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ABSTRACT The air pollution caused by particulate matter (PM) has become a public health issue due to the

risks to human life and the environment. The PM concentration in the air causes haze and affects the lungs

and the heart, leading to reduced visibility, allergic reactions, pneumonia, asthma, cardiopulmonary diseases,

lung cancer, and even death. In this context, the development of systems for monitoring, forecasting, and

controlling emissions plays an important role. The literature about forecasting systems based on Artificial

Neural Networks (ANNs) ensembles has been highlighted regarding statistical accuracy and efficiency.

In this article, trainable and non-trainable combination methods are used for PM10 and PM2.5 (particles

with an aerodynamic diameter less than 10 and 2.5 micrometers, respectively) time series forecasting for

eight different locations, in Finland and Brazil, for different periods. Trainable ensembles based on ANNs,

linear regression, and Copulas are compared with non-trainable combinations (mean and median), single

ANNs, and linear statistical approaches. Different models are considered so far, including Autoregressive

model (AR), Autoregressive and Moving Average Model (ARMA), Infinite Impulse Response Filters (IIR),

Multilayer Perceptron (MLP), Radial Basis Function Networks (RBF), Extreme Learning Machines (ELM),

Echo State Networks (ESN), and Adaptive Network Fuzzy Inference System (ANFIS). The use of ANNs

ensembles, mainly combined with MLP, leads to a better one step ahead forecasting performance. The use

of robust air pollution forecasting tools is prime to assist governments in managing air pollution issues

like hospital collapse during adverse air quality situations. In this sense, our study is indirectly related

to the following United Nations sustainable development goals: SDG 3 - good health and well-being and

SDG 11 - sustainable cities and communities.

INDEX TERMS Forecasting, particulate matter, artificial neural networks, ensemble.

I. INTRODUCTION

Air pollution is one of the worst toxic issues worldwide

[1]–[3]. The World Health Organization (WHO) [4] reported

that 0.8 million deaths and 7.9 million disability-adjusted

life years from respiratory problems, lung diseases, and can-

cer were attributed to urban air pollution. More recently,

WHO [5] reported that 90% of the urban population is

exposed to high air pollution levels. Many works, including

The associate editor coordinating the review of this manuscript and
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several epidemiological studies, have reported the relation-

ship between particulate matter concentration and cardiores-

piratory diseases and even death [6]–[12].

Particles with an aerodynamic diameter less than 10 µm

(PM10), and mainly those less than 2.5 µm (PM2.5),

pose severe damages to the environment and human

health.

Environmental damages [2], [3] may include pollution and

acidity of lakes and rivers, imbalance in coastal water and

large river basins, depletion of soil, acid rain, and damaging

to forests, farm crops, and ecosystems.
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Human health damages commonly vary according to the

level of concentration of PM, the period of exposure, size

of the particulates, and the atmospheric chemical profile at

a location [3], [9]. In general, short-term exposure causes

less severe damages, like allergic reactions and irritations

in the upper respiratory tract. In some cases, more serious

problems [13] may occur, like emphysema, pneumonia, and

asthma. In the same way, long-term exposure may severely

affect the respiratory system and other parts of the human

body [14], [15], such as the brain, liver, kidneys, and cardio-

vascular system; causing heart disease, cancer, chronic lower

respiratory diseases, cerebrovascular disease, and even death.

Due to the risks related to the PM10 and PM2.5 concentra-

tion in air, it is crucial that government agencies of air quality

alert in advance the population about the onset, severity, and

duration of high concentration episodes. These institutional

actions mainly aim: (i) in the short-term to draw attention to

harmful effects of high PM concentration [2], [3] and (ii) in

the long-term, to encourage the population and industry to

reduce emissions of PM [2], [3]. In this context, it has been

paramount the PM concentration monitoring and forecasting.

Several forecasting systems [16]–[22] have been devel-

oped to reach good estimates of the PM concentration. In the

literature, those based on Artificial Neural Networks (ANNs)

have been highlighted due to their performance and general-

ization capability.

However, studies like Neumann’s [23], comment that

adopting a single model can lead to statistical bias and under-

estimating the real uncertainty underlying the time series.

In this way, authors [24]–[30] have been challenged by com-

bining diverse models to present aggregate estimates.

In this context, one of the problems has been to combine

single predictors of the time series to enhance the forecast-

ing performance. Statistically, these ensembles are generally

superior in comparison with individual models in terms of

both accuracy and efficiency [24], [31]–[34]. Also, among

ANN-based approaches, there are ensembles that combine

models to obtain a more statistically robust system, outper-

forming the single forecasting models [12], [29], [35], [36].

The combination methods employed in the ensembles can

be divided into two classes: non-trainable [36] and train-

able [29]. The non-trainable combination operators com-

monly used are descriptive statistics, such as mean, median,

mode, maximum, and minimum [36]. In turn, the trainable

combination methods require a phase of prior estimation of

parameters that aims to find the best function of aggregation

of the forecasts [29].

The method or operator used in the combination is thus

paramount for developing attractive models. Currently, sev-

eral works in the PM forecasting literature use this kind of

approach. For instance, Siwek and Osowski [37] improved

different types of PM10 models by using a wavelet transfor-

mation jointly with an ensemble employing two approaches,

separately: Support Vector Regression and Multilayer Per-

ceptron; Souza et al. [38] proposed an ensemble of ANNs

based on bagging to predict the daily concentrations of PM10

in the city of Piracicaba, Brazil, while Debry and Mallet [39]

proposed amethod named discounted ridge regression (DRR)

to combine machine learning algorithms for prediction of

PM10 concentration in France.

Generally, the forecasting models that can or cannot be

associated to an ensemble generally employ two data-driven

approaches for their training: the use of only previous (his-

torical) data of the PM concentration [16]–[18], or the use of

the historical data of PM jointly with related features, such

as temperature, relative humidity, direction, and speed of the

wind [37]. Several works in the literature have considered the

second approach [19]–[22], [37], [39].

There is no consensus on which model shows better

performance to each problem. Then, to develop and test

different approaches is crucial to keep improving air pollu-

tion forecasting. In such a context, the present work inves-

tigates the performance of 16 forecasting models for PM

concentration. As single models we applied the Autore-

gressive model (AR) [40], Autoregressive and Moving

Average model (ARMA) [40], Infinite Impulse Response

Filters [41], Multilayer Perceptron (MLP) [20], Radial Basis

Function Networks (RBF) [42], Extreme Learning Machines

(ELM) [43], Echo State Networks (ESN) [44], and Adap-

tive Network Fuzzy Inference System (ANFIS) [45]; as

non-trainable ensembles, it is considered the mean and

median [36]; as trainable ensembles we addressed a lin-

ear regression with (LR-FS) and without features selection

(LR) [46], ELM with and without the coefficient of regu-

larization (CR), MLP [37], and normal Copula-based mod-

els [25], [29]. These combination methods have emerged

among the most promising from the time series forecasting

literature [12], [29], [35], [37], [38].

Thus, the approaches are evaluated via historical PM series

in terms of six performance metrics widely used in the litera-

ture: Mean Squared Error (MSE), Mean Absolute Percentage

Error (MAPE), Average Relative Variance (ARV), Index of

Agreement (IA), Mean Absolute Error (MAE), and Root

Mean Squared Error (RMSE).

The target was PM10 and PM2.5 concentrations time series.

As a geographical location, socioeconomic factors, and urban

development strategy highly impact the air quality in the

cities [47], we studied eight different scenarios for different

geographical locations fromBrazil and Finland. According to

the authors’ knowledge, comparing this set of models in PM

forecasting tasks is unprecedented.

The rest of the work is organized as follows: Section II

presents the background regarding the single and combi-

nation methods adopted for modeling and forecasting PM;

Section III presents computational results, while Section IV

brings relevant discussions; Section V shows concluding

remarks.

II. BACKGROUND

A. LINEAR FORECASTING MODELS

Linear forecasting models are traditional statistical tools to

perform time series modeling and forecasting [40]. Besides
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developing nonlinear methodologies, the literature shows that

such an approach is widely used [11], [48]–[50]. In this sense,

we present three of the most used linear models to deal with

the aforementioned task. In this way, let xt be the value of the

time series under consideration at instant t .

1) AUTOREGRESSIVE MODELS

Autoregressive (AR) models are popular methods for sta-

tionary time series prediction [40] due to its simplicity in

optimizing its parameters and implementing, allied to good

results in the literature. The model weights previous values

of the time series to predict its future values. Equation 1

summarizes the formalism:

x̂t = φ1xt−P + φ2xt−P−1 + · · · + φpxt−P−p+1 + at (1)

in which xt−P−i+1 (i = 1, 2, . . . , p) are the lags of the

observed series, φi represents the free parameters, and at are

random shocks (or the random component) [48]. Thus, p is

the order of the model.

Equation 1 allows one to promote P steps ahead forecasts

[51]. The model presents a unimodal cost function in the

MSE sense. Therefore, the global minimum is defined by a

closed-form solution, named Yule-Walker equations [41].

2) AUTOREGRESSIVE AND MOVING AVERAGE MODELS

The Autoregressive andMoving Average Models (ARMA) is

developed as a hybrid model between the AR and theMoving

Average (MA)models.While the AR considers the lags of the

series, the ARMA also creates the output response addressing

the previous residuals presented by the model, at−P−j, which
are weighted by θj coefficients, as in Equation 2:

x̂t = φ1xt−P + · · · + φpxt−P−p+1

− θ1at−P − · · · − θqat−P−q+1 + at (2)

in which φi, i = 1, 2, . . . , p and θj, j = 1, 2, . . . , q, are free

coefficients [40].

The standard application of ARMA considers the random

shock at−P−j as equivalent to the residuals of the previous

samples [40], [48]. The feedback of previous temporal infor-

mation is the reason classify the model as a recursive linear

approach. However, the estimation of the ARMA parame-

ters has no closed-form solution, being necessary the use of

probabilistic optimization methodologies to adjust the model.

Therefore, it may be unfeasible to carry out an exhaustive

search for the ARMA best coefficients.

In this sense, we use a bio-inspired metaheuristic to adjust

the ARMAmodel: the well known Particle Swarm Optimiza-

tion Algorithm (PSO) [52]–[55].

3) INFINITE IMPULSE RESPONSE FILTERS

Recursive linear models can be described from a different

perspective of the ARMA models. Instead of feeding back

previous residual values, one can reinsert previous values

of the model output [41], [56]. In this case, the model is

known as the Infinite Impulse Response Filter (IIR), which

is depicted in Equation 3 [41]

x̂t = c1xt−P + · · · + cpxt−P−p+1

− b1x̂t−P − · · · − bqx̂t−P−q+1 (3)

in which ci, i = 1, 2, . . . , p, are free parameters that weigh

the feedforward inputs and bj, j = 1, 2, . . . , q, are the

weights of the feedback inputs.

As in the ARMA case, the IIR Filters cannot be adjusted

by closed-form solutions [41]. Again, we use the PSO to

estimate the parameters of the model.

B. ARTIFICIAL NEURAL NETWORKS

Artificial Neural Networks (ANNs) are nonlinear methodolo-

gies, inspired by the functioning of the superior organisms’

neural system. Composed by nonlinear processing structures

named artificial neurons, such models are universal approx-

imators, with high mapping capability [42]. The adjustment

of an ANN is known as the training process [57].

This class of methods is vastly applied to time series fore-

casting [58]–[60], and nonlinear mapping problems [9], [61].

In this work, we address four ANN frameworks: MLP, RBF,

ELM, and ESN, sumarized as follows.

1) MULTILAYER PERCEPTRON - MLP

Feedforward neural networks (FNN) are those in which the

information signal flows in one direction, from the input

layer to the output. These architectures present universal

approximation capability, which means that they can approx-

imate any continuous, nonlinear, limited, and differentiable

function [42].

A popular FNN is the Multilayer Perceptron (MLP). The

most widely known method for adjusting the weights of the

MLP is the backpropagation algorithm [42]. Here, we use an

MLP with three layers, with hyperbolic tangent and linear

function as activation functions for the hidden and output

layers, respectively. However, in this work the training pro-

cess is performed using the Modified Scaled Conjugated

Gradient [62].

2) RADIAL BASIS FUNCTION NETWORKS - RBF

The Radial Basis Function Networks (RBF) is a feedforward

ANN framework that presents two layers, hidden and output

layers. The hidden layer performs an input-output mapping,

using radial basis functions as kernel (activation) ones [63].

The most used function is the Gaussian. In this case, the

artificial neurons have two free parameters, a center and a

dispersion. The output layer provides a combination of the

hidden layer outputs, often using a linear approach [42].

The training step of an RBF is performed according to

two stages. The first is the determination of the hidden

layer weights, in which one must determine their centers

and dispersions. This task is performed using non-supervised

clustering methods. In this work, we address the K-Medoids

methodology [64].
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The second step is to tune the weights of the output layer.

In this work, we address the Moore-Penrose pseudoinverse

operator, a linear procedure, which ensures the minimum

mean squared error (MSE) in the output [60].

3) EXTREME LEARNING MACHINES - ELM

Extreme Learning Machines (ELM) are single layer feed-

forward neural networks, introduced by Huang et al. [43]

in 2004. The arrangement of the neurons is quite similar

to the architecture of the MLP. However, ELM presents a

remarkable dissemblance in the training process. It has been

proven that the weights in the hidden neurons, which are ran-

domly generated, can stand untuned. For this, the activation

functions of the intermediate neurons must be continuously

differentiable [63]. The authors proved that the insertion of

new neurons in this layer leads to decreased output error. The

ELM are universal approximators [65].

The training process of an ELM is simple, being summa-

rized in finding the best set of weights of the neurons in

the output layer. This task can be performed by solving a

linear regression problem. Huang et al. [65] suggest using

the Moore-Penrose generalized inverse operation to solve the

task since this technique simultaneously minimizes the norm

of the output weight vector and the MSE between the output

of the network and the desired signal [66].

To increase the generalization capability of an ELM,

we can also address the coefficient of regularization (CR)

[35], [57].

4) ECHO STATE NETWORKS - ESN

Jaeger [44] proposed the Echo State Networks (ESN), which

present similarities with the ELM in terms of the simplicity

in the training process.

The most important structural difference between ELM

and ESN is the presence of recurrent connections within

the latter’s intermediate layer, called dynamic reservoir. The

neurons’ activation in the reservoir (the output of this layer)

is influenced by the current input and the previous state.

Under specific conditions, the reservoir output is a nonlin-

ear transformation, directly influenced by the recent history

of the input signal (hence the term echo). It allows this layer

to be set in advance and kept unchanged during the training.

Therefore, only the output layer must be adjusted through a

solution of a least-square problem. He called these conditions

as echo state PROPERTY [67].

Jaeger suggests a way to generate the reservoir that respects

the echo state property. In his proposal, he created a sparse

matrix. Also, as in the ELM case, the training process is per-

formed applying the Moore-Penrose inverse operation [51].

C. NEURO-FUZZY MODEL

Adaptive Network Inference Fuzzy System (ANFIS) [68]

is a hybrid neuro-fuzzy-based model that combines arti-

ficial neural networks and fuzzy logic. ANFIS carries

out a cross-validation by data set checking, leading to

minimization of overfitting occurrence. It was previously

applied to particulate matter prediction [69], [70].

It is widely known that the number of ANFIS parameters

increases exponentially with the number of input variables

(which corresponds in the present work to the number of past

PM sample values used for prediction), being an unfavorable

point in comparison to traditional approaches of ANN. How-

ever, the versatility of ANFIS suggests that it may succeed in

cases that neural nets have failed.

The ANFIS model uses the following parameters [71]:

• TMF: type of membership functions;

• NMF: number of membership functions;

• NI: number of inputs;

• NFR: number of fuzzy rules.

One can observe that

NFR = NMFNI . (4)

The following membership functions were considered in

the present work:
• trimf: Triangular membership function;

• gauss2mf: Two-sided Gaussian membership function;

• dsigmf: Membership function given by the difference

between two sigmoid membership functions;

• pimf: Pi-shaped curve membership function;

• gaussmf: Gaussian curve membership function;

• gbellmf: Generalized Bell curve membership function;

• trapmf: Trapezoidal membership function;

• psigmf: Product of two sigmoid membership functions.

D. COMBINATION MODELS

1) ENSEMBLES

The ensemble methodology combines the output of single

forecasting models to improve the final response of the sys-

tem [37]. The underlying reasoning is that distinct formalisms

can deal with the diverse characteristics of the time series,

even in the light of the same set of inputs. In this sense, one

method may present better responses for some data range,

while other models may work better in another band. There-

fore, a combination approach can be used to generate the final

output [36].

We highlight the necessity of accurate predictions of each

single model, as well as they have to present diversity [72].

Efficiency also plays an important role. In the present work,

(n = 8) single models are considered: AR, ARMA, IIR Filter,

MLP, RBF, ELM, ESN, and ANFIS. As discussed, such

models are of a different nature, among linear models, neural

networks, and neuro-fuzzy approaches, to reach diversity in

the final response [38], [39].

We addressed as combination formalisms:

• non-trainable approaches: mean and median;

• trainable approaches: linear regression (LR), linear

regression with feature selection (LR-FS), MLP, ELM,

ELM (CR), and normal copula-based models (NC).

The outputs combination through an LR model [46], [73]

is based on a linear combination of the predictions obtained
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FIGURE 1. Estimation steps for the copula model.

from the single models as shown in Equation 5,

xLRt+1 =
n

∑

j=1

wLRj Fj(xt ), (5)

in which xLRt+1 is the combined output, n is the number of

single models, wLRj is the coefficient that weight the output

of the jth single model forecast for xt+1, Fj(·), regarding the

observed series until t , xt .

The weights wj are calculated by means of a least squares

approach, using the predictions of each model and the target

value. The weights reflect the contribution of each model in

the final result.

Feature selection is also employed using the LR approach,

where a wrapper [74], [75] is used to find the best set of

models to be considered in a given data set. Thus, a search

is conducted over 28 − 1 possible combinations.

2) NORMAL COPULA-BASED COMBINATION

A Copula is a function that combines two or more uni-

variate marginal probability distributions (MPDs) to build a

joint probability distribution (JPD), incorporating the depen-

dence of these univariate distributions [76]. In this context,

a marginal cumulative distribution function (CDF) can be

seen as a MPD and a joint CDF can be understood as a

JPD [77].

In the time series context, the use of copulas for economics

and finance has been paramount for modeling the dependence

of variables through time [78], [79]. Works have studied

the introduction of copulas formalism in order to achieve

maximum likelihood combination models according to an

adequate JPD [29], [80]–[82].

In general terms, a copula function, C(·), is a JPD

whose marginal distributions are in the range [0,1]. Let

(v1, · · · , vj, · · · , vn) be an instance of nMPDs such that vj ∈
[0, 1]. Then, the copula probability density function (PDF) is

given by Equation 6

c (v1, · · · , vn) = ∂n

∂v1 · · · ∂vn
C (v1, · · · , vn) , (6)

in which C(v1, · · · , vj, · · · , vn) is the respective JPD [76].

Figure 1 summarizes the flow for a copulas-based combi-

nation of n single models, (F1(x), · · · ,Fn(x)), according to a

training series x. In a divide-and-conquer way, the residuals of

each single forecasting model (e1, · · · , en) are modeled and

encapsulated in MPDs. In the general formulation, vj can be

an instance of the jth MPD in the light of a fixed residual ej.

Then, such MPDs are copulated.

This article focuses on the Normal or Gaussian copula.

This copula belongs to the family of Elliptic copulas. In this

case, the dependence between pairs of variables is given by

an n × n covariance matrix, 6, from which a correlation

matrix, ρ, can be obtained. For instance, when ρi,j is the

Pearson (linear) correlation between the variables of indexes

i and j, ρi,j ∈ [−1, 1], it follows that ρi,j = 0 indicates no

(linear) correlation between the variables, ρi,j = −1 cor-

responds to perfect linear negative correlation, and ρi,j = 1

reflects perfect linear positive correlation.

The Normal copula is given by Equation 7 [83]:

C(v1, · · · , vn) = 8(ϕ−1(v1), · · · , ϕ−1(vn)|ρ), (7)

in which ϕ−1(·) is the inverse MPD of a standard normal

distribution and 8(·) is the JPD of a multivariate normal

distribution with zero mean vector and correlation matrix

equal to ρ.

The corresponding PDF of the Normal copula is given in

Equation 8 [83]

c(v1, · · · , vn) = c(ϕ−1(v1), . . . , ϕ
−1(vn)|ρ)

= 1√
|ρ|

exp






− 1

2
(ϕ−1(v1),

· · · , ϕ−1(vn))(ρ
−1−I)







ϕ−1(v1)
...

ϕ−1(vn)












(8)

in which I is the identity matrix and 6−1 is the inverse

correlation matrix.

For the case where vj comes from a normal MPD, the

resulting copula model is the multivariate Normal distri-

bution. It is the most widely used multivariate model in
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FIGURE 2. Training step for the k trainable combination models (ensemble).

statistics. The multivariate Normal distribution has been

useful for principal component analysis, classical regres-

sion, and ensembles (as used in [25]), for instance. Further,

in this case, the maximum likelihood combination esti-

mate from copulas-based approach is similar to the minimal

variance (MV) method [25], [84]. Thus, this combination

approach is named Normal Copula-based (NC) hereafter.

The NC promotes linear combination forecasts (LCF) xNC

and can be generically presented as in Equation 9:

xNCt+1 =
n

∑

j=1

ωjFj(xt ), (9)

in which n is the number of single models andωj is the weight

attributed to the jth single model forecast for xt+1, Fj(·), in the

light of the previous series xt .

In NC approach, ωj is a function of both the efficiency

and linear correlation of the single models, as presented in

Equation 10 [25]:

ωj =
∑n

l=1 hlj
∑n

l=1

∑n
j=1 hlj

, (10)

in which hlj is the j
th element of the l th row of the inverse

covariance matrix 6−1 of the residuals of the single models.

Thus, the greater the dependence between two models and

the greater the absolute magnitude of their residuals, the

lesser their weights in the combination.

For instance, if n = 2, we have Expression 11:

6−1 = 1

1 − ρ2
1,2

·





1

σ 2
1

− ρ1,2
σ1σ2

− ρ1,2
σ1σ2

1

σ 2
2

,



 , (11)

in which ρ1,2 = σ12/σ1σ2 is the Pearson correlation coef-

ficient between the errors of the models F1(·) and F2(·), σi
is the standard deviation of the error of Fi(·), and σi,j is the

covariance between the errors of Fi(·) and Fj(·).

III. CASE STUDIES

A methodology may bring gains to a specific time series

but not to others. Then, we studied the databases from two

countries with distinct climate and emission patterns (Brazil

and Finland) to analyze the performance of each method

under study.

Figures 2 and 3 illustrate the general idea of the work for

studying the performance of single and combination models

for PM time series forecasting. From the observed series,

i.e., the training data set (x), the use of n single models

(F1(x), · · · ,Fn(x)) is suggested. Such single models are then

combined according to the trainable approaches (ensembles

and Copulas), taking into account x (training data). Figure 2

shows a scheme of the training process for single and combi-

nation models.

After this, the single and combination models are used for

forecasting data outside the training set, as shown in Figure 3.

Therefore, for a given vector of time lags xq, which belongs

to the PM series test set, the one step ahead forecasts are

performed.

A. PM TIME SERIES

The database of PM10 and PM2.5 concentrations addressed

in this work consists of univariate time series composed

of daily mean records to four different cities, with distinct

characteristics:
• Helsinki, Finland - Kallio andVallila stations - PM10 and

PM2.5;

• São Paulo city, São Paulo state, Brazil - Tietê station -

PM10 and PM2.5;

• Campinas city, São Paulo state, Brazil - PM10;

• Ipojuca city, Pernambuco state, Brazil - PM10.

Helsinki is the most populous city and the capital of Fin-

land, with 655,276 inhabitants spread over a 1,268,296 km2
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FIGURE 3. Test step for the proposed ensemble. The outputs xk
t+1, xMn

t+1, and xMd
t+1 are the forecasts of the

combinations for a given pattern test xq.

of area [85]. It has temperatures ranging from −8◦C to 21◦C,
and hardly below −19◦C and above 26◦C [86]. Helsinki time

series have already been addressed in the literature about air

pollution forecasting [17]–[20], [87].

In contrast to Helsinki, Ipojuca city (Pernambuco state,

Brazil) weather is characteristic of hot and windy climate

with temperatures ranging from 22◦C to 32◦C [86]. Ipojuca is

a coastal city located in the Brazilian Northeast, Pernambuco

state capital, and has a demographic density of 152.98 inhab-

itants per km2 (total population of 96,204 inhabitants) [88].

The two cities of São Paulo state (São Paulo and Campinas)

also have a distinct population and business characteristics,

but similar weather (hot and rainy long summers and short

winters with temperatures raging from 13 ◦C to 29◦C [86]).

They are located in Southeast Brazil. São Paulo is the capital

of São Paulo state and the most populous city in Brazil

(7398,26 inhabitants per km2 - total population of 12,252,023

and 969.32 km2 of urban area) [88].

Campinas city demographic density is five times lower

than São Paulo city (1359.60 inhabitants per km2), with an

urban area of 238.2 km2 [88].

Beyond the diverse climate, demographic, and business

characteristics of the studied locations, each monitoring loca-

tion has a distinct emission source pattern. As shown in

Figure 4, Vallila station is in a high traffic, city downtown

area. In contrast, Kallio station is an urban background

in Helsinki has quite peculiar demographic, business, and

climatic characteristics, compared to Brazilian areas under

study.

Figure 5 shows São Paulo, Campinas, and Ipojuca cities

stations’ location. São Paulo and Campinas cities are

TABLE 1. Number of samples, data range, and considered pollutant to
each studied station.

TABLE 2. Mean, standard deviation, maximum, and minimum values for
each studied station.

dominated by vehicular sources. The difference is that São

Paulo city’s monitoring region is near a ring road, with main

influence of heavy-duty vehicles, while Campinas station is

in the city downtown, predominantly affected by light-duty

emissions. Ipojuca city is quite distinct, as it is a coastal

city. The main difference from the other time series is that

the monitoring station is located near a petrol refinery, being

characterized by industrial emissions. A statistical descrip-

tion of all series is shown in the Tables 1 and 2.
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FIGURE 4. Location of Finland Stations at Helsinki: Kallio (blue spot) and
Vallila (purple spot). The satellite map is from Google Maps (Map
data 2020 Google; https://www.google.com/maps/place/Finland/); the
satellite is from Google Earth Pro (Map data 2020 Google;
https://www.google.com/maps/@60.1834096,24.8975655,12.83z).

B. EXPERIMENTAL SETUP

Initially, the PM concentration series were normalized using

the z-score [11], [40] and then normalized to lie within

the interval [−1, 1] [42]. The samples were divided into

three sets, according to Proben [89]: 50% for training,

25% for validation, and 25% for test. The test sets com-

prise the last samples of each series: 272 samples to Kallio

(PM10 and PM2.5), Vallila (PM10), São Paulo (PM10 and

PM2.5); 240 to Vallila (PM2.5); 182 samples to Campinas

(PM10); and 158 samples to Ipojuca (PM10).

Thirty simulations with each artificial neural network were

performed, and the best configuration was selected according

to the lowest MSE value in the validation set. The selection

of the best set of inputs (lags) is defined in every single model

through the wrapper method [74], [75]. As the methodology

is model-dependent, the forecasting models can select differ-

ent lags.

FIGURE 5. Location of Brazilian Stations: Ipojuca (green spot), Campinas
(yellow spot), and São Paulo (red spot). The satellite map is from Google
Maps (Map data 2020 Google, INEGI;
https://www.google.com/maps/place/Brazil/); the satellite is from
Google Earth Pro (Map data 2020 Google;
https://www.google.com/maps/@-23.2636702,-47.1095854,9.5z and
https://www.google.com/maps/@-8.0624551, -34.9114682,11.92z).

The AR model was adjusted using the Yule-Walker equa-

tions, while the ARMA and IIR Filter were tuned by the PSO

algorithm. The target during the training was to minimize the

cost function based on the MSE [12].

The MLP is trained via the Modified Scale Conju-

gated Gradient [62] algorithm using the following stopping

conditions: (i) the maximum number of iterations equal

300; (ii) use of the hold-out cross-validation; (iii) progress

training 106. The number of hidden neurons for a single MLP

model is defined using a grid search in the range [3, 250].

For the MLP used in the combination, the number of input

nodes is set up eight, one for each single ANN model. The

hyperbolic tangent is addressed as the activation function of

the hidden neurons. The RBF was configurated following the

same premisses of the MLP.

In addition to using grid partition, ANFIS uses a hybrid

optimization method: the combination of least-squares esti-

mator and backpropagation as gradient descent. The product

operator was used as the connective, and the weighted mean
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for defuzzification. A zero tolerance for the error is adopted in

the stopping criterion, and the number of iterations adopted

is 250. The number of inputs (NI) is selected in the range

[1, 6], and the number of fuzzy rules (NFR) is selected into

the interval [2, 50]. The type of member functions (TMF)

is selected among eight candidates: trimf, gauss2mf, dsigmf,

pimf, gaussmf, gbellmf, trapmf and psigmf.

The weights of ELM and ESN are adjusted by the

Moore-Penrose inverse operation [42], [57]. To determine the

number of neurons in the hidden layer of the neural models,

a grid search is carried out in the interval [3, 250]. Both also

use the hyperbolic tangent as activation function of the hidden

neurons.

Six metrics are taken into account for evaluating the sin-

gle and combination PM models [90], [91]: MSE, Mean

Absolute Percentage Error (MAPE), Average Relative Vari-

ance (ARV), Index of Agreement (IA), Mean Absolute

Error (MAE), and Root Mean Squared Error (RMSE), given

by Equations 12 to 17:

MSE = 1

N

N
∑

t=1

(xt − x̂t )
2, (12)

MAPE = 100

N

N
∑

t=1

∣

∣

∣

∣

xt − x̂t

xt

∣

∣

∣

∣

, (13)

ARV =

N
∑

t=1

(xt − x̂ t )
2

N
∑

t=1

(x̂t − x)2

, (14)

IA = 1 −

N
∑

t=1

(xt − x̂t )
2

N
∑

t=1

(|x̂t − x| + |xt − x|)2
, (15)

MAE = 1

N

N
∑

t=1

|xt − x̂t |, (16)

RMSE =
√
MSE, (17)

in whichN is the number of available samples, xt is the actual

value of the series at time index t , x̂t is the model forecast for

xt , and x the mean of the series.

In the case of the MSE, MAPE, MAE, ARV, and RMSE

measures, the lower the value of those measures, the better

the performance of the model. Mainly, ARV is a metric used

to compare the methodologies with the simple mean of the

series. If the ARV value is 1, the prediction of the model

is as good as using the mean as the prediction of the series;

otherwise, if the value is less (greater) than 1, the prediction

of the model is better (worse) than using the mean as the

prediction. In turn, the higher the IA, the better the model. Via

IA, one can evaluate the quality of the model concerning both

the accuracy of the simple mean estimate and the dispersion

of the series [19], [20], [87].

TABLE 3. Evaluation metrics for forecasting PM10 series (Kallio Station).

TABLE 4. Ranking of the single and combination models by metric for
PM10 series of the Kallio Station.

We highlight that, after the forecasting procedure,

we applied the Friedman test to evaluate if the performances

were statistically different [92]. Considering 5% of signif-

icance, the highest p-value found was 1.3914e-73, which

allows admitting that a change in the predictor led to different

results.

C. COMPUTATIONAL RESULTS

1) CONCENTRATION OF PM10 IN KALLIO STATION

Table 3 shows the forecasting results for the PM10 concentra-

tion time series (Kallio Station) using single and combination

models. Table 4 presents a ranking regarding each metric

result. The value column Mean presents an average of the

positions achieved regarding all metrics, while the column

Rank order the values of the means. We followed the rank to

define the best prediction models. This premise is adopted to

all PM series. Note that the best error values are highlighted

in bold for each approach: single and combination models.

The results summarized in Tables 3 and 4 allow some

important remarks. There is no perfect correspondence

between the error metrics. While the smallest ARV is related

to the AR model, the best MSE, MAPE, MAE, and RMSE
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FIGURE 6. The best forecast for the test set of the PM10 concentration
time series for Kallio station.

belong to the Ensemble with MLP. The best IA is from the

single MLP.

Among the linear models, the IIR filter performed better

than the AR and ARMA, considering the six metrics. The

best single ANNwas theMLP, which presented the best MSE

for a single model. It is essential since some references [42],

[57] consider the MSE as the most important error metric in

time series forecasting. It is the metric minimized during the

adjustment of the linear models and ANN.

Comparing the combination approaches, the MLP ensem-

ble achieved the best performance considering four metrics,

while the ELM (CR) in one (ARV), and theMedian in another

(IA). However, observing the general results considering the

16 predictors, the trainable ensembles stood out, reaching the

best overall performances for 5 out of 6 metrics. Besides,

the trainable ensembles achieved the first three positions in

Table 4.

Figure 6 presents the best execution of the MLP Ensemble,

the best predictor for the Kallio PM10 series in the test set.

2) CONCENTRATION OF PARTICULATE MATTER PM2.5 IN
KALLIO STATION

Table 5 shows the performances for PM2.5 concentration

series of Kallio Station, and Table 6 shows the ranking.

Combination approaches have reached the best values for all

evaluation measures. Among the linear models, the IIR filter

was the best again. It is observed that the AR achieved the

smallest ARV. The ELM was the best single approach.

Considering the combination models, the MLP ensemble

was the one that achieved the best performance for MSE,

MAPE, MAE, and RMSE. The single LR (FS) combiner

achieved the best result in terms of IA.

The ranking in Table 6 shows a draw between the ELM

Ensemble and MLP Ensemble, although the last achieved

the best MSE. The third place was occupied by the LR (FS)

TABLE 5. Evaluation metrics for forecasting PM2.5 series (Kallio Station).

TABLE 6. Ranking of the single and combination models by metric PM2.5
series of the Kallio Station.

TABLE 7. Evaluation metrics for forecasting PM10 series (Vallila Station).

combiner. Figure 7 shows the test set of the actual series and

the forecasting ones.

3) CONCENTRATION OF PM10 IN VALLILA STATION

Table 7 shows the computational results of the single and

combined models for Vallila station PM10 concentration, and

Table 8 the general ranking.
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FIGURE 7. Best forecast for the test set of the PM2.5 concentration time
series for Kallio station.

TABLE 8. Ranking of the single and combination models by metric for
PM10 series of the Vallila Station.

Analyzing the results in Tables 7 and 8, it is clear that the

IIR Filter was the best linear model, even though, the AR

reached good values for MAPE and ARV. Among the single

models, the ELM was the best for four error metrics.

Considering the ensembles, the MLP combiner was the

best for 5 out of 6 metrics, and the ELM (CR) in one metric,

precisely the ARV. Also, the first five ranked methods belong

to the combination class.

Figure 8 presents the prediction models’ general behavior,

showing the test set of the actual values for PM10 and the

predictions of the best predictior (MLP Ensemble).

4) CONCENTRATION OF PM2.5 IN VALLILA STATION

Tables 9 and 10 show the performance for PM2.5 concentra-

tion of Vallila Station, and the ranking of the performances,

respectively.

The analysis of Table 9 reveals a distinct behavior regard-

ing the linear models. Considering all single models, the

FIGURE 8. Best forecast for the test set of the PM10 concentration time
series for Vallila station.

TABLE 9. Evaluation metrics for forecasting PM2.5 series (Vallila Station).

TABLE 10. Ranking of the single and combination models by metric for
PM2.5 series of the Vallila Station.

ARMA achieved the best IA and MAE errors, while AR the

smallest MAPE and ARV. Table 10 shows that ARMA was
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FIGURE 9. The best forecast for the test set of the PM2.5 concentration
time series for Vallila station.

TABLE 11. Evaluation metrics for forecasting PM10 series (São Paulo
Station).

the fourth-best predictor for Vallila PM2.5 series. Considering

the six metrics, the IIR filter presents a better raking position

than AR.

On the other hand, the ELM obtained the smallest MSE

and RMSE regarding the single predictors. About the com-

bination models, the MLP Ensemble was also the winner,

followed by the LR combiner and ELM (CR) proposal. Note

that, in general, the combination models stood out.

Figure 9 shows the test set of the actual values for PM2.5

and the MLP combination model’s forecasts.

5) CONCENTRATION OF PM10 IN SÃO PAULO STATION

Table 11 summarizes the computational results found

by 16 forecasting models for PM10 concentration in

São Paulo, while Table 12 presents the performances’

ranking.

For São Paulo PM10 concentration, the computational per-

formances were uniform. The linear approaches overcame

TABLE 12. Ranking of the single and combination models by metric for
PM10 series of the São Paulo Station.

FIGURE 10. The best forecast for the test set of the PM10 concentration
time series for São Paulo station.

just the RBF, being the ARMA the best of them. The ELM

overcame some ensembles, being the best single model

regarding five metrics (except ARV).

The six best methods belong to the ensembles based

on feedforward neural models, MLP and ELM. However,

different from previous cases, the ELM combiner was the

best (winner for four metrics), followed by the MLP and

ELM (CR).

Figure 10 sketches the forecasting of the ELM ensemble.

6) CONCENTRATION OF PM2.5 IN SÃO PAULO STATION

We present in this section the computational results for

São Paulo PM2.5 in Table 13, together with the ranking in

Table 14.

For São Paulo PM2.5 concentration time series, the per-

formances showed an remarkable behavior. The ELM was

the winner for all metrics regarding the single models, while
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TABLE 13. Evaluation metrics for forecasting PM2.5 series (São Paulo
Station).

TABLE 14. Ranking of the single and combination models by metric for
PM2.5 series of the São Paulo Station.

the MLP Ensemble was the general winner considering all

models. The ELM achieved the fourth-best performance. The

best models were, again, the MLP and ELM. Interestingly,

the Ensemble LR (FS) was the third best, but the LS was one

of the worst methods. Concerning the linear models, the IIR

Filter and the ARMA presented a similar Mean value.

Figure 11 shows the time behavior of São Paulo PM2.5 for

the test set in comparison to the original data.

7) CONCENTRATION OF PM10 IN CAMPINAS STATION

In Tables 15 and 16 we show the general performances for

Campinas PM10 prediction.

In Campinas’ case, the ARMA and IIR Filter present

almost a draw considering the final ranking score, with a

small advantage for the ARMA. Both overcame theAR. Also,

this is the first time we see the MLP present a Mean worse

than the linear approaches, despite it reached the best IA.

We observed the ELM as the second general best model,

being the general best for MAE, and the winner for 3 met-

rics considering just the single models. Also, the ESN was

highlighted regarding the single models for MSE and RMSE.

Considering all predictors, the ESN was the sixth-best.

FIGURE 11. Best forecast for the test set of the PM2.5 concentration time
series for São Paulo station.

TABLE 15. Evaluation metrics for forecasting PM10 series (Campinas
Station).

TABLE 16. Ranking of the single and combination models by metric for
PM10 series of the Campinas Station.

The ensembles followed the same tendency as the previous

simulations, being the MLP combiner the winner. However,
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FIGURE 12. The best forecast for the test set of the PM10 concentration
time series for Campinas station.

TABLE 17. Evaluation metrics for forecasting PM10 series (Ipojuca
Station).

the ensemble using the Mean achieved the third position

in the ranking, reaching the best MSE and RMSE, and the

second-best MAE. The ELM-based approaches were good

again. On the other hand, the LR and LR (FS) ensembles

appeared between the worst predictors.

Figure 12 shows the graphic of the MLP Ensemble and the

observed data for the Campinas time series.

8) CONCENTRATION OF PM10 IN IPOJUCA STATION

Finally, we present in Tables 17 and 18 the general perfor-

mance for the last series, the Ipojuca PM10 concentration,

regarding the error values and the ranking of the forecasting

models, respectively.

The results show that theARMAwas the best singlemodel,

being the winner for five metrics when considering just the

single models. The MLP was the second-best in this group.

TABLE 18. Ranking of the single and combination models by metric for
PM10 series of the Ipojuca Station.

FIGURE 13. The best forecast for the test set of the PM10 concentration
time series for Ipojuca station.

We highlight that the ELM presented its worst position in the

ranking.

The combination models in the Ipojuca case stood out.

Just the Copulas combiner was worse than most of the single

models. The MLP Ensemble won for five metrics (the best

one), and the ELM (CR) for IA (the second general best).

The next was the ELM and the LR (FS) combiners.

Figure 13 shows the output of the MLP Ensemble for the

Ipojuca PM10 time series.

IV. DISCUSSION

After the presentation and initial discussion of the results

regarding the 16 forecasting models and 8 time series,

we show Table 20, which summarizes the general pre-

diction performance, with the following correspondence:

K10 - Kallio PM10; K2.5 - Kallio PM2.5; V10 - Vallila PM10;

V2.5 - Vallila PM2.5; SP10 - São Paulo PM10; SP2.5 - São
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TABLE 19. The general ranking of performances considering the eight
time series taken into account.

Paulo PM2.5; C10 - Campinas PM10; I10 - Ipojuca PM10;

Mean - the mean ranking from all time series to each applied

model; and Rank - the new mean-based ranking.

From the results in Tables 3 to 20, one can discuss many

aspects. For the linear models, ARMA and IIR Filter achieved

the best results four times. It seems to be clear that recursive

linear models (ARMA and IIR Filter) have an advantage over

AR,which does not present feedback recurrences. Despite the

absence of closed-form solutions to determine the free param-

eters, the inclusion of feedback information to perform the

models output response seems to compensate this drawback.

Although we can not state which linear approach is more

suitable, it is essential to highlight that the IIR filter is mainly

applied to adaptive filtering problems [41], while the ARMA

in forecasting tasks. Therefore, if the user chooses to use

linear approaches, the IIR filter should be considered. Also,

a further investigation on the use of bio-inspired metaheuris-

tics should be conduced, analyzing other approaches, such as

Genetic Algorithms, Differential Evolution, and so on [93].

In general, the linear models did not overcome the ensem-

bles, but they perform better than some nonlinear approaches.

Besides, the response of themodelsmay increase the diversity

to perform the ensembles.

About the single ANN-models, it was not expected that

RBF, ANFIS, and ESN were worse than the linear ones.

Among them, the ESN was the best predictor. Some previous

studies revealed the prediction capability of such approaches

in related time series forecasting [51], [94]. However, as in

the linear case, these models must have generated diversity

in the final response.

The application of the MLP led to intriguing observations.

When used as a combiner, the architecture led to the best per-

formances. However, considering the general ranking, it pre-

sented similar performance to ARMA and IIR Filter. But,

for the Vallila series, it shows relatively poor performance,

figuring among the worse predictors.

Undoubtedly, the best single approach was ELM. Except

for the Ipojuca series, the model was always among the

first half of the ranked methods. For Campinas, it was the

TABLE 20. Number of studentized residuals greater than 3.0 in absolute
value (Kallio -K10, K2.5, Vallila - V10, V2.5, Campinas - C10, Ipojuca - I10,
and São Paulo - SP10, SP2.5). The worst performance per series is in bold.

second-best. It is an important remark since the ELM is

similar to the traditional MLP, but as its hidden neurons are

not tuned, the computational training effort is relatively lower.

In addition, these results reinforce the premises found in other

time series forecasting problems [51], [57].

The computational results were favorable to the use of

combination models (ensembles). Table 20 reveals, in 7 out

of 8 cases, the MLP ensemble reached the best raking posi-

tion, followed by the two ELM ensembles. It is intriguing

since, in the single approaches, the ELM performed bet-

ter. Due to the advantage in terms of performance, we can

state that the trainable ensembles, mainly those endowed by

feedforward neural models, are more suitable to solve the

prediction task.

The use of the CR by the ELM Ensemble does not prove

to be an advantage. We observed performance gains in two

cases. However, as the computational cost involved in its

application is not high it may be important for other series.

The non-trainable approaches were similar in terms of

performance, with an advantage to the mean. However, they

did not overcome the ELM and MLP.

Concerning the use of the linear regression (LR), we noted

that the implementation of the Feature Selection (FS) process

increased the quality of the results for 6 cases. Without this

technique, the LR combiner was worse than the non-trainable

ensembles. Also, the LR (FS) was the fourth-best model. This

is important because further investigation can be conducted to

evaluate FS methods to other ensembles.

The Normal Copula-based combination presented interest-

ing results in literature [29], [80], [81]. In this investigation,

it performed fairly but the it did not overcome the neural

ensembles.

Another critical issue is related to the dispersion of the

results considering 30 independent simulations. In this case,

we used the MSE achieved for the Kallio PM10 series to

exemplify the models behavior, as show in the boxplot

graphic depicted in Figure 14. The non-trainable ensembles

and the methods with close-form solution for the training,
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FIGURE 14. Boxplot of the MSE of the test set for Kallio PM10 series.

do not present dispersion, as expected. Note that the RBF

presents a small dispersion, but its best performance is worse

than most other single models. Also, the MLP Ensemble

presented a relatively small dispersion compared to the other

neural-based combiners.

Comprising the environmental aspect, we can state that the

best forecasting models (Figures 6 to 13) were adequate to all

considered time series, even during extreme events of high

air pollution. It is a crucial behavior, as the health systems

may collapse due to overcrowding during high air pollution

events, which may help governments take rapid measures to

ensure the safety of the whole population. But, it is important

to highlight that the forecast power may vary from series to

series.

A. RESIDUAL ANALYSIS

Once the target time series and respective forecasts are close

in some cases, and it may be difficult to distinguish in the

time series plots, the Studentized residuals were computed

by using rstudent function of R software [95]. The Stu-

dentized residual measures how many standard deviations of

each observed value of a time series deviates from an adjusted

model considering all samples except that observation [96].

Due to the expressive number of time series and models,

we present in Table 20 the number of samples showing Stu-

dentized values greater than 3.0 in absolute value to some of

the studied time series.

The worst results are in bold. One can see that Ipojuca

PM10 (I10) and Kallio PM2.5 (K2.5) series have presented,

FIGURE 15. Studentized Residuals for Ipojuca PM10 series using ANFIS
model.

in this order, the best and worst results, taking the maximum

number of Studentized-based outliers into account.

Figures 15 and 16 show the Studentized residuals plot with

respect to the best model (ANFIS for I10, with 6 outliers)

and one of the worst predictors (single MLP for K2.5 series,

with 20 outliers).

One can observe that the difference between the number

of Studentized-based outliers per series was lesser than 8.

These results showed no significant findings regarding the

best performances. Then, the conclusion obtained with the

previous error metrics analyses might be maintained.

B. LIMITATIONS AND POSSIBLE DIRECTIONS

This work intended to determine the most suitable model

to perform PM forecasting, considering only endogenous
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FIGURE 16. Studentized Residuals for Kallio PM2.5 series using MLP
model.

inputs (lags). A comparison of 16 approaches was carried

out. A variety of techniques was considered, including lin-

ear models, neural networks, and combination models. The

literature presents other proposals that use the same premise

for time series forecasting [18], [57], [60], [97]. However, it is

important to mention the limitations of this study, since other

investigations followed different directions.

It is known that a general model for predicting the concen-

trations of PM, especially the fine fraction, is quite challeng-

ing to be achieved without considering source apportionment,

seasonality, local topography, and climatic factors. Previous

investigations proposed hybrid techniques that employ many

other models, such as ANNs and SVM. Also, air trajectory

models have been developed [98].

An eventual poor performance by solely using an algorithm

directly on a time series should be a consequence of not

including variability of local conditions. Therefore, a specific

algorithm may perform better in other locations and other

seasons. In this sense, a further investigation addressing cal-

ibration and sensitivity analysis considering seasonality and

climatic variations is needed.

Regarding the activation functions of the neural models,

we only use hyperbolic tangent (tanh) and linear function.

It is a usual choice because it is fully differentiable and

ranges from −1 to +1. However, the literature presents many

possible functions, such as threshold, sigmoid, or ReLU.

A change in the activation function may lead to an increase

in the models performance.

The computational results were convergent on showing the

ensembles behave better in PM forecasting, considering the

databases addressed. Regarding the separation of the samples

in training, validation, and test, we considered 50%, 25%, and

25%, respectively. This division is based on the premise that

the training set must contain the temporal patterns to allow

the ANN to capture the statistical oscillations of the target

series over time. Note that, only in the Ipojuca series, we did

not use a full year of samples in training, but something

close to that. Also, we would like to provide a significant

amount of samples in the test set, to obtain a better eval-

uation of the results. However, some studies indicate that

distinct divisions can be more adequate, such as 70%, 15%

and 15% [42].

TABLE 21. Weights of the single models in the NC combination for each
time series taken into account (Kallio -K10, K2.5, Vallila - V10, V2.5,
Campinas - CPM10, Ipojuca - GPM10, and São Paulo - SPPM10, SPPM2.5).
According to the magnitude of the residuals variance and covariances,
the weight of the main model in the combination is highlighted in bold.

In order to determine the number of hidden neurons,

we performed a search in a grid. It is evident that our decision

increases the computational effort since we trained many

ANN topologies for each neural proposal. However, the lit-

erature provides some formulas for defining the number of

hidden neurons. In an embracing study provided by Mad-

hiarasan and Deepa [99], the authors presented 13 approaches

to deal with similar task. The formulas can be useful, spe-

cially when the user has a short time or little computational

power to perform the predictions.

C. INSIGHTS REGARDING DIVERSITY AND PARSIMONY

Table 21 summarizes each single model performance accord-

ing to the variability of its residuals and its linear correlation

with the remaining single predictors, taking the training sets

into account. The greater the absolute value of the weight, the

better the performance and dissimilarity of a single predictor,

considering the remaining models.

Naturally, depending on the single model performance

in the test set, we may have a possible overfitting during

the training phase. Thus, finding parsimonious models, i.e.,

predictors that are accurate and efficient though involving a

simplified architecture (with a reduced number of parame-

ters) is also in the kernel of time series forecasting exercises.

For the sake of illustration, one can see the remarkable per-

formance of ANFISwhen forecasting the training set of PM10

concentration in Kallio station (K10). However, this model

has performed poorly during test, assuming one of the worst

positions (see Table 4). In the current way Copulas-Based

Ensemble is modeled, it is unable to handle such a problem,

also leading to poor results. In fact, it has stayed in the second

half of the general rank (Table 4).

Diversity also plays an important role in ensemble mod-

els. Figure 17 brings a sketch of the level of dependence

between the single models when forecasting the training

set of K10. ESN seems to present the most heterogeneous

results in comparison with the alternative single models taken

into account. On the other hand, the expressive relationship

between ARMA and IIR and between IIR and ELM illustrate

the challenge of promoting diversity in ensemble studies.

Considering Pearson’s correlations estimates between the

residuals of the single models in the training phase, one has a

range from 0.5441 to 0.9929 and an average of 0.8796, taking

the triple (0.8369, 0.9571, 0.9296) as quartiles.
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FIGURE 17. Variability and relationship between residuals of the single models when forecasting the training set of PM10 concentration from Kallio
Station.

V. CONCLUSION

In the The present work it were evaluated single and combina-

tionmethods used to particulatematter time series forecasting

(PM10 and PM2.5) concentration. The database comprises

daily records from Kallio and Vallila stations (Finland), São

Paulo, Campinas, and Ipojuca stations (Brazil).

A variety of single models was considered, including

Autoregressive model (AR), Autoregressive and Moving

Average Model (ARMA), Infinite Impulse Response (IIR)

Filters, Multilayer Perceptron (MLP), Radial Basis Func-

tion Networks (RBF), Extreme Learning Machines (ELM),

Echo State Networks (ESN), and Adaptive Network Fuzzy

Inference System (ANFIS). As combination approaches

(ensembles), we considered two non-data-driven combina-

tions (median and mean), linear regression, MLP, ELM, and

Normal-based Copulas.

According to a number of evaluation metrics (i.e. MSE,

MAPE, ARV, IA, MAE, and RMSE), the ensemble meth-

ods led to the best overall result in all analyzed PM time

series. Particularly, the MLP combination seems attractive.

The capability to achieve the best results from different mod-

els is an important advantage of the ensembles. Among single

models, ELM has been remarkable.

We also discussed the challenges of promoting diversity

and avoiding overfitting in the single modeling phase. Ongo-

ing research by part of the authors involves these themes.

Other models can be evaluated to improve the ensemble’s

diversity, as Deep Neural Networks, other versions of the

ESN, or hybrid systems [18].

Considering the United Nations sustainable development

goals (SDG) [100], our study presents a contribution to

air quality forecasting. It can advise governments to pre-

pare hospitals during extreme air pollution events, and has

premises to air pollution reduction. It is indirectly related to

SDG 3-good health and well-being and SDG 11-sustainable

cities and communities. Further, future works can be devel-

oped addressing pollutant series from different stations.

Besides that, exogenous variables, such as weather or sea-

sonality data, can be considered.

Copulas models that disregard from the minimal vari-

ance approach (based on the multivariate normal probabil-

ity distribution) can also be studied. Finally, the proposed

methodology may be tested to other air pollutants and higher

forecasting horizons.
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