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Abstract Correlation between spike trains or neurons

sometimes indicates certain neural coding rules in the

visual system. In this paper, the relationship between spike

timing correlation and pattern correlation is discussed, and

their ability to represent stimulus features is compared to

examine their coding strategies not only in individual

neurons but also in population. Two kinds of stimuli, nat-

ural movies and checkerboard, are used to arouse firing

activities in chicken retinal ganglion cells. The spike tim-

ing correlation and pattern correlation are calculated by

cross-correlation function and Lempel–Ziv distance

respectively. According to the correlation values, it is

demonstrated that spike trains with similar spike patterns

are not necessarily concerted in firing time. Moreover,

spike pattern correlation values between individual neu-

rons’ responses reflect the difference of natural movies and

checkerboard; neurons cooperate with each other with

higher pattern correlation values which represent spatio-

temporal correlations during response to natural movies.

Spike timing does not reflect stimulus features as obvious

as spike patterns, caused by their particular coding prop-

erties or physiological foundation. As a result, separating

the pattern correlation out of traditional timing correlation

concept uncover additional insight in neural coding.

Keywords Neural coding � Spike pattern correlation �
Spike timing correlation � Cross-correlation �
Lempel–Ziv distance

Introduction

It has been already known that stimulus information is

represented with various rules in neuron spike trains called

neural coding. The aim for understanding neural coding is

to explore the distinct relationship between stimulus and

the individual or ensemble neural responses. Many features

in spike trains: firing rate, precise spike time (Butts et al.

2007; Uzzell and Chichilnisky 2004; Berry 1998), spike

timescale (Butts et al. 2007), response latency (Gollisch

and Meister 2008), special temporal patterns (Gollisch and

Meister 2008; Lesica and Stanley 2004; Willmore and

Tolhurst 2001; Berry et al. 1997), as well as the relationship

among spike trains or neurons: firing reliability (Van Ste-

veninck et al. 1997; Berry et al. 1997), synchronization and

correlated temporal firing activity (Shlens et al. 2009;

Puchalla et al. 2005; Schnitzer and Meister 2003; Devries

1999; Meister et al. 1995; Singer 2009), have been dem-

onstrated playing a role more or less in neural coding in

visual system, although it still remain unclear that whether

these elements of neural coding are related to each other

and how they cooperate and integrate to carry stimulus

information.

In this paper, we focus on two aspects: the temporal

coherence of spikes and the firing pattern correlation in

both single and population neural responses.

The neurons’ temporal firing coherence is considered as

spike timing correlation, emphasizing on whether spikes fire

at the same time in spike trains. It has been widely discussed

in previous researches. As for individual neurons, timing

correlation is analyzed by studying firing reliability and

precise temporal coding. In response to multiple stimulus

trials, individual neurons can have extremely precise and

repeatable responses (down to millisecond variability) (Van

Steveninck et al. 1997; Berry et al. 1997). When it goes to
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neuron population, synchronized firing is a major component

of neural activity in retina (DeVries 1999; Meister et al.

1995; Meister 1996). Synchronized activity is supposed to be

more reliable and precise in coding information, which

enables downstream neurons easier to extract the stimulus

information conveyed, and helps neurons to carry more

information than independent coding (Pillow et al. 2008;

Desbordes et al. 2008; Dan et al. 1998). There are many

methods available to quantify the timing correlation between

spike trains, such as the cross-correlation analysis (Perkel

et al. 1967; De Boer and Jongkees 1968), correlation index

(Meister et al. 1995; Schnitzer and Meister 2003), spike

trains distance (Victor and Purpura 1996; Van Rossum 2001)

and other methods considering temporal characters (Kreuz

et al. 2007). Cross-correlation function is used to measure the

timing correlation here which gives more useful correlation

information such as the peak width or time delay in diagrams.

The spike pattern correlation discussed here means the

similarity of firing patterns in spike trains. The difference

between the correlation of spike timing and spike patterns

lies in whether the correlation is considered in temporal

order. Supposing that two spike trains contain similar firing

patterns which do not appear in the same time, measurement

of timing correlation may give the result of low correlation

value between the spike trains. However, it is hard to

determine from this result that whether these two spike

trains are related in other aspects. The Lempel–Ziv distance

(LZ distance) addressed by Christen et al. (2006a) is cal-

culated to evaluate the pattern similarity between two spike

trains. LZ distance is calculated from Lempel–Ziv com-

plexity (LZ complexity) which is used to measure the

information carried along sequences (Wang et al. 2007;

Amigo 2004; Kaspar and Schuster 1987). LZ distance

considers spike trains with similar but possibly not temporal

concerted firing patterns as related (Christen et al. 2006a). It

has been proved effective in measuring neural firing reli-

ability and clustering neuron groups (Christen et al. 2006b).

Using recordings of ganglion cells in five pieces of

chicken retinas, we probed measurement of spike timing

and pattern correlation in both individual and population

responses to natural movies and checkerboard stimuli. By

comparing how well timing correlation and pattern corre-

lation reflect the stimulus information, their relationship

and coding strategy are discussed respectively.

Methods

Experiment procedure

Experimental operations were described as our previous

reports (Zhang et al. 2010). Newly-hatched chickens (3–

15 days after hatching) were investigated in this study.

After decapitation and enucleation of the eye, the eyeball

was hemisected with a fine razor blade, and the vitreous

body and cornea were removed carefully. A small piece

(4 9 4 mm2) of isolated retina was placed on a micro-

electrode array (MEA60, MCS GmbH, Germany) with the

ganglion-cell-side contacting the electrodes. The micro-

electrode array consists of 60 electrodes (10 lm in diam-

eter) arranged in an 8 9 8 matrix (leaving the 4 corners

void) with 100 lm tip-to-tip distances (horizontal and

vertical). The preparation was perfused in oxygenated

Ringer’s solution (containing in mM: 120.0 NaCl, 5.0 KCl,

3.0 MgCl2, 1.8 CaCl2, 25.0 NaHCO3, 1.2 HEPES, 25.0

glucose) with pH value of 7.5 ± 0.2. The tissue and per-

fusate were kept at 38�C by a temperature control unit

(Thermostat HC-X, MCS GmbH, Germany). A small Ag/

AgCl pellet with wire was immerged into the bath solution

and acted as the reference electrode. The neuronal

responses were recorded simultaneously by the micro-

electrode array, and the signals were amplified through a

60-channel amplifier (single-ended amplifier, amplification

1,2009, amplifier input impedance [1010 X, output

impedance 330 X). Signals were sampled at a rate of

20 kHz (MC_Rack, MCS GmbH, Germany). Spikes from

individual neurons were sorted by principal component

analysis (PCA) (Zhang et al. 2004) and K-means clustering

by the commercial software MC_Rack and OfflineSorter

(Plexon Inc., TX, USA). The whole recording system is

shown in Fig. 1.

Stimulus

The stimulus from a computer monitor was projected onto

the retina piece via an optical lens system and covered the

whole area of the micro-electrode array. The stimulation

Fig. 1 The multi-electrode recording system
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protocols are: (1) Three pieces of digitized segments of

grayscale video recordings which covered a wide range of

natural scenes (street, woods, houses etc.). The natural

movies are presented at 10 Hz (the speed as being recor-

ded) with the monitor refresh rate 120 Hz. Each frame

contains 128 9 128 pixels and total 1,920 frames last

192 s (downloaded from the website of Hateren’s lab,

http://hlab.phys.rug.nl/vidlib/index.html, Van Hateren and

Van Schaaf 1998). (2) The checkerboard is made up of

16 9 16 pixels at the frame rate 9.05 Hz lasting 221 s. For

each frame of the stimulus, the pixels are either black or

white according to a binary pseudorandom m sequence.

The two kinds of stimuli, natural movies and checker-

board, are quite different in light intensity, contrast, and

temporal and spatial correlations. To illustrate their dif-

ference, the mean light intensity of stimulus frames, the

mean contrast in pixels, and the spatial and temporal power

spectral densities of the checkerboard and natural movies

are compared in Fig. 2. The statistical characteristics of

three natural movies are similar whereas they differ a lot

from the checkerboard. The checkerboard has the highest

contrast for its pixel switching between absolute white and

black, while the natural movies’ contrast vary around

lower value due to certain temporal correlations (Fig. 2c).

Fig. 2 Natural movies and checkerboard stimuli. a Sample frames of

three natural movies and checkerboard. b The mean light intensity

and c the mean contrast of four stimuli. The error bars stand for the

variation of mean light intensity of each frame and the variation of

contrast of each pixel respectively. d The overall firing rate averaging

across 24 neurons’ response in the first retina to four stimuli. e The

spatial and temporal frequency power spectral densities of the

checkerboard (black) and natural movie (gray) stimuli. Movie and

checkerboard PSD were averaged by each 128 frames over the whole

length. The PSD were normalized so that both stimuli had the same

total power. The temporal PSD are shown at a range of spatial

frequencies and the spatial PSD are shown at a range of temporal

frequencies. Each line stands for the spatial PSD in a certain temporal

frequency (in the first figure) or the temporal PSD in a certain spatial

frequency (in the second figure). Due to the property of the white

noise, all the dark black lines that stand for checkerboard lie

horizontally so that they gather to a bold line. All the other non-
horizontal lines are gray belonging to the natural movie
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The checkerboard has higher mean light intensity and

contrast, leading to slightly higher mean firing rate in

overall neural responses (Fig. 2b–d). The power spectral

density (PSD) of each stimulus is calculated to characterize

the underlying spatial and temporal correlation structure as

shown in Fig. 2e. The checkerboard’s PSD lines lie hori-

zontally showing a flat PSD in both temporal and spatial

frequency domains, indicating it as the white noise that is

random in space and time. Natural scenes have more PSD

at low frequencies reflecting higher spatial and temporal

correlations and this PSD decreases roughly as a reciprocal

power of spatial or temporal spectrum (Dong and Atick

1995; Lesica and Stanley 2004). All these different aspects

of two kind stimuli are likely to arouse different styles of

neural responses. For example, detecting determinism in

firing activities of retinal ganglion cells shows different

nonlinear properties of neuron’s response to natural movies

and checkerboard (Cai et al. 2008). The stimuli difference

may be also reflected by timing correlation or firing pattern

correlation between spike trains.

Cross-correlation function

Firstly we get spike trains x and y consisted of ‘0’ and ‘1’,

denoting the absence or presence of a spike in the time bin

respectively. The time bin is chosen as 1 ms so that there is

no more than one spike in each bin. The normalized cross-

correlation function for calculating the degree of timing

correlation is defined as follows:

cxyðmÞ ¼
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where xn denotes the value of spike train x at moment n;

yn?m is the value of spike train y at moment n ? m; R is the

normalizing factor; cxy(m) stands for the spike timing

correlation between x and y at the time delay m. The peak

value is chosen describing the maximum timing correlation

value between two spike trains (ranging from 0 to 1), which

is considered significant if it exceeds expected value by 3

standard deviations (Liu et al. 2007). From this function,

we can learn that it is quite strict in measuring timing

correlation, requiring most spikes in trains to locate at the

same time point or appear in a constant time delay to

satisfy high timing correlation.

LZ complexity and LZ distance

LZ complexity is applied to measure the generation rate of

new patterns along a sequence (Wang et al. 2007; Amigo

2004). Firstly we get spike train Xn of length n consisted of

‘0’ and ‘1’ as described in cross-correlation calculation.

Then the spike train is parsed using LZ78 coding which

separates the train into no overlapped pattern subsequences

(Ziv and Lempel 1978). As an illustration, the string

0100110001001010 is parsed as 0|1|00|11|000|10|01|010.

Each substring stands for the new pattern growing along

the train. Then the total number of substrings c(Xn) is

regarded as the LZ complexity reflecting the amount of

information carried by particular patterns in the spike train

Xn. The normalized LZ complexity Cn is derived from

dividing c(Xn) by n/log2n, the maximum complexity of

random sequence with length n?? (Kaspar and Schuster

1987). Christen et al. (2006a) developed the Lempel–Ziv

coding into LZ distance. The normalized LZ distance is

calculated by

dðXn;YnÞ¼

1�min
KðXnÞ�KðXnjYnÞ

KðXnÞ
;
KðYnÞ�KðYnjXnÞ

KðYnÞ

� �

where the complexity K(Xn) is given by

KðXnÞ ¼
cðXnÞ log2 cðXnÞ

n

and KðXnjYnÞ is the mutual information complexity between

spike trains Xn and Yn which is calculated using cðXnjYnÞ,
denoting the number of substrings in Xn but not in Yn.

A large number of similar patterns appearing in both

spike trains will lead to a large overlap of the substrings.

Thus, the distance between spike trains with similar pat-

terns is small (tend to zero), whereas the distance between

spike trains with different patterns is large (Christen et al.

2006a). Note that firing rate is considered as a part of firing

patterns, so that the probability modification by spike

number is not involved here. Pattern similarity is compared

without temporal order during the process for calculating

LZ distance, so pattern correlation considers the overall

neural firing form but not the detailed firing time. Overall

features like the firing rates, the firing styles such as sparse

or dense, or distribution of firing events may affect the

result of pattern correlation measured by LZ distance.

Results

Five retinas are stimulated by checkerboard and three natural

movies with 24, 20, 50, 55, 44 ganglion cells recorded

respectively. The LZ distance and cross-correlation function

are calculated using 50 s spike trains under each stimulus.

Single neuron’s response

Firstly, the cross-correlation function and LZ distance of

each individual neuron during response to each two stimuli
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of four was calculated, and the results were averaged

among all the neurons recorded in each retina. All spike

timing correlation measured between different stimulus

remains unapparent with the peak cross-correlation

value \ 0.1. Moreover, no obvious spike timing correla-

tion is observed related to stimulus indicated by cross-

correlation value which changes with whatever similar or

totally different stimulus (Fig. 3a).

On the other hand, LZ distance shows that neural firing

patterns are always correlated more closely between

movie-movie stimuli than the movie-checkerboard group

(p \ 0.01, paired t-test), and no obvious difference is

shown within movie-movie group (p [ 0.05, balanced one-

way ANOVA), implying that the same kind stimulus

arouse similar firing patterns in spike trains (Fig. 3b). As

Fig. 3 implies, firing patterns in spike trains may carry

information about ensemble stimulus mode, such as the

overall contrast and spatiotemporal correlations, despite of

failing to tell the further difference in details like precise

temporal and spatial features in three natural movies. The

reason may lies in that the neural response difference

caused by different natural movies is no more obvious than

the variation between individual neurons’ response to the

same stimulus, so the subtle stimulus-induced difference is

covered after averaging the overall neuron activities.

To further study how the firing patterns change with

stimulus, we divide spike trains with 10 s increment from

the beginning to 10 s, 20 s,…, 90 s respectively and use

LZ complexity to calculate the speed of new pattens

increase which the spike train carries to code stimulus. The

results of all retina pieces reach the similar conclusion and

Fig. 4 presents the results in the first retina with 24 neurons

recorded for illustration.

After normalization and averaging across the 24 neu-

rons, LZ complexity trend is shown in Fig. 4. Since the

checkerboard presents new random information continu-

ously as white noise, and the natural movies contains rich

temporal correlation along the time, so that compared to

white noise less new independent information appear in the

movies. The overall complexity of response to checker-

board is obviously larger than that of natural movies

whereas the firing patterns under natural movies are almost

less various. The normalized LZ complexity is decreasing

with longer spike train, indicating that less new patterns

appear and the neural firing is becoming more and more

stable and regular, which may be regarded as the pattern

adaptation. As a result, firing patterns appear to be closely

Fig. 3 The spike timing correlations and pattern correlations were

calculated by cross-correlation function (a) and LZ distance (b)

between each single neuron’s responses to different stimulus. The

result was averaged in each retina. The paired t-test is implemented

between the movie-movie correlation values and movie-checkerboard

correlation values of each neuron’s response. For the cross-correlation

result, p = 0.0028, 0.5746, 0.8148, 0.3466, 0.0512, respectively, in 5

retina. Only the neural responses in the first retina are correlated to

similar stimuli. For the LZ distance result, p = 6.5353e-013, 0,

0.0015, 2.2926e-008, 0, respectively, in 5 retinas. Consequently,

cross-correlation values under two kind stimuli groups do not make

any obvious difference here and Lempel–Ziv distances are signifi-

cantly smaller in movie-movie pairs than those in movie-checker-

board pairs. But no obvious difference is shown within movie-movie

or movie-checkerboard groups in both cross-correlation and LZ

distance results (balanced one-way ANOVA, cross-correlation:

p = 0.0545, 0.9347, LZ distance: p = 0.3005, 4.6910e-005 for

movie-movie and movie-checkerboard respectively)

Fig. 4 Normalized LZ complexity Cn of 24 neurons’ responses in the

first retina with the spike train length from the beginning to 10 s, 20 s

,…, 90 s, respectively. The overall complexity of response to

checkerboard is obviously larger than that of natural movies. The

complexity is decreasing with longer spike train, indicating that less

new patterns appear and the neural firing is becoming more and more

stable and regular
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related to the information carried by stimulus, and the

adaptation seems to be a general mechanism in efficient

coding.

Neuron population’s response

While early research suggested that individual neurons are

sufficient to represent information of the stimulus (Niren-

berg et al. 2001), it is now generally accepted that unam-

biguous representations are based on population codes.

Next, we extend to examine how correlations between

neurons organize in population coding. Here we only

consider the correlation between two neurons since it has

been suggested that pairwise correlation plays dominant

role in neurons’ correlation coding (Schneidman et al.

2006; Shlens et al. 2009). For checkerboard and natural

movies, respectively, spike trains of each two neurons are

calculated by cross-correlation function and LZ distance to

assess the concerted firing degree and the pattern similarity.

The results of all retina pieces reach the same conclusion

and the first retina is presented here as an example.

Figure 5a gives recording electrodes’ location of 24

neurons with their numbers. Typical cross-correlation

diagrams showing timing correlation with different degrees

of highly synchronized, correlated, no obvious correlation

respectively are shown in Fig. 5b. Figure 5c plots all the

cross-correlation values by grayscales between each two

neurons in the retina, showing the neural correlation

activities in an all-round manner. Most neurons are poorly

correlated in spike timing while only several pairs are

Fig. 5 The correlation distributions in neuron population. a The

recording electrodes’ location with their corresponding numbers (in

this retina 24 neurons are recorded). b Different cross-correlation

results between two neurons under checkerboard, showing three

typical timing correlation: highly synchronized, correlated and no

obviously timing correlation. c The spike timing correlation between

each two neurons in all 24 neurons under four stimuli. Each block’s

grayscale stands for the cross-correlation peak value between neurons

with their numbers in x and y axis. The brighter the grayscale is, the

more synchronized two neurons are. Along the diagonal neurons

are calculated auto-correlation reaching the max correlation value 1.

d The spike pattern correlation between each two neurons are

calculated by LZ distance. The grayscale is set by 1 - dLZ to match

the cross- correlation value so that the brighter the grayscale is, the

more similar two neurons’ spike patterns are. The timing correlations

and pattern correlations are organized differently in neuron popula-

tion and show no direct relationship with each other
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highly synchronized, just as the first kind of cross-corre-

lation diagram in Fig. 5b. We also find that most of these

highly synchronized neuron pairs remain concerted firing

during response to all four stimuli, with their recording

electrodes in Fig. 5a as neighbors (for example, neuron 4

and 15). Distant neurons generally correlate poorly in spike

timing, as described in previous research that the timing

correlation decrease with the distance between two neurons

(Smith and Kohn 2008).

However, measurement of spike pattern similarity

shows different organization in neuron’s correlation. As

illustrated in Fig. 5d, pattern correlation appear to be

independent of neuron locations. Compared with timing

correlation, highly synchronized neurons are not neces-

sarily the most similar ones in spike patterns in all neuron

pairs relatively, and neurons with similar spike patterns are

not necessarily firing temporally concerted.

To better characterize the overall correlation distribu-

tions, cross-correlation values and LZ distances between

the 24 neurons in Fig. 5 are reordered and drawn in Fig. 6.

In Fig. 6a, most neuron pairs are not obviously correlated

and only a few are highly synchronized, so that the curve of

cross-correlation value remains in the low level and rise

abruptly at last a few neurons pairs. However, pattern

correlations are dispersedly distributed in the distance

range as shown in Fig. 6b. The overall LZ distances

between neurons in response to checkerboard stimulus are

obviously larger than those in response to natural movies.

Timing correlations are also observed subtly lower under

checkerboard stimuli in Fig. 6a, but not as significant as

pattern correlation in Fig. 6b, and the overall correlation

degree of neurons in response to three similar natural

movies can not be clearly separated in Fig. 6a. The results

indicate that stimulus features would be encoded by both

the neurons’ timing correlation and pattern correlation, but

more remarkable in firing patterns.

Conclusion

In sum, by calculating the spike timing correlation and

pattern correlation between spike trains, we find that

overall spike patterns can clearly tell the difference of two

kind stimuli but the spike timing fails, and neural popula-

tion also cooperate in firing patterns to encode the spatial

and temporal correlations in stimulus. Particularly, the

firing pattern shows stronger correlation with stimulus

features compared with spike timing, which implies that

useful coding information may lose if we only consider the

timing correlation with strictly temporal limitations.

Discussion

In this paper, we use two different kinds of stimuli, natural

movies and white noise, to test whether overall firing

pattern without consideration of strict temporal orders can

present any additional information about the stimuli.

According to the different light intensity, contrast changes,

and temporal or spatial correlations in stimulus, the neural

response may vary in overall patterns. For example, neu-

rons may fire sparsely (Willmore and Tolhurst 2001) with

long timescales (Butts et al. 2007) under natural stimulus.

The latency or distribution of the firing events may be

related to certain stimulus patterns (Gollisch and Meister

2008). The differences in firing rate, firing timescales, or

distribution of firing events in spike trains affect the overall

pattern similarity so that measurement of pattern correla-

tion may reflect the remarkable difference between stimuli.

Firstly, pattern correlation and timing correlation are not

isolated, because if two spike trains are highly synchro-

nized, their patterns will be similar as well, although not

necessarily reach the maximum similarity relatively. Thus,

is the property of firing pattern in our results brought by

timing correlation? For comparison, high pattern correla-

tion between two neurons does not directly equal to high

timing correlation (Fig. 5c). Moreover, the results of tim-

ing correlations just show stimulus difference subtly in

Fig. 6 The total 276 correlation values of neuron pairs are reordered

from low to high, expressing overall distribution of timing (a) and

pattern correlations (b) respectively. The LZ distances between

neurons’ response to natural movies are shorter than those to the

checkerboard, demonstrating that natural movies make neurons

cooperate closer in firing patterns than checkerboard
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neurons’ population performance (Fig. 6a) and fail in sin-

gle neuron’s response (Fig. 3a). The different performance

of two correlations demonstrates that the observed mean-

ingful stimulus-related pattern correlation is not entirely

caused by spike timing correlation. Firing patterns could

give us additional insight in exploring neural coding

mechanisms.

Next question is why the timing correlations fail to

reflect stimulus difference in single neurons’ responses.

Considering the precise temporal coding theory in visual

systems, the precise temporal firing provides a substrate for

unambiguous representations of complex stimuli (Butts

et al. 2007; Theunissen and Miller 1995; Gerstner et al.

1997; Rullen and Thorpe 2001). This means the precise

firing time is very sensitive to any subtle stimuli informa-

tion, so that the neuron can code stimulus accurately. In

response to identical stimulus trials, individual neurons

have highly repeatable responses. In this paper, the scenes

that locate in one neuron’s receptive field at the same time

in three natural movies are subtly different and their tem-

poral correlations are also diverse. Small difference in

stimulus results in largely various firing time, so the

stimulus-aroused timing correlation of individual neurons

is weakened. As a result, even though the natural movies

and checkerboard are quite different, we still can not tell

their difference distinguished from that between natural

movies by comparing each spike’s firing time exactly.

From another point of view, for the measurement of

population correlation in Fig. 6a, timing correlation

between neurons can more or less reflect the difference

between two kind stimuli. So it may also consolidate that

single neural coding is sometimes insufficient to express

stimulus information while population coding can repre-

sent finer details of spatial information (Schnitzer and

Meister 2003; Frechette et al. 2005).

Last but not least, why does the pattern correlation seem

related to stimulus more closely than timing correlation in

neurons’ population activities? Correlated firing in neuron

population has been widely studied about the mechanism

and function in neural coding. The timing correlation may

be caused by two aspects: generated intrinsically by the

neural circuitry (DeVries 1999; Brivanlou et al. 1998;

Meister et al. 1995) or aroused by external stimulus.

In classical correlation analysis, direct inference was

made from cross-correlogram to the underlying connec-

tivity patterns. Experiment on salamander ganglion cells

reveals that there are three types of correlated firings in

ganglion cells according to the peak range in the cross-

correlogram: broad (40–100 ms), medium (10–50 ms) and

narrow (\5 ms) correlations were attributed respectively

to shared signal from photoreceptor, amacrine cell

and transferred by gap junctions between ganglion cells

(Brivanlou et al. 1998).

However, the synchronization mode is not absolutely

fixed by neurons’ connectivity circuitry (Schnitzer and

Meister 2003). The timing correlation between neurons can

be enhanced by receiving synchronized stimulus or weak-

ened vice versa. The timing correlation among the same

neurons can change dynamically towards the stimulus. In

cats’ visual cortex, when two neurons with different feature

preference were respectively optimally and suboptimally

driven by certain stimulus, the stimulus-dependent time

delay was observed in their cross-correlograms (König et al.

1995). Moreover, the result is further enhanced that the time

course of significant timing correlation patterns among two

or more neurons partially followed the temporal rhythm of

the stimulation by using NeuroXidence analysis (Pipa et al.

2008). Thus, the dynamical varying interactions between

neurons is stimulus-specific, indicating that synchronization

among neurons could be a way of population coding to

represent stimulus features (Singer 2009).

As a result, the timing correlation across neurons could

be simultaneously affected by stimulus and physiological

connectivity. As Fig. 5c shows, the synchronized neuron

pairs do not remain the same across all the stimulus. Also

in Fig. 6a, neurons’ timing correlations are slightly higher

in response to natural stimulus which have more spatial

correlations. However, in our results these stimulus-

induced changes in timing correlation are inconspicuous,

while the functional connectivity seems dominate the

correlation patterns. In Fig. 5b, c, most of the highly

coordinated neurons fire with high timing correlation

whatever in response to natural movies or to checkerboard,

being recorded by neighboring electrodes. During the

natural movies, after a time delay the same object and

scene may move from one to another neuron’s receptive

field, arousing similar firing activities of these two neurons.

But we did not find neuron pairs that have high spike

timing correlation at the corresponding time delays. So we

speculate that these neurons’ concerted firing is mainly

affected by physiological connections. In fact, many

researches have shown that correlated firing timing always

happen in adjacent neurons (Shlens et al. 2009; Meister

et al. 1995; Meister 1996; DeVries 1999; Mastronarde

1983; Puchalla et al. 2005).

Nevertheless, Fig. 5d shows that pattern correlation is

not restricted in neuron locations, and the correlation dis-

tribution is totally different compared to timing correla-

tions. Spike patterns may be mostly determined by the joint

effect of each neuron’s individual coding property and the

stimulus features, while spike timing correlation is easily

affected by shared input signal through gap junctions

among surround neurons or chemical synapse connections

in the pathway.

For further research more evidence will be required in

other stimuli with simple parameters so that detailed
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mechanism of firing pattern coding can be examined. The

formation and decoding principle of neural firing patterns

need to be explained combined with physiological mean-

ings. Also, the effect and the coding information brought

by overall patterns and precise spike timing respectively

need to be further discussed. As the comprehensive rep-

resentation of stimulus information, it seems that firing

patterns are always distinct and reliable in response to

certain stimulus. Therefore, the overall firing patterns may

provide more convictive and adequate information than

separate spikes, which helps us to distinguish the important

content in stimulus that is coded by neurons.
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