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Abstract

This seminar report focuses on using convolutional neural networks for image retrieval. Firstly, we

give a thorough discussion of several state-of-the-art techniques in image retrieval by considering the

associated subproblems: image description, descriptor compression, nearest-neighbor search and query

expansion. We discuss both the aggregation of local descriptors using clustering and metric learning

techniques as well as global descriptors.

Subsequently, we briefly introduce the basic concepts of deep convolutional neural networks, focus-

ing on the architecture proposed by Krizhevsky et al. [KSH12]. We discuss different types of layers

commonly used in recent architectures, for example convolutional layers, non-linearity and rectification

layers, pooling layers as well as local contrast normalization layers. Finally, we shortly review supervised

training techniques based on stochastic gradient descent and regularization techniques such as dropout

and weight decay.

Finally, following Babenko et al. [BSCL14], we discuss the use of feature activations in interme-

diate layers as image representation for image retrieval. After presenting experiments and comparing

convolutional neural networks for image retrieval with other state-of-the-art techniques, we conclude by

motivating the combined use of deep architectures and hand-crafted image representations for accurate

and efficient image retrieval.
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1 Introduction

Content-based image or object retrieval, the problem of finding images within a large database containing

the same or similar objects or scenes as a given query image, is a fundamental problem in computer vision.

In particular, in order to extract useful information from large databases of images these databases need to

be organized and searchable. Originally, images were manually annotated with keywords and text-based

retrieval systems were utilized. However, due to the rapidly increasing size of image collections, manual

annotation became infeasible. Therefore, content-based retrieval systems relying on image content only

were developed and are heavily researched within the computer vision community. In the following, we

always speak of content-based image retrieval and include the subproblem of object retrieval implicitly (in

practice, techniques can often be applied to both problems [PCI+07]).

While the problem has been studied for several decades, recent success is based on the Bag of Visual

Words model proposed by Sivic and Zisserman [SZ03]. Local descriptors, used to characterize inter-

est points within the image, are quantized into so-called visual words and the image is represented by

the corresponding word counts. While the Bag of Visual Words model has steadily been improved (for

example [CPS+07, PCI+07, AZ12]), different techniques of aggregating local descriptors (for example

[JDCSP10, GKS13, JZ14, PISZ10]) have been used and global descriptors have been used, as well (for

example [OT01]).

Similar to image retrieval, convolutional neural networks [LBD+89] have been studied for more than two

decades (see [Ben09, LBD+89]) but had their breakthrough only recently [Ben09]. In particular Krizhevsky

et al. [KSH12] demonstrated astounding results on the ImageNet classification challenge 1. Thus, convo-

lutional neural networks have been applied to a range of different applications, and the usefulness of the

generated intermediate activations has been studied within the literature [Ben09]. Recently, Babenko et al.

[BSCL14] used convolutional neural networks, in particular the architecture proposed by Krizhevsky et al.,

for image retrieval.

Outline. This report is intended to introduce the reader to recent techniques in image retrieval. Further-

more, we briefly introduce the fundamentals of convolutional neural networks in order to discuss their

application to image retrieval. In Section 2 we introduce the problem of image retrieval and discuss ag-

gregation techniques for local descriptors as well as the application of global descriptors. Furthermore,

we briefly introduce approximate nearest neighbor techniques, discriminative dimensionality reduction and

average query expansion. In Section 3 we discuss the mathematical foundation of convolutional neural

networks including their training and regularization. Subsequently, in Section 4, we discuss the application

of convolutional neural networks for image retrieval before presenting experimental results by Babenko et

al. Finally, we conclude in Section 6.

1See http://www.image-net.org/challenges/LSVRC/2010/.
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2 Image Retrieval

Given a database of images X = {x1, . . . ,xN} and a query image z0 showing a particular object or scene, the

task of image retrieval is usually formalized as follows:

Problem. Find an ordered list of images Z = (z1, . . . ,zK) such that, for an appropriate distance function d,

it holds:

d(z0,zk)≤ d(z0,zk+1),1 ≤ k < K and d(z0,zk)< d(z0,xn)∀1 ≤ k ≤ K,xn /∈ Z (1)

which basically describes a K-nearest neighbor search.

While early work on image retrieval presented complete retrieval systems, recent publications usually fo-

cus on subproblems. Therefore, in the following, we roughly divide this problem into image description,

compression, nearest neighbor search and query expansion.

2.1 Image Description

A fundamental problem in image retrieval is image representation, that is the characterization of an im-

age using a feature vector of fixed dimensionality. We distinguish global descriptors directly constituting

an image representation as well as local descriptors which usually need to be aggregated into an image

representation of fixed dimensionality.

2.1.1 Aggregation of Local Descriptors

Local descriptors are designed to represent regions around interest points. For image retrieval, these interest

points are computed using a scale, rotation and affine invariant detector. We refer to [MS04] for details and

discuss the Scale-Adapted Harris Detector as example [MS04].

Scale-Adapted Harris Detector [MS04, HS88]. The Harris detector is based on the second moment matrix

A of an image xn (see Equation (2)). The corresponding eigenvalues λ1,λ2 represent the signal change in

two orthogonal directions and interest points are extracted at pixels where both eigenvalues are large. For

efficiency, Harris and Stephens [HS88] propose to maximize

λ1λ2 −κ(λ1 +λ2)
2 = det(A)−κtrace(A)2 with A =

(

∂2
xxn ∂xyxn

∂xyxn ∂2
yxn

)

(2)

where κ is a sensitivity parameter. In practice, the detector is applied in scale space, that is on a set of

images

x
(σs)
n = gσs ∗ xn (3)

where ∗ denotes convolution and σs is sampled at logarithmic scale. Therefore, it automatically selects

the optimal scale and defines the size of the region used for local descriptors. Several extensions have

been proposed, for example the Harris-Laplace Detector uses the Scale-Adapted Harris Detector to detect

interest points in a coarse scale space, and then refines detections by searching for extrema of the Laplacian-

of-Gaussians

∆(gσs ∗ xn) = ∂xx(gσs ∗ xn)+∂yy(gσs ∗ xn), (4)

which detects blob-like structures, in a finer scale space.

Note that instead of computing interest points, local descriptors can also be computed densily. It has been

shown that this approach may reduce runtime and increase performance [GRPV12].

5



Local Descriptors

Given a set of interest points, local descriptors are intended to compute discriminative characterizations

of the corresponding regions. We follow [Low04] and briefly introduce the most commonly used local

descriptor, SIFT, and a simplistic local descriptor used for image retrieval in [GKS13].

Scale Invariant Feature Transform (SIFT) [Low04]. First, given a specific scale, the orientation of

the interest point is determined by computing a gradient orientation histogram under a Gaussian window

and using the maximum bin as orientation. In practice, 36 bins are used to determine the orientation and

up to three orientations corresponding to bins above 80% of the maximum bin are retained as additional

orientations. Then, SIFT divides a rectangular region, rotated according to the orientation determined

previously, around the interest point into a 4× 4 grid. For each grid element, a 8-bin gradient orientation

histogram is computed using trilinear interpolation. Pixels are weighted according to gradient magnitude

and a Gaussian window. This results in a c = 4 ·4 ·8-dimensional descriptors which is L2-normalized.

In image retrieval, SIFT is the most commonly used local descriptor and several aggregation techniques

are tailored specificly to SIFT descriptors (for example [JDCSP10]). Nevertheless, several extensions have

been proposed, especially concerning normalization. For example, Arandjelović and Zisserman [AZ12]

propose to use RootSIFT, that is the original SIFT descriptor is L1-normalized and the individual elements

are square-rooted. As result, the Euclidean distance on RootSIFT resembles the Bhattacharyya coefficient

of the original SIFT descriptors.

Sparse-Coded Micro Feature [GKS13]. In their sparse-coding and max pooling framework (see next

paragraph), Ge et al. use a simplistic local descriptor consisting only of the color values within the region

around the interest point. For example, for a 5× 5 region, the descriptor has dimension c = 3 · 52. Ge et

al. argue that after sparse-coding and max pooling, meaningful descriptors are picked and small patches are

invariant to affine transformations.

Embedding and Aggregation Techniques

To obtain a global representation of an image, local descriptors are aggregated. Following recent publi-

cations as [GKS13] or [JZ14], aggregation techniques are divided into an embedding step and the actual

aggregation step (also referred to as encoding and pooling in [GKS13]). Given a set of extracted descriptors

Yn = {y1,n, . . . ,yL,n} ⊂R
c from image xn, the goal is the computation of a C-dimensional image representa-

tion.

Bag of Visual Words [SZ03]. Sivic and Zisserman, motivated by early text-retrieval systems, cluster

all local descriptors Y =
⋃N

n=1 Yn using k-means clustering to define a vocabulary of visual words Ŷ =
{ŷ1, . . . , ŷM}. Subsequently, descriptors are assigned to the nearest visual word and the global image repre-

sentation is a sparse vector of word counts. Thus, the embedding step computes

f (yl,n) = (δ(NNŶ (yl,n) = ŷ1), . . . ,δ(NNŶ (yl,n) = ŷM)) (5)

where NNŶ (yl,n) denotes the nearest neighbor of yl,n in Ŷ , that is fm(yl,n) = 1 if and only if NNŶ (yl,n) = ŷm.

The aggregation step can be formalized as

F(Yn) =
L

∑
l=1

f (yl,n). (6)

In practice, however, the so called term-frequency inverse-document-frequency weighting [SZ03] is ap-

plied:

Fm(Yn) =
∑L

l=1 fm(yl,n)

∑M
m′=1 ∑L

l=1 fm′(yl,n)
log

(

N

∑N
n=1 ∑L

l=1 fm(yl,n)

)

(7)

where fm(yl,n) and Fm(Yn) denote component m of the corresponding embedding and aggregation step, re-

spectively. The first term is the fraction of local descriptors assigned to visual word ŷm and, thus, determines

the importance of ŷm in the image representation of image xn. In contrast, the second term down-weights the
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influence of local descriptors assigned to word ŷm if it occurs frequently in the whole database. To alleviate

the influence of bursty elements, that is few large elements in the image representation [AZ13], F(Yn) can

alternatively be square-rooted element-wise and re-normalized. The final image representation has C = M

dimensions.

An early problem with this approach is of computional nature. In particular, it may be infeasible to apply

k-means clustering on Y for large databases (for example Philbin et al. [PCI+07] argue that even subsam-

pling the descriptors of a 100k database would result in millions of local descriptors). While Nistér and

Steénius [NS06] proposed to use hierarchical k-means clustering, Philbin et al. [PCI+07] introduced an

approximation. Hierarchical k-means proceeds by iteratively re-clustering a set of M∗ initial clusters – that

is, a clustering-tree with branching factor M∗ and depth Q is generated, resulting in (M∗)Q visual words.

Approximate k-means clustering replaces the exact distance computation by an approximation based on

randomized k-d trees 2.

Fisher Vectors [PD07, JH99]. Following [PD07] and [JH99], we first introduce the mathematical back-

ground of Fisher Vectors before making embedding and aggregation explicit. Therefore, we consider a

Gaussian mixture model

p(yl,n) =
M

∑
m=1

wmN (yl,n|µm,Σm),
M

∑
m=1

wm = 1 (8)

where N (yl,n|µm,Σm) refers to a Gaussian with mean µm and covariance Σm. The model is usually learned

on Y using the Maximum Likelihood criterion by employing a standard Expectation Maximization algo-

rithm. The idea of Fisher vectors is to characterize a local descriptor yl,n by the following gradient:

∇µm log(p(yl,n)). (9)

Intuitively, Equation (9) characterizes each descriptor yl,n by the direction in which the descriptor should be

adapted to better fit the Gaussian mixture model. Taking into account all local descriptors Yn of image xn,

which are assumed to be independent, the log-likelihood can be written as

log(p(Yn)) =
L

∑
l=1

log(p(yl,n)) . (10)

The partial derivative of the log-likelihood with respect to the mean µm is given as

L

∑
l=1

γm(yl,n)Σ
−1
m (yl,n −µm) (11)

where γm(yl,n) describes the probability of descriptor yl,n belonging to component m:

γm(yl,n) =
wmN (yl,n|µm,Σm)

∑M
m′=1 wm′N (yl,n|µm′ ,Σm′)

(12)

In practice, the covariance matrix Σm is assumed to be diagonal, that is Σm = diag(σ2
1,m, . . . ,σ

2
c,m). Further,

the gradient vectors are normalized using the Fisher information matrix

Z = EY

[

∇ log(p(Yn))∇ log(p(Yn))
T
]

(13)

for which Perronnin et al. derive the following approximation:

Z−1
µm

∇µm log(p(yl,n)) with Zµm =
Lwm

σ2
m

. (14)

Here, the inversion of Zµm as well as the division by σ2
m is meant element-wise.

Based on the above derivation, we use

f (yl,n) =
(

Z−1
µ1

∇µ1
p(yl,n), . . . ,Z

−1
µM

∇µM
p(yl,n)

)

(15)

2An implementation is available at http://www.robots.ox.ac.uk/~vgg/software/fastanncluster/.
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as the embedding step and Equation (6) for aggregation. The image representation has a dimensionality of

C = Mc and is usually power-law normalized, that is

Fm(Yn) = sign(Fm(Yn)) |Fm(Yn)|
α

(16)

with α ∈ (0,1). Commonly, α is chosen as α = 0.5 and, similar to RootSIFT, the normalization is then

referred to as signed square-rooting. Subsequently, the image representation is L2-normalized. Typical

values are M = 64 or M = 256 and c = 128 for SIFT descriptors.

Vector of Locally Aggregated Descriptors (VLAD) and Vocabulary Adaptation [JDCSP10, AZ13].

Here, similar to the Bag of Visual Words model, the embedding step is guided by a vocabulary of M visual

words learned using k-means clustering. Instead of counting word occurrences, Jégou et al. [JDCSP10]

consider the corresponding residuals:

f (yl,n) = (δ(NNŶ (yl,n) = ŷ1)(yl,n − ŷ1), . . . ,δ(NNŶ (yl,n) = ˆyM)(yl,n − ŷM)) . (17)

The corresponding aggregation step is given by Equation (6). The image representation is subsequently

either L2-normalized or power-law normalized [AZ13]. In contrast, the sum of residuals of each visual

word can also be L2-normalized independently before L2-normalizing the whole image representation

[AZ13]. This normalization scheme is termed intra-normalization. The final image representation has

dimension C = Mc.

In [AZ13], Arandjelovic and Zisserman additionally propose Vocabulary Adaptation. As discussed earlier,

obtaining a vocabulary of visual words using k-means clustering may be computationally expensive for

large databases. In addition, the visual words would have to be re-computed if the database is growing

over time. Vocabulary Adaptation allows to adapt VLAD descriptors computed over an arbitrary database

to an updated – or even new – database and proceeds as follows. First each visual word is adapted to be

the mean of local descriptors assigned to it. Note that this is not equivalent to re-clustering the set of all

local descriptors as the assignments of local descriptors to visual words do not change. Then, the VLAD

descriptors are re-computed taking into account the adapted visual words. It is important to note that this

second step does not need to access the original local descriptors.

Sparse-Coded Features [GKS13]. Given a vocabulary of visual words, Ge et al. use sparse codes as

embedding:

f (yl,n) = argmin
rl

‖yl,n − Ŷ rl‖
2
2 +λ‖rl‖1 (18)

where Ŷ contains the visual words ŷm as columns and λ is a regularization parameter. This can be interpreted

as linear regression with L1 regularization. As second step, these sparse codes are pooled into a single M-

dimensional feature vector. Max pooling is given by

F(Yn) =

(

max
1≤l≤L

{ f1(yl,n)}, . . . , max
1≤l≤L

{ fM(yl,n)}

)

, (19)

while Ge et al. refer to Equation (6) as average pooling. The final image representation is L2-normalized

and has dimension C = M.

Ge et al. show that their approach is able to aggregate different types of local descriptors. In particular, after

extracting K′ sets of local descriptors Y
(1)
n , . . . ,Y

(K′)
n , the above aggregation technique is applied on each set

individually and the obtained representations are concatenated:

f (y
(k)
l,n ) =

(

0, . . . ,r
(k)
l,1 , . . . ,r

(k)
l,M, . . . ,0

)

(20)

where r
(k)
l,m is defined as above after minimizing Equation (??) on Y

(k)
n for pre-computed visual words

ŷ
(k)
1 , . . . , ŷ

(k)
M (assuming the vocabulary size for the different types of local descriptors to be M). Max pool-

ing and average pooling are applied as in Equation (19) and Equation (6), respectively, on the concatenated

image representation.
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Triangulation Embedding and Democratic Aggregation [JZ14]. Jégou and Zisserman are motivated by

the aggregation function used in the Bag of Visual Words model or VLAD, see Equation (6), which gives

unequal weight to the descriptors in Yn. We follow [JZ14] and motivate their approach by considering the

set similarity

F(Yn)
T F(Yn) =

L

∑
l=1

L

∑
l′=1

f (yl,n)
T f (yl′,n). (21)

Note that Equation (21) can also be written using a kernel k(yl,n,yl′,n) as done in [JZ14]. Further, we

investigate the contribution of a single descriptor yl,n to the set similarity in Equation (21):

f (yl,n)
T

L

∑
l′=1

f (yl′,n) = ‖ f (yl,n)‖
2
2 + f (yl,n)

T ∑
l′ 6=l

f (yl′,n). (22)

Jégou and Zisserman approach the second term at the right hand side of Equation (22) by minimizing the

inner product of unrelated local descriptors. Instead of using the absolute distance between local descriptors

and visual words, the Triangulation Embedding uses directional information only. Therefore, we consider

the normalized residual

rl,m =
yl,n − ŷm

‖yl,n − ŷm‖2
. (23)

Let rl = (rT
l,1, . . . ,r

T
l,M) be the concatenation of these residuals. Then, the embedding step is given as

f (yl,n) = (Σ(rl))
− 1

2 (rl −µ(rl)) (24)

which essentially is a whitening operation, that is Σ(rl) and µ(rl) are covariance and mean estimated on⋃N
n=1{rl}

L
l=1. Further, Jégou and Zisserman experimentally show that removing the components corre-

sponding to the largest eigenvalues, which is equivalent to removing the first components of f (yl,n), reduces

the similarity between unrelated descriptors. Finally, f (yl,n) is usually L2-normalized.

Considering the set similarity of Equation (21), all local descriptors should contribute equally during aggre-

gation. Therefore, Jégou and Zisserman introduce the concept of a democratic kernel: A kernel k(yl,n,yl′,n),
for example k(yl,n,yl′,n) = yT

l,nyl′,n, is said to be democratic if there exists a constant κ (which may or may

not depend on the set Y ) such that

L

∑
l′=1

k(yl,n,yl′,n) = κ ∀1 ≤ l ≤ L. (25)

Intuitively, this constraint demands that all local descriptors contribute equally to the set similarity. To

accomplish this, a kernel can be replaced by a weighted counterpart:

k′(yl,n,yl′,n) = λlλl′k(yl,n,yl′,n) (26)

The weights are learned by solving

λl

(

L

∑
l′=1

λl′k(yl,n,yl′,n)

)

= κ with λl > 0,∀1 ≤ l ≤ L. (27)

using an adapted Sinkhorn algorithm 3 [Sin64]. Based on the computed weights, the aggregation step is

given as

F(Yn) =
L

∑
l=1

λl f (yl,n) (28)

3In 1964, Sinkhorn [Sin64] originally approached the problem of generating a doubly stochastic matrix S, that is a matrix satisfying

∑i si, j = 1 and ∑ j si, j = 1, ∀i, j. Therefore, given an arbitrary matrix A, the problem of finding diagonal matrices Λ1 and Λ2 such that

S = Λ1AΛ2 is doubly stochastic is equivalent to solving Equation (27) with κ = 1. Sinkhorn proofs that for positive A (that is ai, j > 0)

such matrices Λ1, Λ2 exist and iteratively normalizing the rows and the columns of A converges to S. Further details can also be found

in the appendix of [JZ14].
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The final image representation has dimensionality C = Mc and is both power-law normalized and L2-

normalized.

Descriptor Learning for Image Retrieval [PISZ10]. Philbin et al. try to avoid quantization errors, of-

ten incurred when obtaining visual words using k-means clustering, by learning a linear transformation

P ∈ R
c′×c such that matching descriptors lie more closely together and non-matching descriptors farther

apart. First, a dataset of descriptor pairs is generated as follows: We randomly select a pair of images,

detect interest points and extract local descriptors. Then, we apply Lowe’s (second-nearest neighbor) ratio

test [Low04]: To filter out local descriptors without correct match within the database (for example, due

to background variation), descriptors where the fraction of distances to the first and the second nearest-

neighbor is above 0.8 are discarded. Here, the second nearest-neighbor is constrained to come from an

unrelated image. Finally, we estimate an affine transformation using RANSAC . The dataset includes the

inliers found by RANSAC as positives Ypos ⊂ R
c ×R

c, the outliers found by RANSAC as hard negatives

Yout and random matches as easy negatives Yrnd. Philbin et al. minimize the following objective:

E(P) = ∑
(yl,n,yl′ ,n)∈Ypos

L(b1 −d(Pyl,n,Pyl′,n))+ ∑
(yl,n,yl′ ,n)∈Yout

L(d(Pyl,n,Pyl′,n)−b1)

+ ∑
(yl,n,yl′ ,n)∈Yrnd

L(d(Pyl,n,Pyl′,n)−b2)+
λ

2
‖P‖2. (29)

Intuitively, this is a maximum margin approach where λ controls the regularization term and

L(z) = log(1+ exp(−z)) (30)

is the logistic loss. Equation (29) is minimized using stochastic gradient descent, see Section 3.5. In

practice, the whole procedure is applied on SIFT [Low04] descriptors and subsequently the Bag of Visual

Words model is used. The final image representation has dimension C = Mc′.

2.1.2 Global Descriptors

Global descriptors are not based on interest points but directly compute a global image representation. Here,

we intend to discuss the GIST [OT01] descriptor as example of a global descriptor used in image retrieval.

GIST [OT01]. In [OT01], Oliva and Torralba propose the Spatial Envelope representation which is used

interchangeably with GIST and is intended to model the following scene properties: (i) naturalness is

intended to distinguish natural from human-made scenes; (ii) openness refers to the difference between

open scenes and enclosed scenes; (iii) roughness refers to the size of the parts of a scene; (iv) expansion

refers to the depth perception of a scene; (v) and ruggedness characterizes to what extent the horizontal

line of a scene is visible. We refer to [OT01] for details and instead focus on the actual computation of

GIST 4. In a first step, the image is down-scaled and a blurred version of the image is subtracted. The result

is contrast normalized. Then, a set of Gabor-like filters at multiple scales and with multiple orientations

are applied. The image is subdivided into a grid of rectangles and average pooling is applied. Finally, the

responses in each rectangle, over all scales and orientations, are combined into a single global descriptor.

Typically, 8 orientations at 4 scales are used and the image is divided into a 4× 4 grid resulting in an

C = 8 ·4 ·16-dimensional descriptor.

2.2 Descriptor Compression, Indexing and Nearest Neighbor Search

Given image representations 5 X = {x1, . . . ,xN} ⊂ R
C of all images within the database, we are interested

in the nearest neighbors of the query z0 in X [JDS11]. As solving Equation (1) may be infeasible for large

databases, authors often discuss compression of their proposed image representation. While PCA is fre-

quently used within the image retrieval community (for example [BSCL14, GKS13, AZ13]), discriminative

techniques may be beneficial. As example, we discuss the approach by Gordo et al. [GRPV12].

4We follow the original implementation of GIST available at http://people.csail.mit.edu/torralba/code/

spatialenvelope/.
5In the following, we abuse notation and use xn to refer to both the image and the image representation.
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Joint Subspace and Classifier Learning [GRPV12]. Given a labeled training set

{(x1, t1), . . . ,(xN , tN)}, tn ∈ {1, . . . ,T}, (31)

Joint Subspace and Classifier Learning aims to project the image representations and their labels into a

common subspace where relevant labels are closer to the corresponding image representation than irrelevant

ones. Gordo et al. propose to jointly learn a dimensionality reduction P ∈R
C′×C and a set of classifiers wt ∈

R
C′

, t ∈ {1, . . . ,T}, in a large-margin framework. Therefore, the relevance of label t to image representation

xn is expressed as

s(xn, t) = (Pxn)
T wt . (32)

Then,

E(P) = ∑
(xn,tn,t):t 6=tn

max{0,1− s(xn, tn)+ s(xn, t)} (33)

is minimized using stochastic gradient descent. In particular, after sampling a triple (xn, tn, t) with t 6= tn,

the projection matrix P and the classifiers wtn and wt are updated only if the loss

max{0,1− s(xn, tn)+ s(xn, t)} (34)

is positive. Then the corresponding updates in iteration [τ+1] are given as

P[τ+1] = P[τ]+ γ(wtn [τ]−wt [τ])x
T
n (35)

wtn [τ+1] = wtn [τ]+ γP[τ]xn (36)

wt [τ+1] = wt [τ]− γP[τ]xn (37)

where γ is the learning rate, see Section 3.5. While P is subsequently used for dimensionality reduction, the

learned classifiers wt are discarded.

Now, given a (possibly low-dimensional) set of image representations, Equation (1) can be solved using

exhaustive nearest neighbor search with complexity O(NC). In contrast, approximate nearest neighbor

search (see [JDS11] for references) tries to reduce complexity and memory consumption. As example, we

discuss the approach proposed by Jégou et al. [JDS11].

Product Quantization [JDS11]. In general, a quantizer q is a function mapping each image representation

to one of M centroids. Essentially, a quantizer tries to reconstruct a given database by M representatives

and, thus, the reconstruction error can be expressed as

MSE(q) =
∫

p(xn)d(xn,q(xn))
2dxn (38)

≈
N

∑
n=1

d(xn,q(xn))
2. (39)

Product Quantization subdivides each image representation into subvectors and each subvector is quantized

separately using k-means clustering. The advantage of the product quantization lies in reduced memory

consumption. In particular, k-means clustering requires to store O(MC) floating point values, while Product

Quantization stores O(QM∗C) = O(M
1
Q C) with Q being the number of quantizers and M = (M∗)Q

.

Based on the above quantization, Jégou et al. propose two approaches to approximate search within the

quantized image representations. Using symmetric distance computation, the distance d(xn,z0) is approxi-

mated by

d(xn,z0)≈ d̂(xn,z0) = d(q(xn),q(z0)). (40)

In contrast, asymmetric distance computation is given as

d̂(xn,z0) = d(xn,q(z0)). (41)
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Jégou et al. provide guarantees on the error of these approximations: the distance error of symmetric dis-

tance computation is statistically bounded by MSE(q), while the distance error of asymmetric distance

computation is statistically bounded by 2MSE(q). In practice, both bounds can be computed using Equa-

tion (39).

The above approach is still based on exhaustive search. Jégou et al. use an inverted filesystem to circumvent

exhaustive search. Before using product quantization, the image representations are first quantized into a

coarse quantization (with the number of centroids being significantly smaller compared to the product

quantization). Each image representation is stored in a list assigned to the corresponding centroid of the

coarse quantization. Instead of exhaustive search, only one of these lists is searched for nearest neighbors.

We refer to [JDS11] for details.

2.3 Query Expansion

After retrieving a list of nearest neighbors, several techniques can be employed to improve query results:

query expansion (for example [AZ12, CPS+07]) and spatial verification (for example [PCI+07]). As exam-

ple, we briefly discuss average query expansion [CPS+07], however, refer to [PCI+07] for details on spatial

verification.

Average Query Expansion [CPS+07]. Query expansion aims to improve query results by re-issuing a

number of highly ranked results as new query to include further relevant results. Average Query Expansion

uses the top K∗ results and averages the corresponding term-frequency 6 representation:

zavg =
1

K∗+1

(

z0 +
K∗

∑
k=1

zk

)

. (42)

The results of query zavg is appended to the first K∗ results of the original query. Usually, this type of query

expansion is used in combination with spatial verification such that only verified results are included in the

query expansion.

6Note that Chum et al. [CPS+07] use the Bag of Visual Words model with term-frequency weighting only (that is, only the first

term in Equation (7)).
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3 Convolutional Neural Networks

In 1989, LeCun et al. [LBD+89] underline the benefit if incorporating prior knowledge into neural networks.

As result, convolutional neural networks are able to make use of the spatial information between pixels by

using discrete convolution on images as raw input. After introducing different types of layers – the main

building blocks of convolutional neural networks –, we focus on the architecture introduced by Krizhevsky

et al. [KSH12] which is used by Babenko et al. [BSCL14] for image retrieval. First, however, we introduce

the basic idea of neural networks using the multilayer-perceptron.

3.1 Neural Networks

The prototypical model of neural networks is the L-layer perceptron. Given the output y(l−1) ∈ R
m(l−1)

of

layer (l −1), layer l computes

y
(l)
i = f (z(l)) = f

(

m(l−1)

∑
j=1

w
(l)
i, j y

(l−1)
j +w

(l)
0,i

)

, 1 ≤ i ≤ m(l) (43)

where f is an activation function which is applied component-wise [Bis95]. Common activations functions

are the logistic sigmoid, given by

f (z) =
1

1+ exp(−z)
, (44)

and the hyperbolic tangent. For an input vector y(0) := x, a L-layer perceptron represents a parameterized

model where the weights w
(l)
i may be adapted to approximate a particular function. For classification, layer

L is expected to model posterior probabilities which can be accomplished using the softmax activation

function:

y
(L)
i =

exp
(

z
(L)
i

)

∑m(L)

j=1 exp
(

z
(L)
j

) . (45)

3.2 Layer Types

Similar to L-layer perceptrons, convolutional neural networks can be broken down into L layers. Different

layer types are used to allow raw images as input, incorporate invariance to noise and distortions and

accelerate training. We follow [JKRL09] to introduces these layer types.

3.2.1 Convolutional Layer

The convolutional layer is the key-ingredient of a convolutional neural network as it allows to handle multi-

channel images as raw input. If layer l is a convolutional layer, its input is given by m
(l−1)
1 feature maps

Y
(l−1)
j from the previous layer, each of size m

(l−1)
2 ×m

(l−1)
3 . Then, layer l computes m

(l)
1 feature maps as

Y
(l)
i = B

(l)
i +

m
(l−1)
1

∑
j=1

W
(l)
i, j ∗Y

(l−1)
j , ∀1 ≤ i ≤ m

(l)
1 , (46)

where B
(l)
i is a matrix of biases and W

(l)
i, j is a matrix of weights used as discrete filter. The size m

(l)
2 ×m

(l)
3 of

the feature maps Y
(l)
i is dependent on the filter size as well as border effects. For l = 1, referring to the input

image channels as Y
(0)
1 , . . . ,Y

(0)
3 , the layer directly operates on the input image. The convolutional layer is

illustrated in Figure 1(a).
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(a)

feature maps

layer (l −1)

ensure that values

are comparable

(b)

feature maps

layer (l −1)
feature maps

layer l

(c)

Figure 1: Illustration of a 1(a) convolutional layer; 1(b) local contrast normalization layer; and 1(c) pooling layer.

3.2.2 Non-Linearity and Rectification Layer

A non-linearity layer applies an activation function f component-wise on its input feature maps:

Y
(l)
i = f

(

Y
(l−1)
i

)

, ∀1 ≤ i ≤ m
(l)
1 = m

(l−1)
1 . (47)

Thus, the output of layer l is given by m
(l)
1 = m

(l−1)
1 feature maps of size m

(l)
2 ×m

(l)
3 = m

(l−1)
2 ×m

(l−1)
3 .

Common activation functions for convolutional neural networks are the logistic sigmoid, the hyperbolic

tangent and the rectified linear unit f (z) = max{0,z}. If f = | · |, we refer to the layer as rectification layer

which can also be interpreted as separate layer.

3.2.3 Local Contrast Normalization Layer

In [KSH12] also referred to as response normalization layer, a local contrast normalization layer aims to

create competition among feature maps computed using different filters. Furthermore, contrast normaliza-

tion layers can also be motivated using results from neuroscience [KSH12]. Krizhevsky et al. use brightness

normalization:

(

Y
(l)
i

)

r,s
=

(

Y
(l−1)
i

)

r,s
(

κ+λ∑m(l−1)

j=1

(

Y
(l−1)
j

)2

r,s

)µ , ∀1 ≤ i ≤ m
(l)
1 (48)

where κ,λ,µ are hyperparameters set using a validation set. Alternatively, the sum in Equation (48) may

be restricted to those feature maps Y
(l−1)
j adjacent to Y

(l−1)
i . The output of layer l is given by m

(l)
1 = m

(l−1)
1

feature maps unchanged in size. The local contrast normalization layer is illustrated in Figure 1(b).

3.2.4 Pooling Layer

While LeCun et al. [LBD+89] use subsampling within convolutional layers (that is, the convolution in

Equation (46) is not applied on every entry of the input feature maps), recent architectures prefer to use

separate pooling layers to reduce the size of the feature maps and introduce invariance to noise and dis-

tortions. Similar to the aggregation step of local descriptors used by Ge et al. [GKS13], max pooling or

average pooling are common:

Average pooling computes the average value within (non-overlapping) windows; while

Max pooling computes the maximum value within (non-overlapping) windows.

Pooling has been found to improve convergence and reduce overfitting [KSH12]. Note that pooling can

also be used with overlapping filters, see [KSH12].
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Figure 2: The architecture used by Krizhevsky et al. [KSH12]. The number m
(l)
1 of computed feature maps in layer

l is indicated by the width of the corresponding cuboid, while the size m
(l)
2 ×m

(l)
3 of the feature maps is indicated by

the height and depth, respectively. In addition, the size of the filters W
(l)
i, j is shown. For example, the input is given

by a single gray-scale image of size 244× 244. Using filters of size 11× 11, the first convolutional layer computes

96 = 48+48 feature maps of size 55×55. Furthermore, the filters in the first convolutional layer are applied in strides

of 4 pixels. We note that the architecture has been parallelized and refer to [KSH12] for details.

3.2.5 Fully-Connected Layer

If layer l is a fully connected layer and layer (l −1) one of the above layers, the input feature maps Y
(l−1)
i

are interpreted as m
(l−1)
2 ·m

(l−1)
3 -dimensional vectors and layer l computes:

y
(l)
i = f

(

z
(l)
i

)

= f





m
(l−1)
1

∑
j=1

m
(l−1)
2

∑
r=1

m
(l−1)
3

∑
s=1

w
(l)
i, j,r,s

(

Y
(l−1)
j

)

r,s



 , ∀1 ≤ i ≤ m(l). (49)

Note that, in contrast to convolutional layers, this layer already includes non-linearities. In the case that

layer (l − 1) is a fully connected layer, Equation (49) can be applied analogously to Equation (43). In

convolutional neural networks, both layer (L− 1) and layer L are usually fully connected layers and layer

L uses the softmax activation function and is used for classification.

3.3 Architectures

Most architectures used in practice can be described using the layer types discussed above (for example

[LBD+89, JKRL09]). For example, the architecture introduced by Krizhevsky et al. can be described as

follows. Five convolutional layers with rectified linear unit non-linearity layers are followed by three fully

connected layers 7. Local contrast normalizaton layers are used after the first and second non-linearity

layers (corresponding to the first and second convolutional layers). Overlapping max pooling layers are

used after the first and second contrast normalization layer as well as after the fifth non-linearity layer.

Although not formalized in Section 3.2.1, the convolutional layers are not necessarily fully connected to

the previous layers, that is the sum in Equation (46) does not run over all input feature maps. This is due to

computational reasons, see [KSH12]. The last layer uses softmax activation functions. Figure 2 shows the

overall architecture including the specific fiilter and feature map sizes.

3.4 Available Implementations

The main problem of implementing and training deep convolutional neural networks is computational effi-

ciency. Therefore, most implementations use one or more GPUs. For example, the original implementation

7The exact architecture can also be seen when consulting the reference model shipped with Caffe [JSD+14], see Section 3.4. Note

that Caffe requires some extra layer types for training as well as pre-processing and includes dropout regularization, discussed in

Section 3.5.1, as additional layer type.
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by Krizhevsky et al. uses two Nvidida GTX 580 8 – still, training on the ImageNet dataset [DDS+09] took

several days. As a result, pre-trained models have become quite popular (that is, the weights of a trained

network together with a specification of the network architecture are shared with the community). This

is simplified by publicly available frameworks as for example Caffe [JSD+14], which comes with several

pre-trained models using different architectures. Another popular convolutional neural network library is

OverFeat 9.

3.5 Training

Training convolutional neural networks means to adjust the weights W = {w
(l)
i, j,r,s} according to a loss ap-

plied on layer L. Given a training set {(x1, t1), . . . ,(xN , tN)} with tn ∈ {1, . . . ,m(L)} being class labels, com-

mon loss functions for classification include the sum-of-squared error and the cross-entropy error. Instead,

Krizhevsky et al. minimize the multinomial logistic loss:

E(W) =−
1

m(L)

N

∑
n=1

log
(

y
(L)
tn

)

(50)

where y
(L)
tn is expected to model the posterior probability p(tn|xn) of sample xn belonging to class tn. These

loss functions can be defined on the whole training set, as in Equation (50), on so-called mini-batches, that

is on small subsets of the training set, or on individual training examples. Therefore, convolutional neural

networks can also be trained online.

A common algorithm used for minimization is gradient descent, an iterative technique which, starting with

an initial guess W[0], iteratively takes steps in the direction of the negative gradient (that is, the direction

of the steepest descent in L2 norm). Following [Bot12], and given a learning rate γ, gradient descent is

implemented using the update step

W[τ+1] = W[τ]− γ∇E (W[τ]) . (51)

The chosen learning rate γ is crucial and usually has strong influence on the found minima. A widely

used extension is gradient descent with momentum term which aims to avoid oscillation while using a high

learning rate for fast training. The update step changes to:

W[τ+1] = W[τ]− γ∇E (W[τ])+ν(W[τ]−W[τ−1]) (52)

where ν is the momentum parameter.

Stochastic gradient descent applies the update of Equation (51) on a subset of randomly selected samples.

It can be shown that stochastic gradient descent converges under relatively loose conditions [Bot12]. In

addition, stochastic gradient descent may be beneficial for large-scale learning [Bot12] and improve the

generalization performance of the learned model [BB07].

For applying stochastic gradient descent, the gradient ∇E(W[τ]) needs to be computed in each itera-

tion. Therefore, Error Backpropagation has been proposed and allows to compute the gradient ∇E(W[τ])
in O (|W|) [Bis95].

3.5.1 Regularization

Regularization is used to control the complexity of the model during training to prevent overfitting. For

example, Krizhevsky et al. use weight decay and dropout as regularization during training. Weight decay is

simple L2-normalization of the weights and used because large weights result in poor generalization [Bis95].

The updated loss function can be written as:

Ê(W) = E(W)+λ‖W‖2. (53)

In contrast, dropout [KSH12] tries to decouple pairs of computation units (that is individual elements within

the feature maps Y
(l)
i or the computed vectors y(l)). Each such unit is deactivated (that is, set to zero) with

probability one half. The intention is to avoid subsequent layers or neighboring units being dependent on

specific units.

8The implementation is available at http://www.cs.toronto.edu/~kriz/.
9Available at http://cilvr.nyu.edu/doku.php?id=code:start.
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4 Neural Codes for Image Retrieval

As discussed in [Ben09], convolutional neural networks tend to learn useful high- and mid-level filters

and the generated activations are rich representations of image content. Therefore, convolutional neural

networks have been applied to many different tasks. Babenko et al. [BSCL14] use the generated feature

activations as image representation for image retrieval. The resulting image representations are also termed

neural codes.

4.1 Architecture, Training and Implementation

According to Babenko et al., the same architecture as presented in Section 3.3 was used together with an

adapted version of the original implementation by Krizhevsky [KSH12] et al. Experiments were conducted

using a model pre-trained on the ImageNet dataset [DDS+09] and a model re-trained on a custom dataset

consisting of popular landmarks (referred to as the Landmark dataset). The dataset comprises 213,678 im-

ages with 672 classes (corresponding to the different landmarks) and was collected using the Yandex search

engine 10. Although, the search queries have been published 11, the dataset is not directly reproducible.

Furthermore, the implementation has not been made publicly available.

Training is done according to [KSH12], see Section 3.5, using stochastic gradient descent with a momentum

parameter ν = 0.9 and weight decay with λ = 0.0005. The learning rate is initialized with γ = 0.01 and

manually divided by 10 whenever the error on a validation set stops decreasing. As Babenko et al. do not

mention deviations from this procedure, we assume that the same approach was used for the re-trained

model.

4.2 Compression

The feature activations in intermediate layers may be quite high-dimensional. Thus, Babenko et al. [BSCL14]

experiment with two different approaches for dimensionality reduction: PCA and metric learning following

the idea of [SPVZ13].

Large-Margin Dimensionality Reduction [SPVZ13]. Babenko et al. collect a dataset of 100k image pairs

from the Landmark dataset using a simple image matching system (SIFT matching with Lowe’s ratio test

[Low04] and RANSAC validation). The goal is to learn a linear dimensionality reduction P ∈ R
C′×C such

that the distance of matching image pairs is below a learned threshold b while the distance of non-matching

pairs is above this threshold. This can be formalized by the constraint

tn,n′
(

b−d(Pxn,Pxn′)
2
)

> 1 (54)

where tn,n′ = 1 if and only if the image pair (xn,xn′) is a matching pair. This can be accomplished by

minimizing

E(P) =
N

∑
n,n′

max{0,1− tn,n′
(

b− (xn − xn′)
T PT P(xn − xn′)

)

} (55)

using stochastic gradient descent. In particular, given a sampled pair of image representations (xn,xn′) the

dimensionality reduction P[τ] in iteration τ is updated only if

tn,n′
(

b− (xn − xn′)
T P[τ]T P[τ](xn − xn′)

)

> 1 (56)

and according to

P[τ+1] = P[τ]− γtn,n′P[τ](xn − xn′)(xn − xn′)
T (57)

where γ is the learning rate. Instead of an additional regularization term, Simonyan et al. use early stopping,

that is minimization is stopped after a pre-defined number of iterations. Positive and negative pairs are

sampled with equal probability.

10See https://www.yandex.com/.
11Available at http://sites.skoltech.ru/compvision/projects/neuralcodes (in Russian).
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5 Experiments

In this section, we discuss several experiments presented by Babenko et al. [BSCL14]. However, first

we introduce popular datasets and the general evaluation methodology employed in the image retrieval

community.

5.1 Datasets

There are several commonly used datasets available within the image retrieval community. We briefly

discuss two datasets used for evaluation of many approaches discussed in Section 2.1.1.

Oxford 5k (+100k, +1M) [PCI+07]. The Oxford dataset consists of 5,062 images showing eleven different

Oxford landmarks. The images were retrieved from Flickr 12 by querying directly for these landmarks

and adding several distractor images using the query “Oxford” alone. For each landmark five queries are

provided and for each query, four different lists are available: “Good”, that is the queried object is visible in

the image; “Ok”, that is most of the object (more than 25%) is visible; “Junk”, that is the object is heavily

occluded (less than 25% visible); and “Absent”, that is the object is not shown in the image. Furthermore,

two set of distractor images are provided: 99,782 images from the 145 most popular tags on Flickr (+100k);

and 1,040,801 images from the 450 most popular tags on Flickr (+1M). Duplicates with the original 5k

datasets have been removed.

INRIA Holidays [JDS08]. The dataset comprises 1,491 personal holiday images and comes with 500

distinct queries including ground truth results. Some of the images were taken explicitly to test the system

against illumination changes and viewpoint changes. However, Babenko et al. manually bring all images in

the correct orientation.

5.2 Mean Average Precision

Performance evaluation is usually based on a fixed number K of retrieved images per query. Given a query

z0 and retrieved images Z = (z1, . . . ,zK), we define:

True Positives T P: the number of images retrieved that are relevant to the query (that is, show the same

object or scene);

False Positives FP: the number of images retrieved that are not relevant to the query;

False Negatives T N: the number of images which are relevant to the query but not retrieved.

Then, Precision and Recall are given as

Pre(Z) =
T P

T P+FP
and Rec(Z) =

T P

T P+FN
. (58)

The Precision-Recall curve is a common instrument to visualize and understand the performance of a re-

trieval systems. Furthermore, this curve can be summarized in a single value: Average Precision which can

be interpreted as the area under the curve. Let Prek(Z) and Reck(Z) be Precision and Recall up to the k-th

retrieved image, respectively. Then, Average Precision is computed as 13

AP(Z) =
K

∑
k=1

(Reck(Z)−Reck−1(Z))
(Prek−1(Z)+Prek(Z))

2
(59)

with Rec0(Z) = 0 and Pre0(Z) = 1. The Mean Average Precision is calculated to report the performance

over a set of queries.

12See https://www.flickr.com/.
13See the provided source code at http://www.robots.ox.ac.uk/~vgg/data/oxbuildings/.
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Oxford 5k Holidays

[GRPV12] – 0.774

[AZ13] 0.555 0.646

[GKS13] – 0.767

[JZ14] 0.676 0.771

Pre-Trained on ImageNet [DDS+09]

y(15) 0.389 0.69

y(16) 0.435 0.749

y(17) 0.430 0.736

Re-Trained

y(15) 0.387 0.674

y(16) 0.545 0.793

y(17) 0.538 0.764

Table 1: Mean average precision for the Oxford 5k dataset and the Holi-

days dataset. Using the notation from Section 3, Babenko et al. use y(17),

y(16) and y(15) as image representations. These layer correspond to the sec-

ond and first fully connected layers, each with dimension C = 4096, and

the last convolutional layer including non-linearity layer and max pooling

layer, resulting in C = 9216. The results are compared to the following ap-

proaches: Gordo et al. [GRPV12] use Fisher Vectors on densily extracted

SIFT descriptors; Arandjelović and Zisserman [AZ13] use VLAD with

intra-normalization; Ge et al. [GKS13] use sparse-coding to combine SIFT,

DAISY [TLF08] and Sparse-Coded Micro Features; and Jégou and Zisser-

man [JZ14] use Triangulation Embedding and Democratic Aggregation.

5.3 Results

As Babenko et al. do not provide the used implementation or the Landmark dataset, we were not able to

reproduce their experimental results. Therefore, Table 1 summarizes results reported in [BSCL14]. In

particular, they experiment with three distinct layers for image representation: y(15) corresponds to the

last convolutional layer including the subsequent non-linearity layer and max pooling layer; y(16) and y(17)

correspond to the first and second fully connected layer. On the Oxford 5k dataset, the pre-trained model

shows poor performance and the re-trained model is not able to cope with the approach by Jégou and

Zisserman [JZ14]. In contrast, both the pre-trained model and the re-trained model demonstrate state-of-

the-art performance on the Holidays dataset. Further, we see that layer 16 performs best.

As discussed in Section 4.2, Babenko et al. experiment with PCA and Large-Margin Dimensionality Reduc-

tion and Table 2 shows the corresponding results. On both the Oxford 5k dataset and the Holidays dataset,

the feature activations seem to be more robust to dimensionality reduction. Compared to the other ap-

proaches, also using PCA for dimensionality reduction, the compressed re-trained feature activations show

significantly better performance. However, we also note that Large-Margin Dimensionality Reduction does

not show a significant advantage over PCA. Lastly, figure 3 shows two retrieval examples.

5.4 Discussion

The experiments by Babenko et al. raise several questions. First of all, the choice of layer is only justified

experimentally and the re-trained convolutional neural network has been trained towards the classifica-

tion task, as well. Only in the conclusion, Babenko et al. consider training the network directly on image

pairs. Second, Large-Margin Dimensionality Reduction has not been demonstrated on the re-trained neu-

ral network. As the approach does not demonstrate any significant increase in performance over PCA on

the pre-trained model, this may imply that discriminative dimensionality reduction does not work well for

convolutional neural networks. However, we note that Gordo et al. are able to significantly increase per-

formance using Joint Subspace and Classifier Learning – a comparison not available in [BSCL14]. Finally,

results for the compared approaches shown in Tables 1 and 2 are taken from the corresponding publications

and Babenko et al. do not discuss the used evaluation pipeline in detail such that the reported results may

not be comparable.

Oxford 5k Holidays

[GRPV12] – 0.723

[GRPV12]* – 0.764

[AZ13] 0.448 0.625

[GKS13] – 0.727

[JZ14] 0.433 0.617

Pre-Trained on ImageNet [DDS+09]

y(16) (PCA) 0.433 0.747

y(16) (Large-Margin) 0.439 –

Re-Trained

y(16) (PCA) 0.557 0.789

Table 2: Mean average precision for the Oxford 5k dataset and

the Holidays dataset using 128 dimensional image representations.

Babenko et al. use layer y(16) (as it experimentally yields the best re-

sults) compressed to 128 dimensions using PCA and Large-Margin

Dimensionality Reduction. The other approaches have been com-

pressed as discussed in the corresponding publications: Gordo et

al. [GRPV12] use PCA and Joint Subspace and Classifier Learning

(marked with *); Arandjelović and Zisserman [AZ13] use PCA;

Ge et al. [GKS13] use PCA; and Jégou and Zisserman [JZ14] use

power-law normalization after PCA rotation and subsequently keep

the first 128 dimensions (see [JZ14] for details).
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Figure 3: Two retrieval examples (taken from [BSCL14]) on the Holidays dataset using the pre-trained model (on the

top, respectively) and the re-trained model (on the bottom, respectively). In each row, the left-most image is the query

image and correctly retrieved images are outlined in green. Babenko et al. point out that the lower example is a “rare

exception” [BSCL14, p. 10] where the pre-trained model outperforms the re-trained model.

6 Conclusion

In the course of this report we presented current techniques in content-based image retrieval. In partic-

ular, we discussed local descriptors and their aggregation techniques in Section 2.1.1, as well as global

descriptors in Section 2.1.2. Furthermore, after discussing convolutional neural networks in Section 3, we

discussed the use of convolutional neural networks in image retrieval in Section 4. Finally, we presented

experimental results following Babenko et al. [BSCL14] in Section 5.

Overall, we discussed many approaches related to the Bag of Visual Words model [SZ03] relying mostly

on hand-crafted descriptors. Although some techniques make use of metric learning or similar (supervised

or unsupervised) learning techniques, the embedding step and/or the aggregation step are heavily guided

by manual processes, that is the whole retrieval system is explicitly engineered by hand. In strong contrast,

Babenko et al. use convolutional neural networks to automatically learn most of these tasks. Although,

the presented results are not fully convincing, especially on the Oxford 5k dataset [PCI+07], this approach

opens a new direction of research where several subproblems are solved fully by learning algorithms. Still,

the image retrieval community will try to improve these results by adapting pre- or post-processing as well

as network architecture.

6.1 Research Questions

We conclude that combining hand-crafted approaches with convolutional neural networks may be a promis-

ing future research direction. For example, different normalization techniques (for example [AZ13]) may

improve performance. Furthermore, layer selection has only be done experimentally based on the mean

average precision. In contrast, visualizing the energy of the image representations as done in [AZ13] may

help to select suitable layers. In addition, the convolutional neural network was explicitly trained in a

classification framework. Other architectures, as for example a Siamese architecture (see [BSCL14] for ref-

erences), may be tailored directly towards the image retrieval task. Finally, techniques allowing to combine

the information of multiple layers similar to [GKS13] may be interesting.

20



References

[AZ12] Relja Arandjelovic and Andrew Zisserman. Three things everyone should know to improve

object retrieval. In Computer Vision and Pattern Recognition, Conference on, pages 2911–

2918, Providence, Rhode Island, June 2012.
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