the entity set, and R is the relation set. (s, r, o) is a triple indicating the
relation r between the subject entity s and the object entity o. Throughout this paper, we use bold letters to denote
vectors. For example, s, r , o are the embedding vectors of s, r , o. The abbreviations DM (dm), RG (rg), DIS (dis),
IRR (irr) and ASY (asy) respectively correspond to the implicit domain, range, disjoint, irreflexive and asymmetric
axioms.

Then, we introduce the neural axiom network NeuRAN which combines a knowledge graph embedding module
and five axiom modules (Section 3.1). Afterward, we introduce the KGE module that encodes explicit structural
information (Section 3.2) and the five axiom modules that aim to encode five kinds of implicit axiom information
(Section 3.3).

3.1. Neural axiom network

We present our neural axiom network NeuRAN in Fig. 2, where the overall score of each triple is composed
of a semantic score from the KGE module and five axiom scores from five axiom modules (i.e., domain, range,
disjoint, irreflexive and asymmetric axiom modules). The score of each axiom module indicates the probability that
the axiom holds. The assumption is that the probability values of these axioms intensify or mitigate the probability

Fig. 2. The key idea of our framework. For the input triple (s, r, o), we use a type embedding (sc, oc) and a semantic embedding (sm, om)

to represent the entities, and use two type embeddings (rs , ro) and a semantic embedding (rm) to represent the relation. The triple score is
composed of the scores from the six modules. The domain/range axiom module calculates the compatibility between the subject/object entity
type embedding and the relation embedding generated via a domain/range attention layer. The disjoint axiom module calculates the compatibility
between the semantic embedding of the input relation and other relations with the same subject and object entities. The irreflexive and asymmetric
axiom modules calculate the axiom scores using the type and semantic embeddings of the entities and relations. The KGE module is a knowledge
graph embedding model.



CORRECTED  P
ROOF

6 J. Li et al. / Neural axiom network for knowledge graph reasoning

of the existence of a triple. Thus, the score of the triple (s, r, o) is defined as:

E(s, r, o) = Ekge + λ · [
(1 − Pdm) + (1 − Prg) + (1 − Pdis) + (1 − Pirr) + (1 − Pasy)

]
(1)

The energy function E(s, r, o) consists of the score Ekge from the knowledge graph module and five axiom scores
from the axiom modules. λ is the weight of axiom scores. Ekge is to compute a structure-based score, which can
be obtained via any knowledge graph embedding models [34]. We use TransE and TransH as examples. A lower
Ekge indicates that the triple is more likely to be correct. The axiom scores Pdm, Prg, Pdis, Pirr and Pasy correspond
to probabilities that the corresponding axioms are satisfied, where dm, rg, dis, irr and asy are respectively domain,
range, disjoint, irreflexive and asymmetric axioms. Therefore, the higher Pdm, Prg, Pdis, Pirr, Pasy, and the lower
(1 − Pdm), (1 − Prg), (1 − Pdis), (1 − Pirr), (1 − Pasy) imply that the triple satisfies the corresponding neural axiom
with a higher probability.

Following the conventional training strategy of previous models, we train NeuRAN based on the local-closed
world assumption. In this case, the observed triples in KGs are regarded as positive triples, while the unobserved
ones are regarded as negative triples. We utilize a margin-based ranking loss on pair-wise score functions (i.e.,
E(s, r, o) and E(s′, r ′, o′)) for training, the loss function L is defined as:

L =
∑

(s,r,o)∈T

∑
(s′,r ′,o′)∈T ′

max
(
0, E(s, r, o) + γ − E

(
s′, r ′, o′))

(2)

where γ is a margin hyper-parameter, E(s, r, o) and E(s′, r ′, o′) are respectively the overall energy function of
the positive triple (s, r, o) and the negative triple (s′, r ′, o′). T and T ′ are the positive and negative triple sets. As
negative triples and axioms are not given, we generate negative triples by randomly corrupting the subject or object
entity and make sure the replaced triples do not exist in the knowledge graph:

T ′ = {(
s′, r, o

)|s′ ∈ E
} ∪ {(

s, r, o′)|o′ ∈ E
}
, (s, r, o) ∈ T ,

(
s′, r, o

)
/∈ T and

(
s, r, o′) /∈ T (3)

The training objective is to minimize the loss function L to learn embeddings of entities and relations and parameters
involved in axiom modules. The learned embeddings and parameters are applied to complete downstream tasks, such
as noise detection, triple classification and link prediction.

It is worth mentioning that, we attempt to introduce type embeddings in the design of the model. Considering
domain/range axioms are associated with type compatibility, and type information is not provided, we distinguish
type embeddings from semantic embeddings. Following the type-sensitive models TypeDM and TypeComplex [15],
each entity is represented as two vectors (a type embedding and a semantic embedding), and each relation is repre-
sented as three vectors (two type embeddings and a semantic embedding). Take the triple (s, r, o) as an example. For
entities, we use type embeddings (sc and oc) and semantic embeddings (sm and om) to represent the subject entity
s and the object entity o. For the relation, rs and ro represent subject type and object type embeddings expected by
the relation r , and rm is the semantic embedding of r .

3.2. KG embedding module

The knowledge graph embedding module of the framework concerns the learning of a function Ekge, which is
designed to score each triple based on the structural information in KGs. Our framework can use any knowledge
graph embedding model as the knowledge graph embedding module. In the experiments, we take the two embedding
models TransE and TransH as examples to verify our method.

3.2.1. TransE
TransE is the simplest translation-based model, which interprets relations as translating operations between sub-

ject and object entities. Given a triple (s, r, o), it follows the assumption that s + r ≈ o when (s, r, o) holds. Thus,
the semantic score of the triple based on TransE is calculated as:

Ekge = ‖sm + rm − om‖L1/L2 (4)
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where L1 and L2 respectively denote the L1 and L2 norm. sm, rm and om are the semantic embeddings of the subject
entity, the relation and the object entity, respectively. The smaller value of the scoring function Ekge, the higher the
probability that the triple is correct.

3.2.2. TransH
TransH extends TransE by translating on hyperplanes, which models the relation r as a vector on a hyperplane

with wr as the normal vector. It enables an entity to have distinct representations when involved in different relations.
Similar to TransE, the score function of TransH is defined as:

Ekge = ∥∥(sm)⊥ + rm − (om)⊥
∥∥

L1/L2
(5)

where the projections (sm)⊥ = sm − wr
smwr , and (om)⊥ = om − wr

omwr . It restricts ‖wr‖2 = 1. The score is
low if (s, r, o) holds and is high otherwise.

3.3. Five axiom modules

In addition to focusing on structural information, we consider the inherent implicit axioms in triples. Although
axioms are not pre-given, it is intuitive that a correct triple is also a logically consistent triple. Any correct triple
satisfies all the five axioms, including domain, range, disjoint, irreflexive, and asymmetric axioms. For example, in
the case of missing domain and range of the relation nationality and types of the entities J. K. Rowling and United
Kingdom, we can infer the triple (J. K. Rowling, nationality, United Kingdom) satisfies domain and range axioms
by its correctness.

The design of the axiom modules relies on the definition of these axioms. To be specific, for domain/range axioms,
we use the type embedding of the subject/object entity expected by the relation rs/ro and the type embedding of
the subject/object entity sc/oc to calculate a type compatibility score. For disjoint axiom, we explore the semantic
compatibility of any two relations with the same subject and object entities. We assume that (om − sm) represents
the shared semantic embedding of the relation for the subject to be s and object to be o. Then the similar score of rm

and (om − sm) will be calculated to reflect how well the disjoint axiom is satisfied. For irreflexive axiom, whether
the relation is irreflexive and whether the subject entity is the same as the object entity (s = o?) are considered. For
asymmetric axiom, whether the relation is asymmetric and whether the symmetric triple of the input triple exists
((o, r, s) ∈ G?) are concerned. We then introduce these typical axioms in detail.

3.3.1. Domain axiom module
Domain axiom module focuses on type compatibility between the subject entity type expected by the relation r

and the type of the subject entity s. TypeDM uses the function C(sc, rs) = σ(sc · rs) to measure the compatibility
by calculating a score with the type embedding of subject entity sc and the subject entity type embedding expected
by the relation rs . However, the subject type expected by the given relation may be diverse. For example, given
the triple (Soul(film), language, English), the subject type expected by the relation language can be an entity in the
class of Person, Book or Film. We consider both the current relation and the other relations of the subject entity
to precisely capture the type of the subject entity expected by the relation. Suppose the subject entity has relations
starring and running time, we can infer that the subject entity expected by the relation may be in the class of Film.
As the relations may have correlations with the given relation, such as starring and language, or differ greatly
such as running time and language, they contribute differently to the subject entity type embedding expected by
the currently given relation. We apply an attention mechanism to the relation r and the relation set of the subject
entity R(s) = {ri |(s, ri , e) ∈ G}, where e denotes any entity in the KG. By adopting a domain attention layer
(Dm_Att_Layer), we generate the subject type embedding expected by the relation r̂s based on the relations in
R(s). We compute an attention weight for each relation of the subject entity, and the importance is denoted by ai .
It reflects how relevant or important the relation ri is to rs .

ai = f (rs, ri) = rs
T ri, ri ∈ R(s) (6)
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We apply softmax over ai to get the relative attention values.

pi = exp(ai)∑
rj ∈R(s) exp(aj )

(7)

where j denotes the j th relation of the subject entity. The new embedding of the subject entity type expected by
the relation r̂s is the sum of the product of the representation of each relation and the relation weighted by attention
values of the considered relation.

r̂s =
∑

ri∈R(s)

piri (8)

Then the type compatibility is calculated via a compatibility module, and the likelihood of s and r satisfying domain
axiom can be defined as follows:

Pdm = f (sc, rs) = σ(sc · r̂s) (9)

where σ denotes the sigmoid function.

3.3.2. Range axiom module
Range axiom module focuses on type compatibility between the object entity type expected by the relation r and

the type of the object entity o. Similarly, TypeDM uses C(oc, ro) = σ(oc · ro) to compute the compatibility score
between the type embedding of the object entity oc and the object entity type embedding expected by the relation
ro, where the score indicates the satisfaction of range axiom. However, a relation can have object entities with
very different types. For example, the object entity of the relation hasPart can be Leg in (Table, hasPart, Leg), or
NewYorkBay in (Atlantics, hasPart, NewYorkBay). Similar to the issue in domain axiom, object entities expected by
a relation may exhibit diverse roles within the same relation. The other relations connected to the object entity make
different contributions to the object entity’s type embedding expected by the relation. We apply a range attention
layer (Rg_Att_Layer) to the relations connected to the object entity to more accurately discern the expected object
entity type associated with the given relation. The relation set that connected to the object entity o is denoted as
R(o) = {ri |(e, ri , o) ∈ G}. We generate the object entity type embedding expected by the relation r̂o based on all
the relations in R(o). The importance of each relation to r denoted by bi is calculated as:

bi = f (ro, ri) = ro
T ri, ri ∈ R(o) (10)

We then apply softmax over bi to get the relative attention values.

qi = exp(bi)∑
rk∈R(o) exp(bk)

(11)

where k denotes the kth relation in the connected relations of the object entity. The generated embedding r̂o is the
sum of the product of each relation connected to o and the relation weighted by attention values of the considered
relation r .

r̂o =
∑

ri∈R(o)

qiri (12)

The compatibility probability whether the triple satisfies range axiom is calculated by a compatibility module and
is defined as:

Prg = f (oc, ro) = σ(oc · r̂o) (13)

where σ denotes the sigmoid function.
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3.3.3. Disjoint axiom module
Disjoint axiom module focuses on the compatibility of the semantic embeddings of two relations with the same

subject and object entities. For example, given the correct triple (John, spouse, Mary), and other two triples (John,
friend, Mary) and (John, child, Mary), the disjoint axiom module computes probability scores of the two relation
pairs including (spouse, friend), and (spouse, child). Then we can infer (John, friend, Mary) is a correct triple, and
(John, child, Mary) is an incorrect triple. The reason is that the disjoint probability score of spouse and friend is high
as they can exist between two persons simultaneously. In contrast, the score of spouse and child is low as a person’s
spouse can not be that person’s child. In other words, spouse and child are defined to be semantically disjoint.
Following the condition of disjoint axiom, we have to traverse the whole knowledge graph to find all the relations
with s being the subject entity and o being the object entity. The relation set is R(s, o) = {rk|(s, rk, o) ∈ G, rk �= r}.
However, calculating the semantic compatibility of the relation pairs (r, rk) is time-consuming. We copy the idea
from TransE for simplicity, which holds the view that s+r ≈ o to reduce time cost. Specifically, we regard (om−sm)

as the unified representation of relations in triples with s and o being the subject and object entity. Therefore, the
semantic judgment of this axiom can be simplified to calculate the compatibility score of (om − sm) and rm, which
is defined as:

Pdis = f
(
rm, (om − sm)

) = σ
(
rm · (om − sm)

)
(14)

where σ denotes the sigmoid function.

3.3.4. Irreflexive axiom module
Irreflexive axiom module considers two aspects of judgment. One is the property of the relation (i.e., whether r is

irreflexive), and the other is whether the subject and object entity are equal (i.e., whether s and o are the same entity).
In OWL2, a relation is irreflexive means that no entity can be related to itself by such a relation. Thus, only the two
conditions the relation r is irreflexive and s = o are fulfilled simultaneously, the triple violates irreflexive axioms.
For example, for the irreflexive relation hasParent, it is intuitively that (John, hasParent, John) is an incorrect triple.

Due to the judgment of s = o can be conducted directly without the need to represent the two entities as vectors,
we take it as the first step. If s = o, we further consider the property of the relation. Otherwise, the probability that
the triple conforms to irreflexive axiom is equal to 1 as s �= o already violates one of the two conditions. For the
case of s = o, we can infer that types of s and o are the same (sc = oc). Regarding the property of the relation,
we expect types of the subject entity rs and the object entity expected by the relation ro to be compatible with s

and o, respectively. That is rs ≈ sc, and ro ≈ oc. Then, it can be conclude that rs and ro are compatible (rs ≈ ro).
We use a compatibility module to measure the type constraint, which is calculated as σ(ro · rs). Moreover, the
semantic information of the relation rm can also help to determine the property of the relation. We utilize a multi-
layer perceptron (MLP) layer to encode the relation’s semantics, domain and range. The probability that a triple
satisfies irreflexive axiom is calculated through the Logic AND operation and is defined as:

Pirr =
{

1, if s �= o

σ(W1[rm; g(rs, ro)]) ∗ σ(ro · rs), s = o
(15)

where g(x, y) is a function, and g(x, y) = abs(x − y). W1 ∈ R
1×(dm+tm), and dm and tm are the dimension of the

semantic and type embedding, respectively. σ denotes the sigmoid function. [;] denotes the concatenation operation.

3.3.5. Asymmetric axiom module
Asymmetric axiom module considers two aspects of judgment as well, which are the property of the relation (i.e.,

whether r is asymmetric) and the existence of the symmetric triple of the given triple (i.e., whether (s, r, o) and
(o, r, s) are both correct in the same KG). In OWL2, a relation is asymmetric means that if it connects s with o,
it never connects o with s. In other words, for the correct triple (s, r, o), if r is an asymmetric relation and (o, r, s)

appears in the same KG as (s, r, o) simultaneously, (o, r, s) is incorrect for the violation of asymmetric axiom. For
example, given the correct triple (John, hasChild, David), we can infer that (David, hasChild, John) violates the
asymmetric axiom as hasChild is asymmetric.
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In this axiom, we begin with determining the property of the relation by focusing on the semantic embedding rm.
We take a multi-layer perceptron (MLP) layer to capture the semantics of the relation. Secondly, we consider the
compatibility of rs and ro as a condition of the property of the relation. The reason is that, if r is symmetric, we can
infer rs ≈ ro from the observations that rs ≈ sc, ro ≈ oc from the triple (s, r, o), and rs ≈ oc, ro ≈ sc from the
triple (o, r, s). Thirdly, we use the simplest knowledge graph embedding model TransE to check whether (o, r, s)

exists. Since the above conditions together determine whether a triple violates this axiom, we introduce a Logical
AND operation as well. Therefore, the asymmetric axiom network is defined as follows:

fkge = σ(om + rm − sm) (16)

Pasy = σ
(
W2(rm)

) ∗ σ(ro · rs) ∗ fkge (17)

where W2 ∈ R
1×dm , and σ denotes the sigmoid function.

4. Experiments

We evaluate our proposed method NeuRAN on three main knowledge graph reasoning tasks: noise detection, link
prediction, and triple classification. Our code is available at https://github.com/JuanLi1621/NeuRAN.

4.1. Experimental settings

Datasets. In this paper, we use two popular benchmark datasets: FB15K237 [32] and WN18RR [6] to evaluate
NeuRAN. They are constructed from FB15K and WN18 by removing inverse relations to solve test leakage. FB15K
is a relatively dense subset extracted from the collaborative knowledge graph Freebase [1], which consists of billions
of real-world facts. WN18 is a subset of WordNet [24] that describes relations between words.

Error Imputation. Since KGs are constructed in an automated or semi-automated way, noises can not be avoided.
However, existing knowledge graph reasoning methods assume that triples in KGs are positive triples. Thus there
are no pre-given noisy triples in FB15K237 and WN18RR. In order to verify our method, we generate new datasets
with different noise rates based on the two datasets to simulate the real noisy knowledge graphs. Before generating
noises, for each dataset with training, validation and test sets, we generate negative triples for the validation and
test sets. The positive and negative triples in the validation set are used to find the optimum thresholds for each
relation. To evaluate the performance of NeuRAN on triple classification, the positive and negative triples in the
test set are classified as positive or negative triples based on both the triple scores and the thresholds. Here, we
directly use the negative triples generated in OpenKE.2 Then, we randomly sample positive triples from the training
set with different noise rates and generate the same number of negative triples as the sampled triples. Specifically,
we corrupt either the subject or object entity of a triple with equal probability and ensure the generated negative
triples do not exist in the KG. The generated negative triples are regarded as noises. All three tasks are evaluated on
these simulated noisy datasets. For each dataset, we construct three noisy datasets with the ratio of negative triples
to be 10%, 20%, and 40% of the positive triples. The generated negative triples (noises) with different ratios listed
in Table 3 will be added to the training set as part of the training triples and labeled as positive triples. For example,
for the datasets FB15K237-10%, FB15K237-20% and FB15K237-40%, the number of triples in the training set is
299326 (272115 + 27211), 326538 (272115 + 54423) and 380961 (272115 + 108846), respectively. The number
of positive triples in the validation and test sets is 17535 and 20466, which is the same as FB15K237. Besides,
the number of negative triples in the validation and test sets is the same as the number of positive triples. All the
three noisy datasets share the same entities and relations with the original dataset. The detailed statistics of the two
datasets and the generated noisy datasets are shown in Table 2 and 3.

Baselines. We choose TransE or TransH as the knowledge graph embedding module and compare our methods
(i.e., NeuRAN(TransE), NeuRAN(TransH)) with them. Results of TransE and TransH are produced by running

2https://github.com/thunlp/OpenKE/tree/OpenKE-Tensorflow1.0/benchmarks

https://github.com/JuanLi1621/NeuRAN
https://github.com/thunlp/OpenKE/tree/OpenKE-Tensorflow1.0/benchmarks
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Table 2

Statistics of FB15K237 and WN18RR

Dataset #Ent #Rel #Train #Valid #Test

FB15K237 14541 237 272115 17535 20466

WN18RR 40943 11 86835 3034 3134

Table 3

Statistics of negative triples generated from FB15K237 and WN18RR

Datasets FB15K237-10% FB15K237-20% FB15K237-40%

#Neg triple 27211 54423 108846

Datasets WN18RR-10% WN18RR-20% WN18RR-40%

#Neg triple 8683 17367 34734

Table 4

Noise detection results on noisy datasets with different ratios based on FB15K237 and WN18RR. The numbers are auc values

FB15K237-10% FB15K237-20% FB15K237-40% WN18RR-10% WN18RR-20% WN18RR-40%

TransE 0.9805 0.9799 0.9801 0.9370 0.9305 0.9018

CKRL(TransE) 0.9809 0.9804 0.9653 0.9337 0.9255 0.8971

NeuRAN(TransE) 0.9807 0.9807 0.9802 0.9403 0.9337 0.9141

TransH 0.9763 0.9746 0.9758 0.9331 0.9169 0.8614

CKRL(TransH) 0.9683 0.9697 0.9663 0.9279 0.9091 0.8527

NeuRAN(TransH) 0.9781 0.9783 0.9796 0.9340 0.9239 0.8780

OpenKE [12]. We also consider CKRL(TransE) and CKRL(TransH) as baselines, which introduce path information
for knowledge graph reasoning in noisy KGs. Results of CKRL(TransE) and CKRL(TransH) are reproduced by us.
In the following tasks, the results of TransE, TransH, CKRL(TransE) and CKRL(TransH) are all obtained in this
way.

Training Details. We use SGD [7] or Adam [18] to optimize the model for different tasks on different datasets.
We select the learning rate from {0.01, 0.1, 0.5, 1}, the margin among {2,4,6,8,10}, the batch size from {100,
500}, dimension of the type from {20, 50, 100, 200}, dimension of the semantic from {50, 100, 200, 300}, the
combination weight of the axiom scores λ from {0.01, 0.05, 0.1, 0.5, 1}. The number of training epochs is set as
1000.

4.2. Noise detection

To verify the capability of our method on noise detection task, we follow the setting of KG noise detection
proposed in [38]. It aims to detect possible noises in noisy KGs according to the scores of triples and can be viewed
as triple classification task on the training set.

Evaluation Protocol. First of all, we compute the score of the triple (s, r, o) via the energy function E(s, r, o) =
Ekge + λ · [(1 − Pdm) + (1 − Prg) + (1 − Pdis) + (1 − Pirr) + (1 − Pasy)]. Then all triples in the training set will be
ranked based on the scores. The lower the triple score, the more valid the triple is. Triples with higher values of the
energy function tend to be noises. We consider the evaluation indicator the Area Under the ROC Curve (auc value)
to examine how well the method classifies the noises as errors. Before calculating the AUC metric, we normalize the
energy function scores into the [0, 1] interval. Values close to 0 indicate correct triple, and values close to 1 indicate
incorrect triples.

Result Analysis. Evaluation results on noisy datasets generated based on FB15K237 and WN18RR can be found
in Table 4. We observe that: (1) Regardless of whether the embedding module is TransE or TransH, our mod-
els achieve comparable performance or slightly outperform TransE, CKRL(TransE), TransH, and CKRL(TransH)
on the two datasets WN18RR and FB15K237 with different noise rates (i.e., WN18RR-10%, WN18RR-20%,



CORRECTED  P
ROOF

12 J. Li et al. / Neural axiom network for knowledge graph reasoning

WN18RR-40%, FB15K237-10%, FB15K237-20%, and FB15K237-40%). (2) When the complex relations are well
encoded, for example, in TransH. Our model with axiom information performs better than path information on noise
detection on WN18RR- and FB15K237-based datasets. (3) With the increase of noises, the ability of baselines and
our models to detect noises decreases on WN18RR-based datasets. However, it may increase on FB15K237-based
datasets, which indicates that the more relations and triples in noisy datasets, the more valid information may be
introduced, even though these triples may be noises.

We can thus conclude that implicit axiom information is helpful for noise detection and is better reflected on
datasets with a large number of relations and triples.

4.3. Triple classification

Triple classification aims to judge whether a triple in the test set is correct or not, according to triple scores
calculated by the energy function E(s, r, o) = Ekge +λ · [(1−Pdm)+(1−Prg)+(1−Pdis)+(1−Pirr)+(1−Pasy)],
which can be viewed as a binary classification task on the test set.

Evaluation Protocol. As the test sets of the datasets used for triple classification only have correct triples, we
generate negative triples by randomly corrupting the subject or object entity of correct triples. For the validation
and test sets, the number of negative triples is the same as the number of positive triples. Thus there are labeled
positive and negative triples in the two sets. For example, for WN18RR-based datasets, the number of triples is
6068 in the validation set and 6268 in the test set. As for triple classification, we learn a relation-specific threshold
δr for every relation. δr is optimized by maximizing classification accuracies on the validation set. Given a triple
(s, r, o), if the score obtained by the energy function is below δr , it is classified as positive, otherwise negative. We
use accuracy(ACC), precision(P) and recall(R) as the evaluation metrics.

Result Analysis. Table 5 and 6 show the detailed evaluation results of triple classification. From the two tables,
we can observe that: (1) Regarding the three metrics, our method outperforms baselines on the WN18RR-based
datasets and achieves the best results. It confirms that learning knowledge representations with axiom informa-
tion can help triple classification. (2) On the FB15K237-based dataset, the results are comparable with baselines.

Table 5

Triple classification results on WN18RR, WN18RR-10%, WN18RR-20% and WN18RR-40%. “ACC”, “P” and “R” are the abbreviation of
“accuracy”, “precision” and “recall”, respectively

Methods WN18RR-10% WN18RR-20% WN18RR-40%

ACC P R ACC P R ACC P R

TransE 0.8764 0.9232 0.8210 0.8575 0.8889 0.8172 0.8355 0.9046 0.7502

CKRL(TransE) 0.8759 0.9201 0.8232 0.8574 0.8994 0.8047 0.8350 0.9127 0.7409

NeuRAN(TransE) 0.8856 0.9281 0.8360 0.8703 0.9100 0.8197 0.8598 0.9328 0.7754

TransH 0.8618 0.9216 0.7910 0.8444 0.9039 0.7709 0.8146 0.8772 0.7317

CKRL(TransH) 0.8556 0.9233 0.7757 0.8403 0.8829 0.7846 0.8116 0.8629 0.7409

NeuRAN(TransH) 0.8687 0.9300 0.7974 0.8598 0.9040 0.8050 0.8323 0.8802 0.7693

Table 6

Triple classification results for FB15K237-10%, FB15K237-20% and FB15K237-40%. “ACC”, “P” and “R” are the abbreviation of “accuracy”,
“precision” and “recall”, respectively

Methods FB15K237-10% FB15K237-20% FB15K237-40%

ACC P R ACC P R ACC P R

TransE 0.7758 0.7743 0.7786 0.7605 0.7353 0.8140 0.7422 0.7269 0.7759

CKRL(TransE) 0.7767 0.7728 0.7839 0.7579 0.7407 0.7936 0.7420 0.7314 0.7651

NeuRAN(TransE) 0.7810 0.7846 0.7749 0.7656 0.7711 0.7554 0.7484 0.7497 0.7459

TransH 0.7978 0.8023 0.7904 0.7831 0.7816 0.7857 0.7623 0.7754 0.7387

CKRL(TransH) 0.7835 0.7922 0.7686 0.7660 0.7669 0.7642 0.7473 0.7528 0.7365

NeuRAN(TransH) 0.7882 0.8080 0.7561 0.7784 0.7891 0.7600 0.7617 0.7796 0.7299
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The improvements on WN18RR-10%, WN18RR-20% and WN18RR-40% are more evident than on FB15K237-
10%, FB15K237-20% and FB15K237-40%. It demonstrates that implicit axiom information is more effective
on a dataset with a smaller number of relations and triples. (3) Compared with TransE, TransH, CKRL(TransE)
and CKRL(TransH), the higher the noise rate, the smaller the decrease in the accuracy metric of our method on
WN18RR-10%, WN18RR-20% and WN18RR-40%. It indicates that on noisy datasets, triple classification results
of NeuRAN can be more robust than baselines on small datasets.

From the triple classification results, we can conclude that the combination of implicit axiom and structural
information reflected by existing triples in knowledge graphs works better than using only structural information
on datasets with a small number of relations and triples. In comparison, path information is more helpful when the
number of relations and triples is large.

4.4. Link prediction

To show that axiom information could improve the embedding learning of entities and relations and further
help complete knowledge graphs, we conduct link prediction to evaluate the performance of knowledge graph
completion. This task aims to predict the missing entity when given one entity and one relation of a triple, including
subject entity prediction (?, r, o) and object entity prediction (s, r, ?).

Evaluation Protocol. For each test triple, suppose the subject entity prediction (?, r, o) with the correct subject
entity s. We first take all entities e ∈ E in the dataset as candidate predictions, and then replace the missing part
with each entity e and calculate scores for the triples in T = {(e, r, o)|e ∈ G}. Subsequently, we rank these scores
in ascending order, and the rank of the correct entity is stored. The object entity prediction is in the same way. The
evaluation metrics are MRR and Hits@N, where MRR is the mean reciprocal rank of the ranks of all test triples, and
Hits@N (N = 1, 3) is the proportion of ranks within N of all the test triples. A higher MRR and a higher Hits@1,
3 should be achieved by a good embedding model. We call this ‘raw’ setting. If we filter out the corrupted triples
that exist in the training, validation or test set before ranking, the evaluation setting is called ‘filter’. In this paper,
we report the evaluation results of the filter setting.

Result Analysis. Link prediction results are shown in Table 7 and 8. We analyze the results as follows: (1) The
link prediction results of our method are improved compared with baselines on WN18RR-10%, WN18RR-20% and
WN18RR-40% datasets, as well as on FB15K237-10%, FB15K237-20% and FB15K237-40%. It confirms that the
learned knowledge graph embeddings’ quality is better and could help complete KGs. Besides, it indicates axiom
information can be more useful than path information on noisy datasets. (2) On WN18RR-10%, WN18RR-20%
and WN18RR-40% datasets, our method achieves the best performance on all metrics. The improvements are sig-
nificant on all metrics, especially on Hits@1. It demonstrates that axiom information is of great help in improving
the predictive ability of a missing triple when the dataset has fewer relations and triples. (3) On FB15K237-10%,
FB15K237-20% and FB15K237-40%, although the improvements of the results are less prominent compared with
WN18RR-based datasets, the results are better than baselines. It reaffirms that our method can improve link predic-
tion, and the more relations and triples, the more information and noises brought by axiom information. Therefore,
the advantages of implicit axiom information would not be as significant as in small-scale datasets.

Table 7

Link prediction results on FB15K237-10%, FB15K237-20% and FB15K237-40%

FB15K237-10% FB15K237-20% FB15K237-40%

MRR Hit@ MRR Hit@ MRR Hit@

3 1 3 1 3 1

TransE 0.258 0.299 0.159 0.240 0.279 0.144 0.230 0.270 0.137

CKRL(TransE) 0.252 0.294 0.150 0.236 0.278 0.136 0.225 0.268 0.129

NeuRAN(TransE) 0.284 0.313 0.199 0.269 0.292 0.189 0.251 0.273 0.176

TransH 0.241 0.296 0.125 0.213 0.270 0.094 0.193 0.248 0.078

CKRL(TransH) 0.194 0.254 0.070 0.172 0.229 0.050 0.156 0.209 0.041

NeuRAN(TransH) 0.288 0.317 0.203 0.270 0.293 0.189 0.249 0.272 0.173
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Table 8

Link prediction results on WN18RR-10%, WN18RR-20% and WN18RR-40%

WN18RR-10% WN18RR-20% WN18RR-40%

MRR Hit@ MRR Hit@ MRR Hit@

3 1 3 1 3 1

TransE 0.211 0.351 0.036 0.206 0.349 0.031 0.193 0.334 0.027

CKRL(TransE) 0.215 0.349 0.044 0.205 0.340 0.034 0.154 0.233 0.024

NeuRAN(TransE) 0.342 0.393 0.256 0.334 0.392 0.247 0.320 0.377 0.236

TransH 0.218 0.360 0.043 0.208 0.352 0.038 0.191 0.327 0.032

CKRL(TransH) 0.206 0.339 0.038 0.199 0.334 0.034 0.176 0.309 0.019

NeuRAN(TransH) 0.330 0.380 0.251 0.328 0.378 0.250 0.314 0.371 0.232

Table 9

Ablation study of link prediction results on WN18RR-10% and FB15K237-10%. KGE is TransE

WN18RR-10% FB15K237-10%

MRR Hit@ MRR Hit@

3 1 3 1

KGE 0.2103 0.3468 0.0333 0.2267 0.2851 0.1067

KGE + DM 0.2108 0.3476 0.0337 0.2267 0.2848 0.1067

KGE + RG 0.2134 0.3500 0.0370 0.2268 0.2853 0.1069

KGE + DIS 0.2203 0.3529 0.0490 0.2723 0.3069 0.1795

KGE + IRRE 0.3407 0.3925 0.2554 0.2746 0.3030 0.1864

KGE + ASYM 0.2108 0.3472 0.0341 0.2267 0.2851 0.1067

KGE + ALL 0.3417 0.3926 0.2562 0.2838 0.3128 0.1987

Thus we can conclude that implicit axiom information encoded by neural axiom networks helps to improve the
quality of learned embeddings of entities and relations and link prediction results. Moreover, such information is
more effective on datasets with relatively few relations and triples.

4.5. Ablation study

We conduct ablation studies on link prediction to assess the effectiveness of NeuRAN. As our model is com-
posed of a knowledge graph embedding module and five neural axiom modules, we add each axiom module to the
knowledge graph embedding module to investigate the contributions of the axiom module. Specifically, we use the
score function and loss function defined in equation (1) and (2) to train our model. TransE is taken as the knowledge
graph embedding module. For evaluation, we set the score function as E(s, r, o) = Ekge + λ · Ea to illustrate the
impact of each axiom module. E(s, r, o) is the score of the triple, and Ekge is the score from the knowledge graph
embedding module. Ea means the score of the selected axiom and can be (1 −Pdm), (1 −Prg), (1 −Pdis), (1 −Pirr)

or (1 − Pasy).
From Table 9, we can observe that adding these five axioms can improve link prediction results on WN18RR-

10%. The disjoint and irreflexive modules work better than other modules. Notably, the irreflexive axiom module
has substantially improved on MRR and Hits@1 metrics. As the number of relations is small and most relations are
asymmetric on WN18RR%, using the attention mechanism to aggregate relation representations or adding the asym-
metric module has a small gain. For the results on the FB15K237-10% dataset with more relations, the improvement
of the disjoint module increases compared to on WN18RR%. Although the domain, range and asymmetric modules
are not as efficient as the other modules, we consider them for a comprehensive exploration.
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5. Conclusion

In this paper, we propose a novel neural axiom network model which aims to do reasoning on noisy knowledge
graphs. We consider encoding not only structural information but also axiom information of triples. Specifically, we
propose a knowledge graph embedding module for preserving the structure and five different axiom modules for
calculating probability scores that satisfy the corresponding axioms. We evaluate our method on KG noise detection,
triple classification and link prediction. Experiments show that axiom information can benefit these tasks.

In the future, we will attempt to explore more implicit or explicit information in triples to enhance the performance
of knowledge graph reasoning. Furthermore, we will improve our method to apply it for inconsistency reasoning, as
axiom information may be able to provide explanations for inconsistent triples.
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