
Neural Computation of Arithmetic
Functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
KAI-YEUNG SIU AND JEHOSHUA BRUCK

The basic processing unit of a neural network i s a linear thresh-
old element. I t has been known that neural networks can be much
more powerful than traditional logic circuits, assuming that each
threshold element can be built at a cost comparable to that o f AND,

OR, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANor logic elements. Whereas any logic circuit o f polynomial
size (in n) that computes the product of two n-bit numbers requires
unbounded delay, such computations can be done in a neural net-
work with “constant” delay. We improve some known results by
showing that the product o f two n-bit numbers and sorting of n
n-bit numbers can be computed by a polynomial-size neural net-
work using only 4 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 unit delays, respectively. Moreover, the
weights of each threshold element in our neural networks require
O(1og n)-bit (instead of n-bit) accuracy.

I. INTRODUCTION

Neural networks can be viewed as circuits of highly inter-
connected parallel processing units called “neurons.” The
most commonly used models of neurons are linear thresh-
old gates or, when continuityor differentiability is required,
elements with a sigmoid input-output function. Because of
recent advances in VLSl technology, the neural network has
also emerged as a new technology and has found wide
application in many areas.

Much of thecurrent research in neural networks i s in the
area of pattern classification and is concerned with devel-
oping efficient “learning” algorithms for adjusting inter-
connection weights adaptively to perform the desired clas-
sification. Heuristics such as the “back propagation
algorithm” have obtained surprisingly good empirical
results zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[I]. In this paper, we shall look at another area of
application of neural networks. Our model of a neuron i s
the linearthresholdgate,and the networkarchitecturecon-
sidered here i s the layered feedforward network. We shall
see how common arithmetic functions such as multipli-

Manuscript received Nov. 14,1989; revised March 14,1990. This
work was done while K.-Y. Siu was a research student associate at
IBM Almaden Research Center and was supported in part by the
Joint Services Program at Stanford University (US Army, US Navy,
US Air Force) under Contract DAAL03-88-C-0011, and the Depart-
ment of the Navy (NAVELEX) under Contract N00039-84-C-0211,
NASA Headquarters, Center for Aeronautics and Space Informa-
tion Sciences under Grant NAGW419-S6.

K.-Y. Siu is with the Information Systems Laboratory, Stanford,
CA 94305, USA.

J. Bruck i s with the IBM Research Division, Almaden Research
Center, San Jose, CA 951204099.

IEEE Log Number 9039184.

cation and sorting can be efficiently computed in a “shal-
low” neural network. Whereas the interconnection weights
are modified adaptively for different inputs in pattern clas-
sification and the desired classification is usually only
approximated, in our network the weights are fixed for all
inputs and the desired function i s computed exactly. We
shall confine our attention to operations on numbers rep-
resented in binary and we assume the inputs are encoded
in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{+I , -1) instead of {I, 0). Little would change in our
analysis i f we adopted the conventional {I, 0) encoding
since the transformation {+I, -1) + {I, 0) can easily be
done by x -+ (x + 1)/2.

The remainder of this paper i s divided into seven major
sections. In Section 11, we review the classical model of a
neuron, indicate the limitation of its capability and address
the issues of sensitivity and dynamic range of parameters
fromthepractical pointofview. In Section Il1,weintroduce
a more practical model of a neuron in which we restrict the
weights to be integers and the growth rate of the magni-
tudes of the weights to be at most polynomial in the size
of the inputs. In Section IV, we consider a feedforward net-
work of such neurons and indicate its unrestricted capa-
bility to compute any Boolean function. In Section V, we
present some known lower-bound results on the classical
implementation of arithmetic functions such as multipli-
cation of two n-bit integers to indicate that unbounded
delay i s required using AND, OR, NOT logic elements. In Sec-
tion VI, we show that our model of a feedforward neural
network is very fast in computing arithmetic functions. In
particular, sorting, sum of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn n-bit numbers, and multipli-
cation of two n-bit numbers can all be computed by a shal-
low neural network. The fact that these two functions can
be computed in a “constant-depth’’ neural network was
shown in [2] (see also [3]); however, their construction is not
depth-efficient and it i s not explicitly stated how many con-
stant layers are needed in each step of their construction.
We shall see how the constant can be reduced by a more
depth-efficient construction and by using the results in [4].

It has been known [5], [6] that more complicated arithmetic
functions such as exponentation and division can be com-
puted in a constant-depth neural network. We shall only
review the technique of reducing division to exponentia-
tion and refer interested readers to [5]. In the conclusion,
we indicate some possible extension of these results and
other directions of research.

PROCEEDINGS OF THE IEEE, VOL. 78, NO. IO, OCTOBER 1990 1669

II. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACLASSICAL MODEL OF A NEURON

The classical model of a neuron zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[A i s a linear threshold
device, which computes a linear combination of the inputs,
compares the value with a threshold, and outputs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ I (or
-1) if thevalue is larger(or smaller)than the threshold. More
formally, we have

Input: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x' = (XI, . * , x,) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR"

Parameters:

weights zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAiC = (w,, - , w,) E R"

threshold 0 E R

output:

where

+ I i f y r 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI -1 otherwise
sgn {Y) =

In this paper, we consider only Boolean inputs x' E { + I , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-I} '. It i s easy to see that logic elements such as AND, OR,

NOT can be simulated by a neuron:

sgn (xl + - . + x, - n)

+ I iff all xi = +I I -1 otherwise
= AND (Xi, * * , X,) =

sgn (x, + * + x, + n - 1)

+I

-1 otherwise

iff some x, = +I

+I i f x = -1 I -1 i f x = + I

I = O R (Xi, * ' ', X,) =

sgn (-XI = NOT (x) =

ABooleanfunction thatcan be realized bya neuron iscalled
a linear threshold function. However, the class of linear
threshold functions only constitutes a vanishingly small
subclass of the totality of Boolean functions. In fact, there
are 2'" Boolean functions in n variables, but only zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2°(n2) are
linear threshold functions. On the other hand, since any
Boolean function can be implemented by a network of AND,

OR, NOT elements, it follows that a network of neurons can
implement any Boolean function. Note that we have not yet
made any restriction on the size of the network, i.e., the
number of elements in the network. In general, an arbitrary
Boolean function must require the size of the network to
grow exponentially large with the number of input vari-
ables. Later on, we shall see that some functions that can
be computed by a network with a polynomial number of
AND, OR, NOT elements require an unbounded number of
delays, whereas only a constant delay i s needed if com-
puted by a neural network.

In the definition of the classical model of a neuron, the
weights can take on real values. Since we would like to
implement a neuron using an analog device, from a prac-
tical point of view it i s important to see if the assumption

1670

of real valued weights i s necessary. In other words, can all
linear threshold functions be realized if the weights are of
finite precision? Actually, it was known [8] that each of the
weights in a linear threshold function of n variables can be
assumed to be integersof O(n log n) bits. However, this st i l l
allows theweights togrow exponentiallyfast with the num-
ber of input variables. In fact, most linear threshold func-
tions have weights that must grow exponentially fast. This
fact can also be interpreted as the necessity of high accu-
racy and high sensitivity of parameters in the actual imple-
mentation of a neuron. Motivated by this consideration, in
the next section we consider a more practical model of a
neuron, in which the weights are restricted to grow only
polynomially fast.

1 1 1 . MORE PRACTICAL MODEL OF A NEURON

In the following, we consider a restricted class of neu-
rons, which is more practical as a computational model.
Each function f (X) = sgn (E:=, wi - x, + w,,)computed in this
subclass i s characterized by the property that the weights
wiare integers and bounded bya polynomial in the number
of input variables, that is, I wi I 5 n c for some constant c >
0. For conveniLnce, we refer to this restricted model of a
neuron as an LTl element. ~

Since the weights in an LT, element are assumed to be
polynomially large integers, this means that weonly require
O(log n)-bit accuracy in each weight. Thus in actual analog
implementation, the device is much less sensitive to small
fluctuations of parameters than the classical Eodel. Note
that the logic elements AND, OR, NOT are also LT, elements
(see Section 11). A natural question to ask i s how limited in
capability are 8l elements in comparison with the classical
model? In [4], it was shown that any classical neuron cAn
be simulated by three layers of a polynomial number of LT,
elements. In other words, we can trade off exponentially
large weights with a polynomial increase in size and a con-
stant increase in delay by a factor of three. Hence any func-
tion that can be computed by a network of a polynomial
number of classical neurons witJ constant delay can also
be computed by a network of LT, elements with constant
delay and polynomial increase in size. This leads naturally
to the consideration of the corn utational capability of a
feedforward neural network of 6, elements.

IV. FEEDFORWARD NEURAL NETWORK

A feedforward network i s a network of interconnected
functional elements E C: { + I , -1) + { + I , -1) with no
feedback. More formally, we define a feedforward network
to be an acyclic labeled directed graph, with

a l is t of ni, distinguished input nodes with indegree
0
internal nodes with arbitrary indegreewhich compute
functional gates E C of the outputs from precedent
nodes
a list of nout distinguished output nodes.

The depth of a node vis defined to be the length of the long-
est path (each edge is a unit length) from the input nodes
tov.Thedepthofthenetworkisdefined to bethe maximum
depth of all output nodes. If we group all gates with the
same depth together, we can consider the network to be
arranged in layers, where the depth of the network i s equal

PROCEEDINGS OF THE IEEE, VOL. 78, NO. IO, OCTOBER 1990

to the number of layers (excluding the input layer) in the
network, and gates of the same layer are computed in par-
allel. Given an assignment of the input nodesfrom domain zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
{ + I , - I } n'n, the value of the network at each output node
is obtained by evaluation of the gates in increasing depth
order. The network therefore defines a mapping from { + I ,
- 1 } zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnln to { + I , - I } and the depth of the network can
be interpreted as the time for its parallel execution of the

we introduced a new model of a neuron, called an 3l ele-
ment, as the basic building block in our neural network. In
fact, the main theme of this paper i s to see how a shallow
neural network of polynomial size can compute common
functions such as multiplication and sortingwith small con-
stant delay.

VI. COMPUTING WITH SHALLOW NEURAL NETWORKS
mapping.

We define a neural network to be a feedforward network
of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8, elements. Similarly, a logic circuit is a feedforward
network of AND, OR, NOT logic gates. Obviously, any Boolean
function can be computed by a logic circuit (without any
restriction on its size) and thus by a neural network, since
AND, OR, NOT are also zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL?, elements.

Loosely speaking, a network i s shallow i f it has small
depth. Before we show how a shallow neural network can
compute arithmetic functions, we first review the classical
implementation using AND, OR, NOT logic elements and the
limitation of constant depth circuits of such elements. This
i s the subject of next section.

V. CLASSICAL IMPLEMENTATION OF ARITHMETIC FUNCTIONS

It i s well known among experienced circuit designers that
they cannot implement some common functions such as
parity and multiplication with small programmable logic
arrays (PLAs), a type of integrated circuit used inside micro-
processors to compactly represent many functions. Thus
it i s of both practical and theoretical interest to see how
largethe sizeof logiccircuits must betocomputesuch com-
mon functions. It turns out that PLAs are well modeled by
bounded-depth circuits of AND, OR, NOT logic elements with
arbitraryfan-in. In 1961, Lupanov[9] studied bounded-depth
circuits and showed that paritycircuits of depth 2 must have
an exponential number of gates. A breakthrough in theo-
retical research occurred in 1981 [IO]; Furst er al. showed
that any bounded-depth logic circuits must use more than
a polynomial number of gates with arbitrary fan-in. This
lower-bound result was further improved by several
researchers [I?], [12], who showed that an exponential num-
ber of gates i s necessary to implement the parity function
in a bounded-depth logic circuit. All these results can be
interpreted as proofs that any PLA implementing parity must
have an exponential amount of chip area, and thus estab-
lishing a basis for the common belief among circuit design-
ers.

Another way of interpreting these results i s that any par-
itycircuitwhich uses apolynomial amountof chipareamust
have unbounded delay. By introducing the notion of con-
stant-depth reduction [2], similar results can be shown for
other common functions such as multiplication and divi-
sion. In fact, currently used multipliers require O(log n)
delays for input number of n-bits. The lower-bound results
also imply that the minimum possible delay for multipliers
of polynomial size is fl(log nllog log n).

We can explain the preceding negative results by the fact
that the basic processing logic elements AND, OR, NOT of the
circuits are not powerful enough. In practical implemen-
tation, these logic elements are built using analog devices;
perhaps we can build a more powerful gate out of analog
devices to increase the computational power of the circuit?
In Section Ill, because of some issues of implementation,

In this section we focus on the computational capability
of the feedforward neural network model introduced in
Section IV. We assume that each neuron takes a unit delay
to compute and we consider only neural networks of poly-
nomial size. We shall see how the product of two n-bit num-
bers and sorting of n n-bit numbers can be computed with
only 4 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 unit delays, respectively. Since our construc-
tion of the "neural multiplier" generalizes a known tech-
nique of computing symmetric functions with a neural net-
work, we first show how any symmetric function can be
computed in two layers of neural networks [131,[141.

A. Computing a Symmetric Function

Definition: A Boolean function f i s said to be symmetric i f

f(xl, * * xn) = f(X(1), * * x(nJ

for any permutation (x(~) , , x(,$ of (xl, . . * , xn), or equiv-
alently, there exists a set of numbers {kl, * . . , k,}, 1 k, 1 I
n such that

n

f(xl, , x,) = 1 iff zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc x, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE {kl, , k / } .

In other words, a symmetric function depends only on the
sum of input values. Using the same notation, let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, = l

f n

The first layer of our network consists of neurons which
compute the values yk, and yk,. In the second layer, the out-
put neuron takes as inputs Yk,,)ik, and outputs sgn { c \ = ~
(Yk, + Pk,) - 1) . If E?=, X; $ {kl, * ' . , k,}, then Yk, = -pk, for
a l l j = I , ' ' * ,/. Thus, E,=, (Yk, + pk,) = 0 and output = -1.
On the other hand, if Cy=, x, = k, for some k, E {kl, . . ,

= sgn {E:=, (Yk, + pk,) - 11 = sgn (2 - 1 1 = I . Hence our
network correctly computes the desired symmetric func-
tion. Since the parity function is symmetric, it follows from
the above results that parity can be computed in two layers
of neural network, whereas it takes unbounded delay to
compute parity in a logic circuit. Figure 1 illustrates a two-
layer network for computing the parity function of three
variables. Note that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
k , } , then yk, = pk, = I and Yk, = pk, for i # j. Thus, Output

Parity (xl, x2, x,) = 1 iff number of x;s = 1 i s odd

iff x1 + x2 + x3 = -1 or 3.

On closer observation, it i s evident that the above con-
struction also holds for any Boolean function f(xl, . . . , x,)
whose value only depends on a weighted sum of the vari-
ablesC:=l w, . x,,wheretheweights w,are integersand poly-

1671 SIU AND BRUCK: NEURAL COMPUTATION OF ARITHMETIC FUNCTIONS

I \

- / zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1st zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlayer zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2nd layer

Fig. 1. Two-layer neural network for computing the Parity
(xl, xz, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx,) function.

nomially bounded. Thus any such function can be com-
puted in two layers of neural networks. Also notice that
since we only use the output neuron to compute the linear
combination of the outputs from the first layer, which only
takeson value +I or -1, it i s redundanttocomputethesgn
(- * a) after computing the linear combination. We shall
make use of these two observations in the next section. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B. Addition and Multiplication

Using the carry-look-ahead method, it was known that
the sum of two n-bit numbers can be computed in a
bounded-depth logic circuits of polynomial size with arbi-
traryfan-in. In fact, itwasshown in[4]thatatwo-layerneural

network suffices. This result is based on ideas from har-
monicanalysisof Boolean functionsand we refer interested
readers to [4], [I51 for more details. Since the least signif-
icant bit of the sum is the EXCLUSIVE-OR function of the least
significant bits of the two numbers, which i s not a linear
threshold function, it follows that the sum cannot be com-
puted usingonlyone 1ayer.Thusatwo-layer neural network
i s depth-optimal.

Whereas the sum of two n-bit numbers can be computed
in bounded-depth logic circuits, the results in [IO] imply
that the sum of n n-bit numbers cannot be computed with
bounded delay. However, such computations can be done
with bounded delay in a neural network. In the following,
we first show how to compute the sum of n log n-bit num-
bers in two layers by generalizing the techniques of com-
puting symmetric functions. Based on this technique, we
thenshowhowtoreducethesumofnn-bit numbemtothat
of two O(n)-bit numbers using two layers. The results in [4]
implythat two more layers suffice tocompute the final sum.
Afterwards we shall see how to combine the second and
the third layers. Finally, we show how the product of two
n-bit numbers can be reduced to the sum of n %-bit num-
bers using one more layer, so that altogether only four lay-
ers are needed to compute the product.

1) Computing the Sum of n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlog n-bit Numbers with Two
Layers: Given n log n-bit numbers, say in binary represen-
tation, z, = zIlogn . - . . n, we would like to
compute the binary representation of their sum

z,, for i = 1,

n logn

s = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzi = c 2i4(Zl, + z2, + * * . + ZnJ.
i=l , = 1

1672

I

Clearly, s is a polynomially bounded weighted sum of the
variables z,, for I = 1, . . , n and = 1, . . , log n. Thus,
each bit of the binary representation of the sum s can be
regarded as a Boolean function that depends onlyon a poly-
nomially bounded weighted sum of n x log n input vari-
ables. From the first remark given at the end of Section VI-

A, any such function can be computed using 2 layers.
2) Reduction of the Sum of Two O(n)-bit Numbers: Sup-

posewearegiven nn-bit binarynumbers:~, = x,, ,x,"-~. . .
xIor I = 1, . . * , n and we want to compute their sum. We
shall see how to reduce this multiple sum to the sum of two
numbers. Without zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAloss of generality, we assume that N =
nllog nand log n are integers, where log denotes logarithm
tothe base2. Considerthe following scheme: Partition each
binary number x; into N consecutive blocks Y,,, Y,,, .,
Y I N - , of log n bits each so that

N - 1

/ = 0
x, = c,, . 2logn I

where 0 5 2, < 2"gn. Note that in binary representation,

say a block g,, i s "odd" 6t "even" if i s odd or even, respec-
tively.

Let Sodd denote the sum of then numbers when the even
blocks are set to zero and seven denote the sum when the
odd blocks are set to zero. The sum of the original n num-
bers will be the sum of Sod,, and seven. We now show how
to compute Sodd and seven in parallel using two layers.

Observe that for each j = 0, . * . , N - 1, the sum

Y,, = X,logo 2 . * * XI, and L, = xf"-lx,"-z * - XI, log"' We

n-1 n-1

S, = c Yl, < c 2logn = 221ogn
r = O I =o

and thus S/ can be represented in 2 log n bits. Observe that
each 5, i s the sum of n log n-bit numbers. It follows from
the previous section that the binary representation of each
S, can be computed with two layers. Now

Since Si can be represented in 2 log n bits, there is no over-
lapping in the binary representation between

Therefore, wecan sum each odd blockS, in parallel with two
layers and concatenate the resulting bits of 'each sum
together to obtain Sodd. We can obtain seven in a similar fash-
ion in parallel. To sum the two O(n)-bit numbers Sodd and
seven, another two layers suffice [4].

3) Combining the Second and Third Layers: Recall the
second remark given at the end of Section VI-A. Since each
output of the second layer is equal to a linear combination
of the outputs from the first layer, which only takes on val-
ues +I or -1, the sgn (a . .) in the second layer i s not
needed. Therefore we can directly feed the outputs from
the first layer and take the linear combination as inputs to
the third layer. As a result, the first three layers can be com-
bined into two layers. So altogether only three layers are
needed to compute the sum of n n-bit numbers.

A small numerical examplewill be helpful to illustratethe
ideas. We take n = 16 and for simplicity, we only compute
the sum of four 16-bit numbers. In Fig. 2, each of the four
binary numbers xl, x2, x3, x4 are partitioned into four blocks
Ylo, Y,,, Y I 2 , Yls of log n = 4 bits each, for i = 1, . . . , 4. The

P R O C E E D I N G S OF T H E IEEE, VOL. 78, NO. IO, O C T O B E R 1990

+ 1 0 0 1 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 0 0 1 ~ ~ 0 0 0 1 1 1 1 0 ~ 0 0 0 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS d d

0 0 1 0 0 0 1 0 1 1 1 1 0 0 0 0 0 0 0 1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto ta lsun

Fig. 2. Computing a multiple sum.

even blocks RIO, Rlz are denoted by a dotted rectangle and
the odd blocks RI,, RI, are denoted by a solid rectangle.

4) Reducing the Product zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto a Multiple Sum: Computing
the product of 2 n-bit binary nurnbersx = X , - ~ X , - ~ . . . xo,
Y = y n - 1 y n - 2 . . . yo i s equivalent to computing the sum of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n 2n-bit binary numbers:

z, = Z,zn- lXIZ"-z . * * Z,,,

where

i = 0, . . . , n - l r

0 i f (i + n s k s 2 n - ?) o r (O s k < i)

X k - , A y, if i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 k < i + n
Zk = [
where A denotes the logic AND function. In other words,

z, = 0 . . . 0 (X n - i A k - 2 A y l) ' ' . (X o A y,) 0 . . ' 0
U U

n - , I

Giventhetwon-bitinputbinarynumbersx = x n - l x n - 2 - . .
x o , y = y n - 1 y n - 2 . yo, thefirst layerof our multiplier net-
work outputs the n 2n-bit binary numbers z, = z , ~ ~ ~ ~ x , ~ ~ ~ ~
. . . z,, and then computes the sum in three more layers.
Thus the product of two n-bit numbers can be computed
in four layers.

C. Sorting

Here we shall see how sorting of n n-bit numbers can be
computed in a neural networkwith depth 5. The techniques
are mainly based on the results in [2]. We assume that the
input is a list of the n n-bit binary numbers and the output
will be the same list sorted in nondecreasing order. A num-
ber which appears m times in the input list will be dupli-
cated m times in the output list.

In sorting, the basic operation i s the comparison of two
numbers, i.e., given two n-bit binary numbers x = x ,x , - ,
. . . x,, y = y n y n - , * * y l , we want to compute whether x
2 y. It istemptingtoconcludethatcomparison can becom-
puted in a single layer since

f n \

2' . (x , - y,) = +I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi
However, notice that the weights chosen above are expo-
nential in n ankthus do not satisfy the conditions in our
definition of a LT, element. In fact, it was shown in [4] that
the Emparison function cannot be computed using a SE-
gle LT, element, but it can be computed in two layers of LT,
elements.

, n, denote the input
binary numbers. Define

Let z, = zlnzln-, . . . z,,, fo r i = 1,

+I

-1 otherwise

i f z, > z, or (z, = z/ and i 2 j)
c,/ =

Note that for each i, p, =

z, in the sorted list. If we let
(1 + c,)/2 i s the position of

EQrn(pi) = (sgn {p, - m } + sgn { m - p,)) - 1

+I i f p, = m

-1 otherwise

then the kth bit of the mth number in the sorted list i s

where v and A respectively denote the OR and AND func-
tions.

In our neural network, the comparison functions c,/s are
computed in the first two layers. The next two layers are
used to compute

SIU AND BRUCK NEURAL COMPUTATION OF ARITHMETIC FUNCTIONS

D. Extensions to Other Functions

It is natural to continue our study of neural networks on
computation of more complicated arithmetic functions
such as exponentation, division, and extraction of square
roots. In fact, it can be shown that multiplication of n n-bit
numbers and division of 2 n-bit numbers can also be com-
puted by a constant-depth neural network. In [5] , it was
shown how multiplication of n n-bit numbers can be com-
puted in logic circuits of O(log n) depth, using the Chinese
Remainder theorem. The basic idea of the construction i s
to hardwire in a polynomial size tableof discrete logarithms
for some prime powers and then reduce the problem to one
of iterated addition. On closer observation, it is not hard
to see how this construction of O(log n) depth logic circuits
can beadapted toaconstruction of aconstant-depth neural
network. A presentation of such results would take us too
far from the scope of this paper because of the necessary
number-theoretic background. Moreover, the constant
obtained by direct application of the algorithm in [5] will
be too large for the resulting neural network to be consid-
ered shallow, and therefore the difference between log n
and the constant in the delay i s not significant unless the
input numbers are astronomically large. These results are
of theoretical importance, however, because they describe
the fundamental difference in computation between neural
networks and logic circuits. At this time, we are not able to
reduce the constant to obtain a shallow neural network for
division and multiple product. Below,we shall only indicate
how division can be computed in constant-depth neural
network, provided that exponentiation can be computed
in constant delay. (See [5] for more details.)

Suppose we are given two n-bit binary numbers x , y, and
we wish to compute the n-bit representation of Lx ly] , i.e.,
thegreatest integer 5 x l y . Weshall assume2 5 y < x . Since
xIy i s equal to the product of x and y -', it i s enough to get
a finite underapproximation 9-l of y - ' with error <2-".
Then in a constant-depth neural network, we can compute

1673 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1

9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= x * zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy-' with error < I and determine which one of the

Let j zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 2 be an integer such that 2 j - l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 y < 2'. Note that
I s land we can express y -' as a series expansion

L9J or L9J + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 is Lx~YJ *

I 1 - y2

y-l = 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-i . (1 - (1 - y2 -$-I

If we put

then the difference between y-' and y-i i s less than 2-".
Since the exponentiation (1 - y 2 -')I is a special case of mul-
tiple products, we can compute them in parallel with a con-
stant-depth network from the previous remarks and com-
pute the multiple sum as shown in Section V-B.

Since evaluation of the numerator and denominator of
a rational function involves computing a sum of multiple
products in constant depth, applying the numerator and
denominator to the division network gives the value of the
rational function. As a result, any rational function can be
computed in constant delay by neural networks. In general,
we can conclude that an analytic function which is well
approximated by a truncated power series can be evaluated
by a constant-depth neural network.

VII. CONCLUSION

We have introduced a restricted model of a neuron, which
is more practical as a model of computation than the clas-
sical model. We define our model as afeedforward network
of such neurons. We have shown how common arithmetic
functions such as multiple addition, multiplication, and
sorting can be computed by a polynomial-size shallow
neural network with 3, 4, and 5 unit delays, respectively,
whereas it was known that these functions cannot be com-
puted in constant-depth logic circuits. Applying the results
in [5], we also indicated how these results can be extended
to more complicated functions such as multiple products,
division, rational functions, and approximation of analytic
functions.

A natural continuation of our study i s to consider even
morecomplicated functions such as indicator functions for
graph connectivity, bipartite matching, and network flow,
all of which have well-known polynomial time algorithms.
Another direction of research is to obtain lower-bound
results in order to obtain a depth-optimal neural network.
In fact, it was shown in [I31 that computing the product of
two n-bit numbers requires more than two layers, whereas
our depth-4 multiplier network provides an upper bound
of four layers. However, the well-known lower-bound tech-
niques for unbounded fan-in logic circuits appear to break
down completely in the case of neural networks, where the
linear threshold elements are the basic processing units.
Even though there are many candidate functions which
appear not to be computable by a polynomial-size
depth-3 neural network, at present no such function is
explicitly proved to exist. It i s of theoretical interest to note
here that any function computable in a polynomial sizecon-

1674

I

stant-depth logiccircuitwith unbounded fan-in isalsocom-
putable in a depth-3 neural network of superpolynomial-
that is, n o('ogn)(instead of exponential)-size [16]. Therefore,
proving that our multiplication and sorting networks are
depth-optimal will be a difficult task and new lower-bound
techniques in circuit complexity for networks of linear
threshold elements have to be developed.

The moral of our study is that circuits based on threshold
elements could be extremely powerful. Of course, these
hopes are based on the assumption that a linear threshold zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(n,) element can be implemented using analog devices
whose unit cost is small. This would justify research in
device technology to investigate the feasibility of building
such elements with small cost.

ACKNOWLEDGMENT

The first author would like to thank Prof. Thomas Kailath
for his guidance, constant encouragement, and financial
support.

REFERENCES

J. L. McClelland, D. E. Rumelhardt, and the PDP Research
Group, Parallel Distributed Processing: €xplorations in the
Microstructure of Cognition, vol. 1. MIT Press, 1986.
A. K. Chandra, L. Stockmeyer, and U. Vishkin, "Constant
depth reducibility," Siam]. Comput., vol. 13, pp. 423-439,
1984.
N. Pippenger, "The complexity of computations by net-
works,"lBM]. Res. Develop.,vol. 31, no. 2, pp. 235-243, Mar.
1987.
K. Y. Siu and J. Bruck, On the Dynamic Range of Linear
Threshold Elements, Tech. Rep. RJ 7237, IBM Research, Jan.
1990, to be submitted to SIAM). Discrete Math.
P. W. Beame, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS . A. Cook, and H. J. Hoover, "Log depth circuits
for division and related problems," Siam]. Comput., vol. 15,

J. Reif, "On threshold circuits and polynomial computation,"
froc. 2nd Ann. Structure in Complexity Theory Symp., pp.

M. Minsky and S . Papert, ferceptrons. MIT Press, expanded
edition, 1988.
P. Raghavan, Learning in Threshold Networks: A Computa-
tion Model and Applications, Tech. Rep. RC 13859, IBM
Research, July 1988.
0. Lupanov, "Implementing the algebra of logic functions in
terms of constant-depth formulas in the basis f, *, -," Sov.
fhys. Dokl., vol. 6, no. 2, 1961.
M. Furst, J. B. Saxe, and M. Sipser, "Parity, circuits and the
polynomial-time hierarchy," froc. I€€€ Symp. found. Comp.
Sci., vol. 22, pp. 260-270, 1981.
J. Hastad, "Almost optimal lower bounds for small depth cir-
cuits," froc. ACM Symp. Theor. Computing, vol. 18, pp. 6-20,
1986.
R. Smolensky, "Algebraic methods in the theory of lower
bounds for Boolean circuit complexity," Proc. ACM Symp.
Theor. Computing, vol. 19, pp. 77-82, 1987.
A. Hajnal, W. Maass, P. Pudlak, M. Szegedy, and G . Turan,
"Threshold circuits of bounded depth," /E€€ Symp. found.
Comp. Sci., vol. 28, pp. 99-110, 1987.
J. Bruck, "Harmonic analysis of polynomial threshold func-
tion," SIAM 1. Discrete Math., vol. 3, no. 2, pp. 168-177, May
1990.
J. Bruck and R. Smolensky, Polynomial Threshold functions,
ACo Functions and Spectral Norms, Tech. Rep. RJ 7140, IBM
Research, Nov. 1989; to appear lEEESymp. Found. Comp. Sci.,
1990.
E. Allender, "A note on the power of threshold circuits," to
in /€E€ Symp. found. Comp. Sci., vol. 30, 1989.

994-1003,1986.

118-123,1987.

PROCEEDINGS OF THE IEEE, VOL. 78, NO. 10, OCTOBER 1990

-
I

Kai-Yeung zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASiu zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwas born in Hong Kong on
October 9, 1966. H e received the B.Sc.
degree in mathematics and computer sci-
ence from New York University, NY, and
the B.Eng. degree in electrical engineering
from The Cooper Union, NY, both in 1987.
In June 1988, he received the M.Sc. degree
in electrical engineering from Stanford
University, CA.

He i s currently associated with the Infor-
mation Svstems Laboratorvat Stanford Uni-

Jehoshua Bruck was born in Haifa, Israel, on
April 19, 1956. He received the B.Sc. and
M.Sc. degrees in electrical engineering
from the Technion, Israel Institute of Tech-
nology, in 1982 and 1985, respectively, and
the Ph.D. degree in electrical engineering
from Stanford University in 1989.

From 1982 to 1985 he was with the IBM
Haifa Scientific Center, Israel. In March,
1989, he joined the IBM Research Division
at the Almaden Research Center, San zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJose,

versity and pursuing his Ph.D. degree under the guidance of Prof.
Thomas Kailath. He i s also a research student associate with the
Computer Science Department at IBM Almaden Research Center,
San Jose, CA. His research interests include computational com-
plexity theory, neural networks and parallel computation.

CA, where he is presently a Research Staff Member.
Dr. Bruck’s research interests include error-correcting codes,

fault-tolerant computing, parallel computing, and neural net-
works.

SIU AND BRUCK: NEURAL COMPUTATION OF ARITHMETIC FUNCTIONS

~ ___-

1675

