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Abstract

Reinforcement learning is an adaptive process in which an animal utilizes its previous experience

to improve the outcomes of future choices. Computational theories of reinforcement learning play

a central role in the newly emerging areas of neuroeconomics and decision neuroscience. In this

framework, actions are chosen according to their value functions, which describe how much future

reward is expected from each action. Value functions can be adjusted not only through reward and

penalty, but also by the animal’s knowledge of its current environment. Studies have revealed that

a large proportion of the brain is involved in representing and updating value functions and using

them to choose an action. However, how the nature of a behavioral task affects the neural

mechanisms of reinforcement learning remains incompletely understood. Future studies should

uncover the principles by which different computational elements of reinforcement learning are

dynamically coordinated across the entire brain.
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INTRODUCTION

Decision making refers to the process by which an organism chooses its actions, and has

been studied in such diverse fields as mathematics, economics, psychology, and

neuroscience. Traditionally, theories of decision making have fallen into two categories. On

the one hand, normative theories in economics generate well-defined criteria for identifying

best choices. Such theories, including expected utility theory (von Neumann and

Morgenstern 1944), deal with choices in an idealized context, and often fail to account for

actual choices made by humans and animals. On the other hand, descriptive psychological

theories try to account for failures of normative theories by identifying a set of heuristic

rules applied by decision makers. For example, prospect theory (Kahneman & Tversky

1979) can successfully account for the failures of expected utility theory in describing

human decision making under uncertainty. These two complementary theoretical

frameworks are essential for neurobiological studies of decision making. However, a

fundamental question not commonly addressed by either approach is the role of learning.
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How do humans and animals acquire their preference for different actions and outcomes in

the first place?

Our goal in this paper is to review and organize recent findings about the functions of

different brain areas that underlie experience-dependent changes in choice behaviors.

Reinforcement learning theory (Sutton & Barto 1998) has been widely adopted as the main

theoretical framework in designing experiments as well as interpreting empirical results.

Since this topic has been frequently reviewed (Dayan & Niv 2008, van der Meer & Redish

2011, Ito & Doya 2011, Bornstein & Daw, 2011), we only briefly summarize the essential

elements of reinforcement learning theory and focus on the following questions. First, where

and how in the brain are the estimates of expected reward represented and updated by the

animal’s experience? Converging evidence from a number of recent studies suggests that

many of these computations are carried out in multiple interconnected regions in the frontal

cortex and basal ganglia. Second, how are the value signals for potential actions transformed

to the final behavioral response? Competitive interactions among different pools of

recurrently connected neurons are a likely mechanism for this selection process (Usher &

McClelland 2001, Wang 2002), but their neuroanatomical substrates remain poorly

understood (Wang 2008). Finally, how is model-based reinforcement learning implemented

in the brain? Humans and animals can acquire new knowledge about their environment

without directly experiencing reward or penalty, and this knowledge can be used to

influence subsequent behaviors (Tolman 1948). This is referred to as model-based

reinforcement learning, whereas reinforcement learning entirely relying on experienced

reward and penalty is referred to as model-free. Recent studies have begun to shed some

light on how these two different types of reinforcement learning are linked in the brain. We

conclude with some suggestions for future research on the neurobiological mechanisms of

reinforcement learning.

REINFORCEMENT LEARNING THEORIES OF DECISION MAKING

Economic utilities and value functions

Economic theories of decision making focus on how numbers can be attached to alternative

actions so that choices can be understood as selecting an action that has the maximum value

among all possible actions. These hypothetical quantities are often referred to as utilities,

and can be applied to all types of behaviors. By definition, behaviors chosen by an organism

are those that maximize the organism’s utility (Figure 1a). These theories are largely

agnostic about how these utilities are determined, although they are presumably constrained

by evolution and individual experience. By contrast, reinforcement learning theories

describe how the animal’s experience alters its value functions, which in turn influence

subsequent choices (Figure 1b).

The goal of reinforcement learning is to maximize future rewards. Analogous to utilities in

economic theories, value functions in reinforcement learning theory refer to the estimates for

the sum of future rewards. However, since the animal cannot predict the future changes in its

environment perfectly, value functions, unlike utilities, reflect the animal’s empirical

estimates for its future rewards. Rewards in the distant future are often temporally

discounted so that more immediate rewards exert stronger influence on the animal’s

behavior. The reinforcement learning theory utilizes two different types of value functions.

First, action value function refers to the sum of future rewards expected for taking a

particular action in a particular state of the environment, and is often denoted by Q(s,a),

where s and a refer to the state of the environment and the animal’s action, respectively. The

term action is used formally: it can refer to not only a physical action, such as reaching to a

coffee mug in a particular location with a specific limb, but also an abstract choice, such as

buying a particular guitar. Second, state value function, often denoted by V(s), refers to the
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sum of future rewards expected from a particular state of the animal’s environment. If the

animal always chooses only one action in a given state, then its action value function would

be equal to the state value function. Otherwise, the state value function would correspond to

the average of action value functions weighted by the probability of taking each action in a

given state. State value functions can be used to evaluate the action outcomes, but in

general, action value functions are required for selecting an action.

Model-free vs. model-based reinforcement learning

Value functions can be updated according to two different types of information. First, they

can be revised according to the reward or penalty received by the animal after each action.

Value functions would not change and hence no learning would be necessary, if choice

outcomes are always perfectly predicted from the current value functions. Otherwise, value

functions must be modified to reduce errors in reward predictions. The signed difference

between the actual reward and the reward expected by the current value functions is referred

to as a reward prediction error (Sutton & Barto 1998). In a class of reinforcement learning

algorithms, referred to as simple or model-free reinforcement learning, reward prediction

error is the primary source of changes in value functions. More specifically, the value

function for the action chosen by the animal or the state visited by the animal is updated

according to the reward prediction error, while the value functions for all other actions and

states remain unchanged or simply decay passively (Barraclough et al. 2004, Ito & Doya

2009).

In the second class of reinforcement learning, referred to as model-based reinforcement

learning, value functions can be changed more flexibly. These algorithms can update the

value functions on the basis of the animal’s motivational state and its knowledge of the

environment without direct reward or penalty. The use of cognitive models allows the

animal to adjust its value functions immediately, whenever it acquires a new piece of

information about its internal state or external environment. There are many lines of

evidence that animals as well as humans are capable of model-based reinforcement learning.

For example, when an animal is satiated for a particular type of reward, the subjective value

of the same food would be diminished. However, if the animal relies entirely on simple

reinforcement learning, the tendency to choose a given action would not change until it

experiences the devalued reward through the same action. Previous work has shown that rats

can change their behaviors immediately according to their current motivational states

following the devaluation of specific food items. This is often used as a test for goal-directed

behaviors, and indicates that animals are indeed capable of model-based reinforcement

learning (Balleine & Dickinson 1998; Daw et al. 2005). Humans and animals can also

simulate the consequences of potential actions that they could have chosen. This is referred

to as counterfactual thinking (Roese & Olson 1995), and the information about hypothetical

outcomes from unchosen actions can be incorporated into value functions when they are

different from the outcomes predicted by the current value functions (Lee et al. 2005,

Coricelli et al. 2005, Boorman et al. 2011). Analogous to reward prediction error, the

difference between hypothetical and predicted outcomes is referred to as fictive or

counterfactual reward prediction error (Lohrenz et al. 2007, Boorman et al. 2011).

Learning during social decision making

During social interaction, the outcomes of actions are often jointly determined by the actions

of multiple players. Such strategic situations are referred to as games (von Neumann &

Morgenstern 1944). Decision makers can improve the outcomes of their choices during

repeated games by applying a model-free reinforcement learning algorithm. In fact, for

relatively simple games, such as two-player zero-sum games, humans and animals gradually

approximate optimal strategies using model-free reinforcement learning algorithms
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(Mookherjee & Sopher 1994, Erev & Roth 1998, Camerer 2003, Lee et al. 2004). On the

other hand, players equipped with a model-based reinforcement learning algorithm can

adjust their strategies more flexibly according to the predicted behaviors of other players.

The ability to predict the beliefs and intentions of other players is often referred to as the

theory of mind (Premack & Woodruff 1978), and during social decision making, this may

dramatically improve the efficiency of reinforcement learning. In game theory, this is also

referred to as belief learning (Camerer 2003).

In pure belief learning, the outcomes of actual choices by the decision makers do not exert

any additional influence on their choices, unless such outcomes can modify the beliefs or

models of the decision makers about the other players. In other words, reward or penalty

does not have any separate roles other than affecting the decision maker’s belief about the

other players. Results from studies in behavioral economics showed that such pure belief

learning models do not account for human choice behaviors very well (Mookherjee &

Sopher, 1997, Erev & Roth 1998, Feltovich 2000, Camerer 2003). Instead, human behaviors

during repeated games are often consistent with hybrid learning models, such as the

experience-weighted attraction model (Camerer & Ho 1999). In these hybrid models, value

functions are adjusted by both real and fictive reward prediction errors. Learning rates for

these different reward prediction errors can be set independently. Similar to the results from

human studies, hybrid models also account for the behaviors of non-human primates

performing a competitive game task against a computer better than either model-free

reinforcement learning or belief learning model (Lee et al. 2005, Abe & Lee 2011).

NEURAL REPRESENTATION OF VALUE FUNCTIONS

Utilities and value functions are central to economic and reinforcement learning theories of

decision making, respectively. In both theories, these quantities are assumed to capture all

the relevant factors influencing choices. Thus, brain areas or neurons involved in decision

making are expected to harbor signals related to utilities and value functions. In fact, neural

activity related to reward expectancy has been found in many different brain areas (Schultz

et al. 2000, Hikosaka et al. 2006; Wallis & Kennerley 2010), including sensory cortical

areas (Shuler & Bear 2006, Serences 2008; Vickery et al. 2011). The fact that signals related

to reward expectancy are widespread in the brain suggests that they are likely to subserve

not only reinforcement learning, but also other related cognitive processes, such as attention

(Maunsell 2004, Bromberg-Martin et al. 2010a, Litt et al. 2011). Neural signals related to

reward expectancy can be divided into at least two different categories, depending on

whether they are related to specific actions or states. Neural signals related to action value

functions would be useful in choosing a particular action, especially if such signals are

observed before the execution of a motor response. Neural activity related to state value

functions may play more evaluative roles. In particular, during decision making, the state

value function changes from the weighted average of action values for alternative choices to

the action value function for the chosen action. The latter is often referred to as chosen value

(Padoa-Schioppa & Assad 2006, Cai et al. 2011).

During experiments on decision making, choices can be made among alternative physical

movements with different spatial trajectories, or among different objects regardless of the

movements required to acquire them. Whereas these different options are all considered

actions in the reinforcement learning theory, neural signals related to the corresponding

action value functions may vary substantially according to the dimension in which choices

are made. In most previous neurobiological studies, different properties of reward were

linked to different physical actions. These studies have identified neural activity related to

action value functions in numerous brain areas, including the posterior parietal cortex (Platt

& Glimcher 1999, Sugrue et al. 2004, Dorris & Glimcher 2004, Seo et al. 2009), dorsolateral
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prefrontal cortex (Barraclough et al. 2004, Kim et al. 2008), premotor cortex (Pastor-Bernier

& Cisek 2011), medial frontal cortex (Seo & Lee 2007, 2009, Sul et al. 2010, So & Stuphorn

2010), and striatum (Samejima et al. 2005, Lau & Glimcher 2008; Kim et al. 2009; Cai et al.

2011). Despite the limited spatial and temporal resolutions available in neuroimaging

studies, metabolic activity related to action value functions has been also identified in the

supplementary motor area (Wunderlich et al. 2009). In contrast, neurons in the primate

orbitofrontal cortex are not sensitive to spatial locations of targets associated with specific

rewards (Tremblay & Schultz 1999, Wallis & Miller 2003), suggesting that they encode

action value functions related to specific objects or goals. When animals chose between two

different flavors of juice, neurons in the primate orbitofrontal cortex indeed signaled the

action value functions associated with specific juice flavors rather than the directions of eye

movements used to indicate the animal’s choices (Padoa-Schioppa & Assad, 2006).

Neurons in many different brain areas often combine value functions for alternative actions

and other decision-related variables. Precisely how multiple types of signals are combined in

the activity of individual neurons can therefore provide important clues about how such

signals are computed and utilized. For example, likelihood of choosing one of two

alternative choices is determined by the difference in their action value functions, and

therefore neurons encoding such signals may be closely involved in the process of action

selection. During a binary choice task, neurons in the primate posterior parietal cortex (Seo

et al. 2009), dorsolateral prefrontal cortex (Kim et al. 2008), premotor cortex (Pastor-Bernier

& Cisek 2011), supplementary eye field (Seo & Lee 2009), and dorsal striatum (Cai et al.

2011), as well as the rodent secondary motor cortex (Sul et al. 2011) and striatum (Ito &

Doya 2009), encode the difference between the action value functions for two alternative

actions.

Signals related to state value functions are also found in many different brain areas. During a

binary choice task, the sum or average of the action value functions for two alternative

choices corresponds to the state value function before a choice is made. In the posterior

parietal cortex and dorsal striatum, signals related to such state value functions and action

value functions coexist (Seo et al. 2009, Cai et al. 2011). Neurons encoding state value

functions are also found in the ventral striatum (Cai et al. 2011), anterior cingulate cortex

(Seo & Lee, 2007), and amygdala (Belova et al. 2008). Neural activity related to chosen

values that correspond to post-decision state value functions is also widespread in the brain,

and has been found in the orbitofrontal cortex (Padoa-Schioppa & Assad, 2006, Sul et al.

2010), medial frontal cortex (Sul et al. 2010), dorsolateral prefrontal cortex (Kim & Lee

2011), and striatum (Lau & Glimcher 2008, Kim et al. 2009, Cai et al. 2011). Since reward

prediction error corresponds to the difference between the outcome of a choice and chosen

value, neural activity related to chosen values might be utilized to compute reward

prediction errors and update value functions. In some of these areas, such as the dorsolateral

prefrontal cortex (Kim & Lee 2011) and dorsal striatum (Cai et al. 2011), activity related to

chosen value signals emerges later than the signals related to the sum of the value functions

for alternative actions, suggesting that action selection might take place during this delay

(Figure 2).

NEURAL MECHANISMS OF ACTION SELECTION

During decision making, neural activity related to action value functions must be converted

to the signals related to a particular action and transmitted to motor structures. The precise

anatomical location playing a primary role in action selection may vary with the nature of a

behavioral task. For example, actions selected by fixed stimulus-action associations or well-

practiced motor sequences might rely more on the dorsolateral striatum compared to flexible

goal-directed behaviors (Knowlton et al. 1996, Hikosaka et al. 1999, Yin & Knowlton
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2006). Considering that spike trains of cortical neurons are stochastic (Softky & Koch

1993), the process of action selection is likely to rely on a network of neurons temporally

integrating the activity related to difference in action value functions (Soltani & Wang 2006,

Krajbich et al. 2010). An analogous process has been extensively studied for action selection

based on noisy sensory stimulus during perceptual decision making. For example,

psychophysical performance during a two-alternative forced choice task is well described by

the so-called random-walk or drift-diffusion model in which a particular action is selected

when the gradual accumulation of noisy evidence reaches a threshold for that action

(Laming 1968, Roitman & Shadlen 2002, Smith & Ratcliff 2004).

Neurons in multiple brain areas involved in motor control often build up their activity

gradually prior to specific movements, suggesting that these areas might also be involved in

action selection. Execution of voluntary movements are tightly coupled with phasic neural

activity in a number of brain areas, such as the primary motor cortex (Georgopoulos et al.

1986), premotor cortex (Churchland et al. 2006), frontal eye field (Hanes & Schall 1996),

supplementary eye field (Schlag & Schlag-Rey 1987), posterior parietal cortex (Andersen et

al. 1987), and superior colliculus (Schiller & Stryker 1972, Wurtz & Goldberg 1972). All of

these structures are closely connected with motor nuclei in the brainstem and spinal cord. In

addition, neurons in these areas display persistent activity related to the metrics of upcoming

movements when the desired movement is indicated before a go signal, suggesting that they

are also involved in motor planning and preparation (Smyrnis et al. 1992, Glimcher &

Sparks 1992, Weinrich & Wise 1982, Bruce & Goldberg 1985, Schall 1991, Gnadt &

Andersen 1988). Such persistent activity has been often associated with working memory

(Funahashi et al. 1989, Wang 2001), but may also subserve the temporal integration of noisy

inputs (Shadlen & Newsome 2001, Roitman & Shadlen, 2002, Wang, 2002, Curtis & Lee

2010). In fact, neural activity in accordance with gradual evidence accumulation has been

found in the same brain areas that show persistent activity related to motor planning, such as

the posterior parietal cortex (Roitman & Shadlen 2002), frontal eye field (Ding & Gold

2011), and superior colliculus (Horwitz & Newsome 2001).

Computational studies have demonstrated that a network of neurons with recurrent

excitation and lateral inhibition can perform temporal integration of noisy sensory inputs

and produce a signal corresponding to an optimal action (Wang 2002, Lo & Wang, 2006,

Beck et al. 2008, Furman & Wang 2008). Most of these models have been developed to

account for the pattern of activity observed in the lateral intraparietal (LIP) cortex during a

perceptual decision making task. Nevertheless, value-dependent action selection might also

involve attractor dynamics in a similar network of neurons, provided that their input

synapses are adjusted in a reward-dependent manner (Soltani & Wang 2006, Soltani et al.

2006). Therefore, neurons involved in evaluation of unreliable sensory information may also

contribute to value-based decision making. Consistent with this possibility, neurons in the

LIP tend to change their activity according to the value of rewards expected from alternative

actions (Platt & Glimcher 1999, Sugrue et al. 2004, Seo et al. 2009, Louie & Glimcher

2010).

In contrast to the brain areas involved in selecting a specific physical movement, other areas

might be involved in more abstract decision making. For example, the orbitofrontal cortex

might play a particularly important role in making choices among different objects or goods

(Padoa-Schioppa 2011). On the other hand, an action selection process guided by internal

cues rather than external sensory stimuli might rely more on the medial frontal cortex.

Activity related to action value functions have been found in the supplementary and

presupplementary motor areas (Sohn & Lee 2007, Wunderlich et al. 2009), as well as the

supplementary eye field (Seo & Lee 2009, So & Stuphorn 2010). More importantly, neural

activity related to an upcoming movement appears in the medial frontal cortex earlier than in
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other areas of the brain. For example, when human subjects are asked to initiate a movement

voluntarily without any immediate sensory cue, scalp EEG displays the so-called readiness

potential well before movement onset, and its source has been localized to the

supplementary motor area (Haggard 2008, Nachev et al. 2008). The hypothesis that

internally generated voluntary movements are selected in the medial frontal cortex is also

consistent with the results from single-neuron recording and neuroimaging studies.

Individual neurons in the primate supplementary motor area often begin to change their

activity according to an upcoming limb movement earlier than those in the premotor cortex

or primary motor cortex, especially when the animal is required to produce such movements

voluntarily without immediate sensory cues (Tanji & Kurata 1985, Okano & Tanji 1987).

Similarly, neurons in the supplementary eye field begin to modulate their activity according

to the direction of an upcoming saccade earlier than similar activity recorded in the frontal

eye field and LIP (Coe et al. 2002). In rodents performing a dynamic foraging task, signals

related to the animal’s choice appear in the medial motor cortex, presumably a homolog of

the primate supplementary motor cortex, earlier than many other brain areas, including the

primary motor cortex and basal ganglia (Sul et al. 2011). Furthermore, lesions in this area

make the animal’s choices less dependent on action value functions (Sul et al., 2011).

Finally, analysis of BOLD activity patterns during a self-timed motor task has also identified

signals related to an upcoming movement even several seconds before the movement onset

in the human supplementary motor area (Soon et al. 2008).

In summary, neural activity potentially reflecting the process of action selection has been

identified in multiple regions, including areas involved in motor control, orbitofrontal

cortex, and medial frontal cortex. It would be therefore important to investigate in the future

how these multiple areas interact cooperatively or competitively depending on the demands

of specific behavioral tasks. The frame of reference in which different actions are

represented varies across brain areas, and therefore, how the actions encoded in one frame of

reference, for example, in objects space, are transformed to another, such as visual or joint

space, needs to be investigated (Padoa-Schioppa 2011).

NEURAL MECHANISMS FOR UPDATING VALUE FUNCTIONS

Temporal credit assignment and eligibility trace

Reward resulting from a particular action is often revealed after a substantial delay, and an

animal might carry out several other actions before collecting the reward resulting from a

previous action. Therefore, it can be challenging to associate an action and its corresponding

outcome correctly, and this is referred to as the problem of temporal credit assignment

(Sutton & Barto 1998). Not surprisingly, loss of the ability to link specific outcomes to

corresponding choices interferes with the process of updating value functions appropriately.

While normal animals can easily alter their preferences between two objects when the

probabilities of getting rewards from the two objects are switched, humans, monkeys, and

rats with lesions in the orbitofrontal cortex are impaired in such reversal learning tasks

(Iversen & Mishkin 1970, Schoenbaum et al. 2002; Fellows & Farah 2003, Murray et al.

2007). These deficits may arise due to failures in temporal credit assignment. For example,

during a probabilistic reversal learning task, in which the probabilities of rewards from

different objects were dynamically and unpredictably changed, deficits produced by the

lesions in the orbitofrontal cortex were due to erroneous associations between the choices

and their outcomes (Walton et al. 2010).

In reinforcement learning theory, the problem of temporal credit assignment can be resolved

in at least two different ways. First, a series of intermediate states can be introduced during

the interval between an action and a reward, so that they can propagate the information

about the reward to the value function of the correct action (Montague et al. 1996). This

Lee et al. Page 7

Annu Rev Neurosci. Author manuscript; available in PMC 2013 March 29.

$
w

aterm
ark

-tex
t

$
w

aterm
ark

-tex
t

$
w

aterm
ark

-tex
t



basic temporal difference model was initially proposed to account for the reward prediction

error signals conveyed by dopamine neurons, but was shown to be inconsistent with the

actual temporal profiles of dopamine neuron signals (Pan et al. 2005). Another possibility is

to utilize short-term memory signals related to the states or actions selected by the animal.

Such memory signals are referred to as eligibility traces (Sutton & Barto 1998), and can

facilitate action-outcome association even when the outcome is delayed. Therefore,

eligibility traces can account for the temporally discontinuous shift in the phasic activity of

dopamine neurons observed during classical conditioning (Pan et al. 2005). Signals related

to the animal’s previous choices have been observed in a number of brain areas, including

the prefrontal cortex and posterior parietal cortex in monkeys (Barraclough et al. 2004, Seo

& Lee 2009, Seo et al. 2009), as well as many regions in the rodent frontal cortex and

striatum (Kim et al. 2007, 2009, Sul et al. 2010, 2011; Figure 3), and they might provide

eligibility traces necessary to form associations between actions and their outcomes (Curtis

& Lee 2010). In addition, neurons in many of these areas, including the orbitofrontal cortex,

often encode specific conjunctions of chosen actions and their outcomes, for example, by

increasing their activity when a positive outcome is obtained from a specific action

(Barraclough et al. 2004, Seo & Lee 2009, Kim et al. 2009, Roesch et al. 2009, Sul et al.

2010, Abe & Lee 2011). Such action-outcome conjunction signals may also contribute to the

resolution of the temporal credit assignment problem.

Integration of chosen value and reward prediction error

In model-free reinforcement learning, the value function for a chosen action is revised

according to reward prediction error. Therefore, signals related to chosen value and reward

prediction error must be combined in the activity of individual neurons involved in updating

value functions. Signals related to reward prediction error were first identified in the

midbrain dopamine neurons (Schultz 2006), but later found to exist in many other areas,

including the lateral habenula (Matsumoto & Hikosaka 2007), globus pallidus (Hong &

Hikosaka 2008), anterior cingulate cortex (Matsumoto et al. 2007, Seo & Lee 2007),

orbitofrontal cortex (Sul et al. 2010), and striatum (Kim et al. 2009, Oyama et al. 2010).

Thus, the extraction of reward prediction error signals might be gradual and implemented

through a distributed network of multiple brain areas. Dopamine neurons might then play an

important role in relaying these error signals to update the value functions broadly

represented in different brain areas. Signals related to chosen values are also distributed in

multiple brain areas, including the medial frontal cortex, orbitofrontal cortex, and striatum

(Padoa-Schioppa & Assad 2006, Lau & Glimcher 2008, Kim et al. 2009, Sul et al. 2010, Cai

et al. 2011). The areas in which signals related to chosen value and reward prediction error

converge, such as the orbitofrontal cortex and striatum, might therefore play an important

role in updating value functions (Kim et al. 2009, Sul et al. 2010).

It is often hypothesized that the primary site for updating and storing action value functions

is at the synapses between axons from cortical neurons and dendrites of medium spiny

neurons in the striatum (Reynolds et al. 2001, Hikosaka et al. 2006, Lo & Wang 2006, Hong

& Hikosaka 2011). Signals related to reward prediction error arrive at these synapses via the

terminals of dopamine neurons in the substantia nigra (Levey et al. 1993, Schultz 2006,

Haber et al. 2000, Haber & Knutson 2010), and multiple types of dopamine receptors in the

striatum can modulate the plasticity of corticostriatal synapses accordingo the relative timing

of presynaptic vs. postsynaptic action potentials (Shen et al. 2008, Gerfen & Surmeier

2011). However, the nature of specific information stored by these synapses remains poorly

understood. In addition, whether the corticostriatal circuit carries appropriate signals related

to eligibility traces for chosen actions and other necessary state information at the right time

needs to be tested in future studies. Given broad dopaminergic projections to various cortical
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areas (Lewis et al. 2001), value functions might be updated in many of the same cortical

areas encoding the value functions at the time of decision making.

Uncertainty and learning rate

The learning rate, which controls the speed of learning, must be adjusted according to

uncertainty and volatility of the animal’s environment. In natural environments, decision

makers face many different types of uncertainty. When the probabilities of different

outcomes are known, as when flipping a coin or during economic experiments, uncertainty

about outcomes is referred to as risk (Kahneman & Tversky 1979) or expected uncertainty

(Yu & Dayan 2005). In contrast, when the exact probabilities are unknown, this is referred

to as ambiguity (Ellsberg 1961) or unexpected uncertainty (Yu & Dayan, 2005). Ambiguity

or unexpected uncertainty is high in a volatile environment, in which the probabilities of

different outcomes expected from a given action change frequently (Behrens et al. 2007),

and this requires a large learning rate so that value functions can be modified quickly. By

contrast, if the environment is largely known and stable, then the learning rate should be

close to 0 so that value functions are not too easily altered by stochastic variability in the

environment. Human learners can change their learning rates almost optimally when the rate

of changes in reward probabilities for alternative actions is manipulated (Behrens et al.

2007). The level of volatility, and hence the learning rate, is reflected in the activity of the

anterior cingulate cortex, suggesting that this region of the brain might be important for

adjusting the learning rate according to the stability of the decision maker’s environment

(Behrens et al. 2007; Figure 4). Similarly, the brain areas known to increase their activity

during decision making under ambiguity, such as the lateral prefrontal cortex, orbitofrontal

cortex, and amygdala, might also be involved in optimizing the learning rate (Hsu et al.

2005, Huettel et al. 2006). Single-neuron recording studies have also implicated the

orbitofrontal cortex in evaluating the amount of uncertainty in choice outcomes (Kepecs et

al. 2008, O’Neill & Schultz 2010).

NEURAL SYSTEMS FOR MODEL-FREE VS. MODEL-BASED

REINFORCEMENT LEARNING

Model-based value functions and reward prediction errors

During model-based reinforcement learning, decision makers utilize their knowledge of the

environment to update the estimates of outcomes expected from different actions, even

without actual reward or penalty. A wide range of algorithms can be used to implement

model-based reinforcement learning. For example, decision makers may learn the

configuration and dynamics of their environment separately from the values of outcomes at

different locations (Tolman 1948). This enables the animal to re-discover an optimal path of

travel quickly whenever the location of a desired item changes. Flexibly combining these

two different types of information might rely on the prefrontal cortex (Daw et al. 2005, Pan

et al. 2008, Gläscher et al. 2010) and hippocampus (Womelsdorf et al. 2010, Simon & Daw

2011). For example, activity in the human lateral prefrontal cortex increases when

unexpected state transitions are observed, suggesting that this area is involved in learning

the likelihood of state transitions (Gläscher et al. 2010). The hippocampus might play a role

in providing the information about the layout of the environment and other contextual

information necessary for updating the value functions. The integration of information about

the behavioral context and current task demands encoded in these two areas, especially at

the time of decision making, may rely on rhythmic synchronization of neural activity in the

theta frequency range (Sirota et al. 2008, Benchenane et al. 2010, Hyman et al. 2010,

Womelsdorf et al. 2010).
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Whether and to what extent model-free and model-based forms of reinforcement learning

are supported by the same brain areas remains an important area of research. Value

functions estimated by model-free and model-based algorithms might be updated or

represented separately in different brain areas (Daw et al. 2005), but they might be also

combined to produce a unique estimate for the outcomes expected from chosen actions. For

example, when decision makers are required to combine the information about reward

history and social information, reliability of predictions based on these two different types of

information is reflected separately in two different regions of the anterior cingulate cortex

(Behrens et al. 2008). On the other hand, signals related to reward probability predicted by

both types of information were found in the ventromedial prefrontal cortex (Behrens et al.

2008). Similarly, human ventral striatum might represent the chosen values and reward

prediction errors regardless of how they are computed (Daw et al. 2011, Simon & Daw

2011). This is also consistent with the finding that reward prediction error signals encoded

by the midbrain dopamine neurons, as well as the neurons in the globus pallidus and lateral

habenula, are in accordance with both model-free and model-based reinforcement learning

(Bromberg-Martin et al. 2010b).

Hypothetical outcomes and mental simulation

From the information that becomes available after completing chosen actions, decision

makers can often deduce what alternative outcomes would have been possible from other

actions. They can then use this information about hypothetical outcomes to update the action

value functions for unchosen actions. In particular, the observed behaviors of other decision

makers during social interaction are a rich source of information about such hypothetical

outcomes (Camerer & Ho 1999, Camerer 2003, Lee et al. 2005, Lee 2008). Results from

lesion and neuroimaging studies have demonstrated that the information about hypothetical

or counterfactual outcomes might be processed in the same brain areas that are also involved

in evaluating the actual outcomes of chosen actions, such as the prefrontal cortex (Camille et

al. 2004, Coricelli et al. 2005, Boorman et al. 2011) and striatum (Lohrenz et al. 2007). The

hippocampus might also be involved in simulating the possible outcomes of future actions

(Hassabis & Maguire 2007, Schacter et al. 2007, Johnson & Redish 2007, Luhmann et al.

2008). Single-neuron recording studies have also shown that neurons in the dorsal anterior

cingulate cortex respond similarly to actual and hypothetical outcomes (Hayden et al. 2009).

More recent neurophysiological experiments in the dorsolateral prefrontal cortex and

orbitofrontal cortex further revealed that neurons in these areas tend to encode actual and

hypothetical outcomes for the same action, suggesting that they might provide an important

substrate for updating the action value functions for chosen and unchosen actions

simultaneously (Abe & Lee 2011; Figure 5).

CONCLUSIONS

In recent decades, reinforcement learning theory has become a central framework in the

newly emerging areas of neuroeconomics and decision neuroscience. This is hardly

surprising, because unlike abstract decisions analyzed in economic theories, biological

organisms seldom receive complete information about the likelihoods of different outcomes

expected from alternative actions. Instead, they face the challenge of learning how to predict

the outcomes of their actions by trial and error, which is the essence of reinforcement

learning.

The field of reinforcement learning theory has yielded many different algorithms, which

provide neurobiologists with exciting opportunities to test whether they can successfully

account for the actual behaviors of humans and animals and how different computational

elements are implemented in the brain. In some cases, particular theoretical components

closely correspond to specific brain structures, as in the case of reward prediction errors and
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midbrain dopamine neurons. However, in general, a relatively well circumscribed

computational step in a given algorithm is often implemented in multiple brain areas, and

this relationship might change with the animal’s experience and task demands. The

challenge that lies ahead is therefore to understand whether and how the signals in different

brain areas related to various components of reinforcement learning, such as action value

functions and chosen value, make different contributions to the overall behaviors of the

animal. An important example discussed in this article is the relationship between model-

free and model-based reinforcement learning algorithms. Neural machinery of model-free

reinforcement learning might be phylogenetically older, and for simple decision-making

problems, it may be more robust. By contrast, for complex decision-making problems,

model-based reinforcement learning algorithms can be more efficient, since it can avoid the

need to re-learn appropriate stimulus-action associations repeatedly by exploiting the

regularities in the environment and the current information about the animal’s internal state.

Failures in applying appropriate reinforcement learning algorithms can lead to a variety of

maladaptive behaviors observed in different mental disorders. Therefore, it would be crucial

for future studies to elucidate the mechanisms that allow the brain to coordinate different

types of reinforcement learning and their individual elements.
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Figure 1. Economic and reinforcement learning theories of decision making
(a) In economic theories, decision making corresponds to selecting an action with the

maximum utility. (b) In reinforcement learning, actions are chosen probabilistically (i.e.,

softmax) on the basis of their value functions. In addition, value functions are updated on the

basis of the outcome (reward or penalty) resulting from the action chosen by the animal.

RPE, reward prediction error.
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Figure 2. Time course of signals related to different state value functions during decision making
(a) Signals related to the state value functions before (red) and after (blue) decision making

in the dorsolateral prefrontal cortex (DLPFC; Kim et al. 2008, Kim & Lee 2011) and

striatum (Cai et al. 2011) during an intertemporal choice task. These two state value

functions correspond to the average of the action value functions for two options and the

chosen value, respectively. During these studies, monkeys chose between a small immediate

reward and a large delayed reward, and the magnitude of neural signals related to different

value functions were estimated by the coefficient of partial determination (CPD). Lines

correspond to the mean CPD for all the neurons recorded in each brain area with the shaded

area corresponding to the standard error of the mean. (b) Proportion of neurons carrying

chosen value signals in the rodent lateral (AGl) and medial (AGm) agranular cortex,

corresponding to the primary and secondary motor cortex, respectively, dorsal (DS) and

ventral (VS) striatum, anterior cingulate cortex (ACC), prelimbic (PLC)/infralimbic (ILC)

cortex, and orbitofrontal cortex (OFC). During these studies (Kim et al. 2009, Sul et al.

2010, 2011), the rats performed a dynamic foraging task. Large symbols indicate that the

proportions are significantly (p<0.05) above the chance level.
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Figure 3. Time course of signals related to the animal’s choice, its outcome, and action-outcome
conjunction in multiple brain areas of primates and rodents
(a) Spatial layout of the choice targets during a matching pennies task used in single-neuron

recording experiments in monkeys. (b) Brain regions tested during the studies on monkeys

(Barraclough et al. 2004, Seo & Lee 2007, Seo et al. 2009). ACCd, dorsal anterior cingulate

cortex; DLPFC, dorsolateral prefrontal cortex; LIP, lateral intraparietal cortex. (c) Fraction

of neurons significantly modulating their activity according to the animal’s choice (top), its

outcome (middle), and choice-outcome conjunction (bottom) during the current (trial lag =0)

and 3 previous trials (trial lags =1~3). (d) Modified T-maze used in a rodent dynamic

foraging task. (e) Anatomical areas tested in single-neuron recording experiments in rodents
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(Kim et al. 2009, Sul et al. 2010, 2011). Same abbreviations as in Figure 2b. (f) Fraction of

neurons significantly modulating their activity according to the animal’s choice (top), its

outcome (middle), and choice-outcome conjunction (bottom) during the current (lag =0) and

previous trials (lag =1). Large symbols indicate that the proportions are significantly

(p<0.05) above the chance level.
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Figure 4. Areas in the human brain involved in updating model-free and model-based value
functions (Behrens et al. 2008)
(a) Regions in which the activity is correlated with the volatility in estimating the value

functions based on reward history (green) and social information (red). (b) Activity in the

ventromedital prefrontal cortex was correlated with the value functions regardless of

whether they were estimated from reward history or social information. (c) Subjects more

strongly influenced by reward history (ordinate) tended to show greater signal change in the

anterior cingulate cortex in association with reward history (abscissa; green region in a). (d)

Subjects more strongly influenced by social information (ordinate) showed greater signal

changes in the anterior cingulate cortex in association with social information (abnscissa;

red region in a).
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Figure 5. Neuronal activity related to hypothetical outcomes in the primate orbitofrontal cortex
(a) Rock-paper-sciossors task used for single-neuron recording studies in monkeys (Abe &

Lee 2011). (b) An example neuron recorded in the orbitofrontal cortex that modulated its

activity according to the magnitude of reward that was available from the unchosen winning

target (indicated by ‘W’ in the top panels). The spike density function of this neuron was

estimated separately according to the position of the winning target (columns), the position

of the target chosen by the animal (rows), and the magnitude of the reward available from

the winning target (colors).
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