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Abstract— The detection of the iris boundaries is considered
in the literature as one of the most critical steps in the
identification task of the iris recognition systems. In this paper
we present an iterative approach to the detection of the iris
center and boundaries by using neural networks. The proposed
algorithm starts by an initial random point in the input image,
then it processes a set of local image properties in a circular
region of interest searching for the peculiar transition patterns
of the iris boundaries. A trained neural network processes
the parameters associated to the extracted boundaries and it
estimates the offsets in the vertical and horizontal axis with
respect to the estimated center. The coordinates of the starting
point are then updated with the processed offsets. The steps
are then iterated for a fixed number of epochs, producing an
iterative refinements of the coordinates of the pupils center and
its boundaries. Experiments showed that the method is feasible
and it can be exploited even in non-ideal operative condition of
iris recognition biometric systems.

I. INTRODUCTION

THE detection of the pupil center is a complex and

critical operation in iris recognition systems which can

greatly influence the performance of the whole recognition

system. Wrong estimations of the iris center and boundaries

(the iris-pupil and iris-sclera intensity transitions) can pro-

duce the acquisition of unreliable iris features, and hence it

can produce wrong identifications.

The recognition process is divisible in four distinct steps:

acquisition of the biometric data, segmentation, feature ex-

traction and matching. This paper focuses on the second

step, which consists in the extraction of the iris area in the

acquired image. Most of the times, algorithms approximate

the iris and the pupil boundaries with two circumferences

[1-6]. In this approach, a wrong estimation of the position

of the centers of the circumferences can significantly worsen

the result of this step. The feature extraction step consists

in the generation of a template from the segmented image.

In this step, most algorithms[1-3] linearize the circular iris

pattern in a rectangular image, then they produce a template

by applying 2D filters to the linearized image (for example

e bidimensional wavelet filtering). Again, this operation

requires a correct position of the pupil center. In literature

there are many algorithms that performing the localization

of the iris center and its boundaries [1-9].

Unfortunately, most of the presented methods are optimized

in specific applicative setups and they tend to produce wrong

behaviors in noisy and difficult applicative contexts with

particular reference to the localization of the pupil center

[7]. In [13], a neural-based approach to the segmentation of

the iris pattern is presented where each single pixel of the

input image is evaluated and classified as belonging or not

to the iris pattern.

In this paper, we present a new method capable to find the

iris center and the relative inner boundary from an input

eye image. The proposed method is iterative, it starts from

an initial random input point, and, for each iteration, it

processes a candidate relative position of the pupil center.

After each iteration, the method refines the center estimation

unless the process is terminated. During each iteration, the

method extracts from the input image a local circular portion,

and it linearizes this portion by using a conversion from

Cartesian to Polar coordinate system. In this new image

space, a localization of the most probable iris boundary edges

is processed by a derivative approach obtaining a vector of

boundary points. The points dataset is then interpolated by

a polynomial, and the processed coefficients are the inputs

of two neural networks. Each neural network returns the

estimated distance of the input point from the estimated

pupil center along the x and y axis. This approach has been

verified for 100 images in three different scenarios: input

points inside of the pupil, input points inside of the iris and

input points outside of the iris. Results are encouraging and

they show that the method is feasible.

The paper is structured as follows. In the next section, the

proposed approach is presented and detailed. In section III,

the creation of Training and Test datasets is discussed, it is

presented the creation of the neural networks and the overall

results are given and compared with other techniques present

in the literature. In the last section it is discussed the overall

behavior of the proposed method and the future work.

II. THE PROPOSED APPROACH

The proposed solution consists in an iterative algorithm

which starts from a random point in the input image, and

it aims to locate the center of the pupil through an iterative

refining of the current position in the image. The proposed

method is capable to analyze the local image property of the

current image, in order to estimate the x and y directions

toward the pupil center. When the current point is situated

too far from the iris boundaries, the algorithm behavior is

comparable to a random walk. Otherwise, when the input

point is situated in the pupil area, the algorithm is capable

to achieve a fine searching of the pupil center. As such, the

expected behavior of the proposed approach can be seen as a

explorative random walk capable to detect the pupil presence,

and then to achieve a fine tuning of the center localization.

In the proposed method, each single iteration is partitioned

in two distinct steps: (i) a local estimation of a set of image

characteristics and (ii) an estimation of the pupil center
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Fig. 1. Iterative algorithm schema.

position with two artificial neural networks. Fig. 1 shows

an application of the method. Starting from an initial point

(x1, y1) of the image I , the method processes a set of image

local properties (the parameters set Wi), and it estimates the

corrective deltas along the x and y axis processed by means

of two neural networks. The output point (x2, y2), where

x2 = x1 + ∆x, and y2 = y1 + ∆y, will be used as starting

point in the next iteration. A termination criterion is hence

needed to stop the iterations when the center of the pupil

has been found with sufficient accuracy, or in the case of

erroneous convergence of the algorithm. Let us now detail

all the steps of the proposed algorithm.

A. Local Estimation

The Local Estimation step (Fig. 2) extracts from the input

image I a circular Region of Interest (ROI in the following)

centered in the current point (x1, y1), then it extracts the

available information concerning the circular transitions of

the gray-level intensity which are eventually present in the

ROI. In fact, these particular patterns are typically associ-

ated to the presence of the iris boundaries. The candidate

boundary patterns are then fitted with a polynomial curve

by a linear regression method. The outputs of the regression

operation used in input to the neural networks are: (i) a set

of coefficients of the approximated polynomial (w1, . . . wn)

describing the inner iris boundary in the polar coordinates

space, and (ii) the Mean Squared Error of the regression.

More in detail, we propose the following sequence of steps

in order to extract the proper candidate boundary curve and

the center of the iris:

1) the gradient of the original image in radial direction

with respect to the input point (x1, y1) is processed;

2) a circular region of interest in the radial gradient

image (ROI) of fixed radius and centered in (x1, y1)

is produced by cropping the complete image;

3) a linearized strip image S is generated from the ex-

tracted ROI;

4) the stripe image is then filtered with an horizontal mean

filter with a kernel size of K × 1;

5) the points of the inner iris boundary in the image strip

are estimated by processing each single column by

Fig. 2. Local estimation schema.

a modified edge detector method, and then collecting

the obtained vertical coordinate values in vector Y =
[y1, . . . yC ] where C are the available columns in the

strip image;

6) the vertical coordinates in Y are then used for esti-

mate by a linear regression method an approximated

polynomial

Ŷ = w0 + w1x + w2x
2 + . . . wDxD (1)

where x ∈ [1 : C], and D is the degree of the

polynomial;

7) the mean square error of the regression is then pro-

cessed

MSE = (1/n)
n∑

i=1

(yi − ŷi)
2

(2)

and the parameters are then collected in the vector

W = [w1, . . . wD,MSE] .

A more detailed description of the methods used in the steps

from 1) to 4) can be found in [8,10].

The localization of the inner iris boundaries (step 5) can be

achieved by considering the fact that the transitions of the

iris boundaries in the linearized gradient image correspond

to bright horizontal objects in a noisy dark background as

the effect of the mean filter (fifth subplot in Fig. 2). Hence,

it is possible to locate the largest object in the strip S by

a binarization approach, and then to process the vertical

coordinates of the maximum intensities along each single

column and storing them in the Y vector. In the following,

we refer to the binarized image obtained from image S as

image B. Further details will be given in the experimental

section.

B. Neural networks

In this study, we use two different artificial neural net-

works to estimate the distance from the input point to the

effective center along the x and the y axis. The inputs of the

neural networks are the coefficients of the approximated iris

boundaries W , as plotted in Fig. 3.



Fig. 3. Neural networks inputs and outputs.

Fig. 4. Example of points used for train the neural networks: the true
center is the central dot point and the six crosses are the data points used
for compute its estimation.

The goal of the neural networks is to approximate two non-

linear functions ∆x = Fx (W ) and ∆y = Fy (W ) capable to

process the estimated local parameters W in order to obtain

the required relative increments ∆x and ∆y of the current

coordinates (x1, y1) needed to jump as close as possible to

the iris center (Fig. 1).

In order to create a proper training and evaluation framework,

we manually located the center of the pupils for a portion

of a public dataset of iris image (the CASIA-IrisV3-Interval

[11]). At the best of our knowledge, no public iris image

dataset are available with the data regarding the iris center.

Since the manual estimation of the pupil center is an hard

and imprecise operation, we preferred to adopt a more robust

method to obtain the positions of the pupil centers. We have

manually selected N points from the pupil boundaries (this

task is much easier for a user than the direct estimation

of the center), and we applied a least square procedure to

approximate the pupil boundaries points as a circumference.

We consider as “true” the centers of the estimated circles

for each image. Fig. 4 plots an example of the procedure

that we used to estimate the centers in an image dataset.

The crosses in the picture mark the six points chosen by the

supervisor to estimate the center of the pupil (central dot).

We created three different datasets depending on the position

of the training points: (i) inside the pupil, (ii) inside the iris,

(iii) outside the iris. The complete description of the datasets

will be given in the next section.

C. Termination condition

The iteration of the proposed method can be terminated by

different approaches. In this work we discuss the following

two termination conditions:

1) the algorithm stops after a defined number of iterations;

2) the algorithm stops when the distance between the

centers processed in two subsequent iterations is lower

than a fixed value.

Further details concerning the termination condition will be

given in the next section.

III. EXPERIMENTAL RESULTS

In this section we describe how the parameters of the Local

Estimation step have been fixed, how we built the training

and test datasets of the neural networks, and we propose a set

of figure of merit that can be used to estimate the accuracy

of the proposed algorithm.

A. Creation of the training and test datasets

The Local Estimation step of the proposed algorithm

requires to fix four sets of parameters according the adopted

image dataset. In our tests, we have used the following

configuration of the parameters:

• the minimum and maximum radius of the circular ROI

used to process the linearized stripe are equal to 2 pixel

and 110 pixel respectively;

• the kernel size of the mean filter is [21 × 1] pixels;

• the binarized image B produced from image S (the

linearized circular ROI) has its pixels equal to one if the

corresponding pixels in S have a positive value and their

intensity value greater than the 10% of the maximum

intensity;

• for all objects present in B (we consider one object if it

consists at least of an eight-connected pixel area of the

image [11]) we use a subset composed by the 5 largest

candidates, then the largest object along the horizontal

axis is as most probable iris border transaction.

B. Creation of the training and test datasets

We created the training and test datasets by randomly se-

lecting 100 images from the CASIA-IrisV3-Interval database

[11]. From this subset of images we created four different

datasets:

1) the first (dataset A) is composed by 1000 points

selected inside the pupil area (10 points × 100 images);

2) the second (dataset B) is composed by 1000 points

randomly selected inside the iris (10 points × 100

images);

3) the third (dataset C) is composed by 1000 points which

have been randomly selected outside the iris area (10

points × 100 images);

4) the fourth (dataset T) is the training dataset for the

neural networks and it is composed by dataset A plus

the true center of each image (1100 points).

Fig. 5 plots the positions of the points belonging to the

datasets A, B and C on the same example image.



Fig. 5. Examples of selected points in the training and test dataset: (a)
points in the pupil area belonging to the dataset A; (b) points in the iris area
belonging to the dataset B; (c) points outside the iris boundaries belonging
to the dataset C.

C. The neural networks training phase

In order to effectively estimate the generalization error

of the trained neural networks, we adopted a simple two-

fold cross validation technique: 50% of the available points

of the dataset T have been used for the calibration of the

parameters and for the training of the neural networks; the

remaining 50% have been used only for the test/validation

operations. The topology of the neural networks has been

design as follows: we used a linear node for the output layer

of the neural networks and we tested different configurations

for the hidden layer. In particular, we have tested one and

two layers with different topologies: log-sigmoidal and tan-

sigmoidal.We trained the neural networks by using the back-

propagation algorithm. Table I and II report the training

and validation errors of the tested neural networks by using

dataset T. These errors refer to the mean errors of the outputs

∆x and ∆y of the neural network in one single step of the

proposed algorithm (Fig. 1).

TABLE I

TRAINING RESULTS FOR THE x NEURAL NETWORK

Polinomial

order

Node

topology

# of nodes

in layer 1

# of nodes

in layer 2

Trainig

error

Validation

error

3 log-sig 12 no 1,8739 2,0099

3 tan-sig 9 no 1,7796 1,9235

3 log-sig 10 7 1,8315 1,9057

3 tan-sig 8 5 1,8949 2,0264

2 log-sig 10 no 1,9055 1,9522

4 log-sig 8 no 1,8296 1,9873

TABLE II

TRAINING RESULTS FOR THE y NEURAL NETWORK

Polinomial

order

Node

topology

# of nodes

in layer 1

# of nodes

in layer 2

Trainig

error

Validation

error

3 log-sig 5 no 4,7499 3,6052

3 tan-sig 6 no 4,7455 3,6714

3 log-sig 5 3 4,6637 3,6062

3 tan-sig 5 4 5,0616 4,0271

2 log-sig 5 no 5,5826 4,5181

4 log-sig 5 no 5,1254 4,1845

Experiments demonstrated that the neural networks trained

with dataset T are more accurate in validation then the neural

network trained with dataset A.

Moreover, from these test results, it is possible to observe

that the MSE index does not significantly influence the

accuracy. This parameter can probably improve the results

Fig. 6. Example of trajectories: in (a) and (b) the pupil center is correctly
found; in (c) and (d) the algorithm does not work properly.

only if there is a systematic error in the linear regression

step or in case of a wrong behavior of the approximation

algorithm (for example reflections boundaries are included

in the interpolation in spite of the real iris boundaries).

We tested also different hidden layer configurations with no

significant increment in accuracy.

Notably, the order of the approximant polynomial influences

the accuracy. Results indicate that a simple order 3 poly-

nomial is suitable to allow the neural network to correctly

estimate the quantities ∆x and ∆y .

D. Final results of center localization

In general, the number of iterations of the algorithm is

variable for each starting point. In fact, the number of itera-

tions and the length of the displacements ∆x and ∆y depends

on the local characteristics of the image. For instance, then

the starting point is close to a iris area, the movements of

the point are very short since it is needed only a fine tuning

of the center position. Differently, if the starting point is

next to the eyelashes, a failure of the algorithm is possible

because the moving point can be attracted by them. Fig. 6

shows two examples of correct convergence of the method,

and two situation when the points fall in a portion of the

image different from the pupil.

The results of the algorithm are related to the adopted

termination criterion. In our case, it is two-fold:

1) the iterations stop when the algorithm arrives to the

maximum iteration number M ;

2) the computation can perform an early-stop when, for

two iterations, the displacements positions ∆x and

∆y have a distance minor then a fixed distance ∆D

measured in pixel.
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Fig. 7. Mean error obtained with the first termination criterion for the
datasets A, B and C.
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Fig. 8. Final mean error obtained with the second termination criterion for
the datasets A, B and C.

The design of these two parameters (M , ∆D) can be done

for different datasets by observing the curves plotted in Fig. 7

and Fig. 8. In Fig. 7 it is plotted the average distance error

of the algorithm over the dataset A, B, and C for each

iteration. It can be seen that after 40-50 iterations there is not

significant reduction of the error distance for the dataset A, B

and C. Hence, a value of M equal to 50 is the adopted. Fig. 8

plots the error distance at the moment of the early stopping

of the proposed method for different ∆D. Notably, when the

proposed algorithm is dealing with the harder datasets (like B

and C) the early stopping criterion limits the final accuracy,

but in the case of dataset A, this drawback is not present

and the early stopping criterion can produce a significant

reduction of the convergence time.

Notably, the simple analysis of the mean error distance

is not sufficient to measure the accuracy of the proposed

method, since two very different behaviors are present. When

the algorithm correctly converges, the final error distances
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Fig. 9. Relative frequency of the different error distances, obtained with
the first termination criterion. The parameter I is equal to 10, 50 and 50
respectively for the dataset A, B and C.
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Fig. 10. Relative frequency of the different error distances, obtained with
the second termination criterion. The parameter I is equal to 10, 50 and 50
respectively for the dataset A, B and C. The parameter ∆D is equal to 1,
0.5 and 0.5.

are very small. In the opposite case, the final position can

be very far from the correct center and these error values

strongly effect the mean error.

A more refined analysis can be done by considering the

distribution of the errors of the proposed algorithm. The

plots in Fig. 9 and in Fig. 10 show the relative frequency

of the final error distance of the proposed algorithm. Results

show that in most cases the final error is less than three

pixels for all the datasets. The performances on dataset B

and C are slightly worse. In fact, dataset B and C produce

a minor percentage of final positions close to the real pupil

center than the dataset A, since a larger number of points

can ”trapped” in different areas of the image (like eyelashes

or different circles), but the overall behavior is satisfactory.

We compared the proposed algorithm to different

techniques available in the literature for locating the iris



Fig. 11. Two examples of the estimated pupil center by the different
algorithms.

center: the method based on the Hough operator [11]

implemented by L. Masek [12] available in a public code

library which has been optimized for the same images we

used in all datasets (Method A), and a method based on the

work of J. Daugman presented in [1]. These two methods

was tested using the images employed to built the datasets

A, B and C. The results obtained from the comparisons are

resumed in Table III.

TABLE III

MEAN ERRORS

Method A Methot B Proposed method

Dataset A Dataset B Dataset C

Error 31.9573 4.0827 2.761 20.7774 27.2612

In Table IV, we report the number of images where the

pupil center was better located by the proposed approach

with respect to the reference method A and B on the three

datasets.

TABLE IV

NUMBER OF IMAGES WITH BETTER RESULTS THAN THE REFERENCE

ALGORITHMS

Proposed method
Dataset A Dataset B Dataset C

Method A 69% 17% 12%
Method B 70% 56% 53%

A qualitative analysis of the behavior of the proposed

algorithm on two sample images can be found in Fig. 11.

As shown in the reported results, the proposed algorithm

works very well when it starts from a point situated close to

iris/pupil (dataset A), but when the starting point belongs to

other zones of the image, the obtained accuracy decreases.

The reason of this behavior is not surprising since the pro-

posed algorithm, in these areas, is comparable to a random

walk. Future improvements are needed to solve this drawback

which is essentially related to the strong dependence of the

proposed algorithm on the random starting point. Preliminar

experiments showed that this dependence can be strongly

reduced by adopting an approach which encompasses several

restarts of the algorithm with different starting points.

IV. CONCLUSION

The paper presented an iterative method capable to localize

the iris in an eye image and to produce an accurate estimation

of the center coordinates of the pupil. Starting from an

initial random point in the image, the algorithm process

the local property of the selected image region, and then

estimates the displacement toward the iris center along the

x and y axis by means of two trained neural networks. The

two main steps of the algorithm are then repeated until the

termination criterion is reached. The main drawback of the

proposed algorithm is related to the strong dependence on

the position of the initial starting point, but experiments

showed that this dependence can be strongly reduced by

adopting few restarts of the algorithm with different starting

points. Experiments demonstrate that the method is feasible

and it has a remarkable accuracy, also when applied in non

ideal/noisy image types.
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