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Neural Control of Bimanual Robots with

Guaranteed Global Stability and Motion Precision
Chenguang Yang, Senior Member, IEEE, Yiming Jiang, Zhijun Li, Senior Member, IEEE, Wei He, Senior

Member, IEEE, and Chun-Yi Su, Senior Member, IEEE,

Abstract—Robots with coordinated dual arms are able to
perform more complicated tasks that a single manipulator could
hardly achieve. However, more rigorous motion precision is
required to guarantee effective cooperation between the dual
arms, especially when they grasp a common object. In this case,
the internal forces applied on the object must also be considered
in addition to the external forces. Therefore, a prescribed tracking
performance at both transient and steady states is first specified,
and then a controller is synthesized to rigorously guarantee
the specified motion performance. In the presence of unknown
dynamics of both the robot arms and the manipulated object,
the neural networks approximation technique is employed to
compensate for uncertainties. In order to extend the semiglob-
al stability achieved by conventional neural control to global
stability, a switching mechanism is integrated into the control
design. Effectiveness of the proposed control design has been
shown through experiments carried out on the Baxter Robot.

Index Terms—Neural networks; Bimanual robots; Tailored
tracking performance; Global uniformly ultimately boundedness
(GUUB)

I. INTRODUCTION

With bimanual cooperation, our humans are able to perform

delicate and complicated manipulations. There has been a

pronounced tendency in the robotics and automation com-

munity to shift focus of studies from single manipulators to

coordinated dual-arm robots [1]–[6]. In comparison to a single

arm robot, a dual-arm robot has prominent advantages in the

handling capability, loading capability as well as manipulative

skills. For example, in tool using tasks such as carving

or screwing, distribution of motions and forces required by

the tasks between the two robot arms greatly reduces the

complexity and energy cost of manipulation, compared with

that of a single robot arm. Therefore, the topics of dual

arms robot control have attracted much research attention over
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the past decades [7]–[10]. The early studies of coordinative

control schemes of two robotic arms were reported in [11]

and [12], where the position tracking and force control were

addressed. To deal with the unknown output hysteresis in the

control of coordinate robot, an adaptive neural control was

presented with computational efficiency [6]. In [7], a dual

NN has been used to resolve the distribution problem of

redundant coordination robot systems by using a multicriteria

to minimize the global kinetic energy.

It should be emphasized that the motion precision is of great

importance in the robot operation, especially for the dual arm

manipulation [13]. A precise coordination of both arms can

ensure that no excessive internal force would occur, and also

reduce possible variation of the internal forces. In this regards,

the rigorous requirement of motion precision implies that the

transient performance in the operation must also be taken into

account. Therefore, much effort in the control community has

been made to achieve a desired transient performance [14]–

[17]. For this purpose, an effective tracking algorithm was

proposed to control a five-bar closed-chain robot based on

transformation of tracking errors in [16]. In [17], a constraint

on output was considered for control of a class of multi-

input-multi-output (MIMO) systems. The above mentioned

control approaches rely on purposely built transformations

with appropriate inverses which increase the complexity of

the control design.

In practice, usually the kinematics information of robots

can be accurately known from the manufacturer, but there exist

inevitable uncertainties of the dynamics of the robot [18]–[22].

Nevertheless, we can always access the input-output data of

an robot system, thus it is desirable to use available input-

output data to approximate the unknown robot dynamics, in

order to design a controller with satisfactory performance.

One of the most successful control approaches is the neural

network (NN) based intelligent controller, which utilizes the

powerful universal approximation ability of NN to compensate

for unknown dynamics [23]–[34]. In [35], the NN was used

to approximate the hypersonic flight vehicle dynamics in the

tracking control of strict-feedback systems. In [15], the NN

was used to compensate for the complicated nonlinearity in

the closed-loop robot dynamics.

It should be noted that the above mentioned NN control

methods only ensure stability in the sense of semiglobally

uniformly ultimately boundedness (SGUUB) of the closed-

loop signals, because the NN’s approximation only holds over

a certain compact set, so called NN’s approximation domain.

Therefore, the range of state variable must be within this ap-
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proximation domain during operation. However, such compact

set is impossible to be identified precisely beforehand, espe-

cially for highly nonlinear complicated systems with multiple

inputs and multiple outputs (MIMO). Therefore, it is important

to develop an NN controller with guaranteed global stability.

In [36], a robust adaptive neural controllers was developed

to achieve global uniformly ultimately boundedness (GUUB)

stability. An adaptive NN control for hypersonic flight vehicle

systems was proposed to ensure GUUB stability in [35].

However, only single-input-single-output (SISO) systems were

reported in most existing works, and few of them consider

transient performance at the same time.

In this paper, we aim to achieve both tailored transient per-

formance and guaranteed global stability at the same time, by

exploiting the barrier Lyapunov functions (BLFs). The BLFs

were originally developed in the nonlinear control community

to deal with the state and output constrains [37]–[40]. A BLF-

based controller was developed to control a robot manipulator

with joint space constraints in [37]. In [40], an asymmetric

time-varying BLF was presented for nonlinear systems in

strict-feedback form.

It is noted that by posing constraints to the behavior of the

states or outputs, tracking errors can be indirectly constrained

using the technique of BLFs. Motivated by this, in this paper

the BLFs technique was exploited to achieve the tailored

tracking performance at both transient and steady states.

Comparing with the regulation of steady state responses, the

shaping of the transient control is much more difficult. By

constructing a prescribed tracking performance requirement

function, a proper BLF is proposed for controller synthesis

of a dual-arm robot, such that both transient and steady state

tracking performance can be ensured. Meanwhile, a switching

mechanism is introduced into the NN controller design to

ensure global stability. In comparison to the conventional

NN controllers which only ensure the stability of SGUUB,

our proposed NN controller guarantees global stability of the

closed-loop system. This is practically much more useful as

the requirement of the NN inputs is greatly relaxed.

II. PROBLEM FORMULATION AND MODELLING

PROCEDURE

A. Problem Formulation

Consider a bimanual robot grasping a common object, our

objective is to design a robot controller such that the ma-

nipulated object could track a desired trajectory xd specified

in the task space, as shown in Fig. 1, while simultaneously

guarantee (i) the tracking errors fall into the predefined bounds

to achieve tailored tracking performances; (ii) all the signals in

the close-loop bimanual robot system remain GUUB; and (iii)

the internal forces between the end-effectors and the object

converge to a small neighborhood of specified values.

B. Modeling of the Bimanual Robot

The position and orientation of the manipulated object could

be defined by a vector x ∈ R
N0 , where N0 is the object’s

degree of freedom (DOF). Assume that both arms grasp the

object rigidly so that there is no relative motion in between
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Fig. 1. An overwive of the dual arm robot manipulated a common object

the object and the end-effectors. Then, based on the forward

kinematics of robot manipulator, the relations between task

space and robot joint space can be calculated in the following

manner:

x = pi(qi), ẋ = ṗi(qi) = Ji(qi)q̇i (1)

where qi ∈ R
Ni and q̇i ∈ R

Ni are vectors of joint variable

and joint velocity of the ith robotic arm, respectively, and Ni

is the DOF of the ith robotic arm. pi is a continues function,

and Ji(qi) is the Jacobian matrix. The following assumptions

are considered to facilitate the modeling procedure of the

bimanual robot system:

Assumption 1: The dynamics of the robot manipulators are

uncertain, while the kinematics is accurately available. The

robotic arms are operating away from any singular configura-

tions during the motion.

Assumption 2: The rigid object would not be deformed by

the exerted forces.

Then, the dynamics of each robot arm are described in the

following Lagrangian form:

Mi(qi)q̈i + Ci(qi, q̇i)q̇i +Gi(qi) = τi + JT
ei
(qi)Fei (2)

where Mi(qi) ∈ R
Ni×Ni , Ci(qi, q̇i) ∈ R

Ni×Ni , Gi(qi) ∈ R
Ni

are the inertial matrix, Coriolis and centrifugal matrix and

gravity vector, respectively. JT
ei
(qi) represents the robotic

arm’s Jacobian matrix, while τi ∈ R
Ni is the joint torque,

Fei ∈ R
N0 is the force vector exerted at end-effector. The

dynamics of the object’s motion can be described as:

Mo(x)ẍ+ Co(x, ẋ)ẋ+Go(x) = Fo (3)

where Mo(x), Co(x, ẋ) and Go(x) denote the inertial, Coriolis

and centrifugal matrix, and the gravitational vector of manip-

ulated object, respectively, while Fo ∈ R
N0 is the resulting

force given as follows

Fo = −Foe1 − Foe2 , Foei = fi + foi (4)

where Foei is the interaction force applied on the end-effector

of ith robotic arm. Foei are decomposed into an external force

foi and an internal force fi, where the external forces foi
derive the motion of the object, and the internal forces fi
cancel with each other and satisfy the constraint f1+f2 = 0[n].
Combination of equation (3) and (4) yields

fi = Foei −Di(t)(fo1 + fo2) (5)
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Fig. 2. The framework for the bimanual robot controller

where Di(t) ∈ R
N0×N0 is the object load distribution matrix

satisfying D1(t) +D2(t) = IN0
, where IN0

∈ R
N0×N0 is an

identity matrix.

Combination of (2), (3), (4), (5) and the kinematic equation

(1) yields a compact form below:

τi = Mi(qi)q̈i + Ci(qi, q̇i)q̇i + Gi(qi)− JT
i (qi)fi (6)

where Mi = Mi + DiMo, Mo = JT
i MoJi, Ci = Ci +

Di(MD + Co), Co = JT
i CoJi, MD = JT

i MoJ̇i, Gi = Gi +
DiGo, Go = JT

i Go. To be self-contained, the fundamental

properties of robot manipulator dynamics, which will be used

later for control design and analysis, are described below:

Property 1: [10] The skew-symmetric matrix 2Ci(qi, q̇i)−
[Ṁi(qi)− Ḋi(t)Mo(qi, q̇i)] satisfies that:

∂T
{

(

2Ci(qi, q̇i)− Ṁi(qi)
)

− Ḋi(t)Mo(qi, q̇i)
}

∂ = 0, ∀∂

Property 2: [10] The matrix Ḋi(t)M0(qi) is bounded and

uniformly continuous while satisfies the following inequality:

‖Ḋi(t)M0(qi)‖ ≤ 2̺, ∀t ≥ 0 (7)

where ̺ is a positive constant.

III. CONTROL DESIGN

Before proceeding to control design, let us introduce the

following tracking error signals:

e = x− xd, zi = q̇i − αi i = 1, 2 (8)

where e = [e1, e2, · · · , eN0
] ∈ R

N0 stands for the po-

sition tracking error of the manipulated object, zi =
[zi1, zi2, · · · , ziNi

] ∈ R
Ni stand for the velocity tracking error

of each robotic arm in joint space, and αi is a virtual controller

to be specified in (19), xd is the reference trajectory of the

manipulated object. Our control strategy is illustrated in Fig.

2.

A. Specification on Requirement for Tracking Performance

To specify tracking performance, especially transient per-

formance (e.g., overshoot, undershoot and coverage rate), we

construct a series of smoothly decreasing functions φ(t) = [φ1,

φ2, · · · , φN0
] to shape the motion of the object as

φk(t) = (ρ0k − ρ∞k)e
−akt + ρ∞k (9)

where ρ0k, ρ∞k and ak (k = 1, 2, · · · , N0) are properly

chosen positive constants. Let us define ϕa,k(t) = −β1kφk(t)

and ϕb,k(t) = β2kφk(t), with positive constants β1k and β2k

to be specified by the designer.

Remark 1: The functions ϕa,k(t) and ϕb,k(t) specify the

tracking transient response, i.e., the exponential term ak regu-

lates the required convergence rate of tracking errors, β1kρ0k,

−β2kρ0k define the maximum overshoot and undershoot,

and −β1kρ∞k, β2kρ∞k regulates the bounds of the steady

errors, as shown in Fig. 3. This implies that we are able

to regulate both transient and steady-state performance by

properly choosing parameters β1k, β2k, ρ0k, ρ∞k and ak.

The following coordinate transformation of tracking errors

will be used in the later design.

ξa =

[

e1
ϕa,1

, · · · ,
eN0

ϕa,N0

]T

ξb =

[

e1
ϕb,1

, · · · ,
eN0

ϕb,N0

]T

ξk = hk(ek)ξb,k + (1− hk(ek))ξa,k (10)

where ξa,k, ξb,k are the kth element of the vectors ξa, ξb,

respectively, and hk(ek) is defined as

hk(ek) =

{

1 ek ≥ 0
0 otherwise

(11)

B. Controller Design Using BLF and Backstepping

Inspired by the work [40], an asymmetric time-varying

barrier function is constructed for the ith robotic arm as

Vi1 =

N0
∑

k=1

(

hk

2
ln

1

1− ξ2b,k
+

1− hk

2
ln

1

1− ξ2a,k

)

(12)

The differentiation of (12) with respect to time gives us

V̇i1 =

N0
∑

k=1

(

hk

1− ξ2b,k
ξb,k ξ̇b,k +

1− hk

1− ξ2a,k
ξa,k ξ̇a,k

)

(13)

According to definitions of ξa,k, ξb,k, and substituting (8) into

(13) we have

V̇i1 =

N0
∑

k=1

(

ξ2k
(1− ξ2k)ek

ėk

)

+

N0
∑

k=1

(

(1− hk)ξ
2
a,k

(1− ξ2a,k)

ϕ̇a,k

ϕa,k

+
hkξ

2
b,k

(1− ξ2b,k)

ϕ̇b,k

ϕb,k

)

) (14)

Then, by defining a transient control vector

P = [
ξ21

(1− ξ21)e1
,

ξ22
(1− ξ22)e2

, · · · ,
ξ2N0

(1− ξ2N0
)eN0

]T (15)

and substituting it into (14), we rewrite Vi1 as below:

V̇i1 = PT ė+

N0
∑

k=1

(

(1− hk)ξ
2
a,k

(1− ξ2a,k)

ϕ̇a,k

ϕa,k

+
hkξ

2
b,k

(1− ξ2b,k)

ϕ̇b,k

ϕb,k

)

)

(16)

Note that the relation between ẋ and q̇i as specified in (1)

always hold. According to the definitions of e and zi in (8),

we have

ė = Ji(q)(zi + αi)− ẋd i = 1, 2 (17)
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Fig. 3. Relationship between the
tracking error ek(t) and the perfor-
mance function

Fig. 4. Global tracking performance

Substituting (17) into (16) yields

V̇i1 = PT (Ji(q)(zi + αi)− ẋd)

+

N0
∑

k=1

(

(1− hk)ξ
2
a,k

(1− ξ2a,k)

ϕ̇a,k

ϕa,k

+
hkξ

2
b,k

(1− ξ2b,k)

ϕ̇b,k

ϕb,k

)

)

(18)

Then, let us design a virtual controller αi as

αi = J+
i (q) (ẋd −K1e− σ(t)e) (19)

where J+
i (qi) is the Moore-Penrose inverse of Ji(qi), K1 =

diag{k11, k12, · · · , k1N0
} with k1k being positive constants.

And σ(t) = diag{σ1(t), σ2(t), · · · , σN0
(t)} with σk(t) =

√

(
ϕ̇a,k

ϕa,k
)2 + (

ϕ̇b,k

ϕb,k
)2 + ka, where ka selected as a positive

parameter that ensures the boundedness of α̇i when ϕ̇a,k(t),
ϕ̇b,k(t) are zero. Substituting (19) into (18) yields

V̇i1 = PTJi(q)zi − PT (K1e+ σ(t)e)

+

N0
∑

k=1

(

hkξ
2
b,k

(1− ξ2b,k)
(
ϕ̇b,k

ϕb,k

) +
(1− hk)ξ

2
a,k

(1− ξ2a,k)
(
ϕ̇a,k

ϕa,k

)

)

(20)

Note that the following inequality holds

σk(t)− hk

ϕ̇a,k

ϕa,k

− (1− hk)
ϕ̇b,k

ϕb,k

≥ 0 (21)

Using the definition of P in (15) and in terms of (21),

equation (20) can be rewritten as

V̇i1 ≤ −

N0
∑

k=1

k1k
ξ2k

(1− ξ2k)
+ PTJi(q)zi (22)

C. Global Adaptive NN (GANN) Control

1) Radial basis function neural network (RBFNN) [41]:

In this paper, the following RBFNNs are used to

approximate a continuous vector function F (Z) =
[f1(Z), f2(Z), · · · , fn(Z)]T ∈ R

n,

F̂ (Z) = ŴTS(Z) (23)

where F̂ (Z) ∈ R
n is the estimate of F (Z), Z ∈ ΩZ ⊂ R

q is

NN inputs vector, and q denotes the demonstration of the input;

Ŵ = [Ŵ1, Ŵ2, · · · , Ŵn] ∈ R
n×l is the estimation of NN

optimal weight matrix W ∗, and l is the number of NN nodes.

S(Z) = [s1(Z), s2(Z), · · · , sl(Z)]T ∈ R
l is the regressor

vector with si(·) being a radial basis function. In general,

the most commonly used Gaussian radial basis functions are

employed as follows:

si(‖Z − µi‖) = exp

[

−(Z − µi)
T (Z − µi)

ϑ2
i

]

(24)

where µi (i = 1, · · · , l) are distinct points in state space,

µi = [µi1, µi2, · · · , µiq]
T is the center of the neural and ϑi

is the Gaussian function’s width. It has been established that,

with sufficiently large node number, an arbitrary continuous

function F (Z) can be approximated by the RBFNN (23) over

a compact set ΩZ as

F (Z) = W ∗TS (Z) + ε(Z), ∀Z ∈ ΩZ (25)

where W ∗ is an ideal constant weight vector, and ε(Z) ∈ R
n

is the approximation error. There exist ideal weight vector W ∗

such that |ε(Z)| < ε∗ with constant ε∗ > 0 for all Z ∈ ΩZ .
2) Global NN control design: Let us define a positive

Lyapunov function as,

Vi2 = Vi1 +
1

2
zTi Mizi (26)

Substituting (6) and (8) into its derivative, and considering

Properties 1 and 2, we can derive from (26) that

V̇i2 ≤ V̇i1 + ̺iz
T
i zi

+ zTi (τi −Mα̇i − Ciαi − Gi + JT
i (qi)fi)

(27)

where Mi, Gi and Ci are abbreviations of Mi(q), Gi(q) and

Ci(q, q̇), respectively, and ̺i is a positive constant specified in

(7).

Considering the dynamics of robot in (6), we reformulate it

by using a function vector Fi(Zi) ∈ R
Ni as

Fi(Zi) = −(Mα̇i + Ciαi + Gi) (28)

where Fi(Zi) = [fi,1(Zi), fi,2(Zi), · · · , fi,Ni
(Zi)]

T , Zi =
[qTi , q̇

T
i , α

T
i , α̇

T
i ]

T ∈ R
νi , with νi = 4Ni. It should be noted

that, for the functions fi,j(Zi) ∈ R, j = 1, 2, · · · , Ni, there

exist known bounded nonnegative smooth functions fU
i,j(Zi)

such that |fi,j(Zi)| ≤ fU
i,j(Zi), ∀Z ∈ R

νi .

Applying RBFNN described in Section III.C, we see that

over a compact set Ωi1,

F̂i(Zi) = ŴT
i Si(Zi) + εi (29)

where Ŵi = [Ŵi,1, Ŵi,2, · · · , Ŵi,Ni
]T ∈ R

li×Ni is the

estimation of optimal neural weight matrix W ∗
i , and Ŵi,j =

[ω̂i,j1, ω̂i,j1, · · · , ω̂i,jli ] ∈ R
li , Si(Zi) ∈ R

li is the basis vector

function with li being the NN nodes number, and εi is the NN

construction error satisfying |εi| < ε̄i .

Prior to proceed to control design, let us introduce a set of

smooth switching functions Qi(Zi) ∈ R
Ni×Ni as

Qi(Zi) = diag
(

Mi1(Zi),Mi2(Zi), · · · ,MiNi
(Zi)

)

(30)

where Mij(Zi) =
νi
∏

c=1
m(zic), and m(zic) is designed as

m(zic) =























1 |zic| < d1,ic

d2
2,ic−z2

ic

d2
2,ic−d2

1,ic
e

(

z2
ic

−d21,ic

ωi(d
2
2,ic

−d2
1,ic

)

)2

otherwise

0 |zic| > d2,ic
(31)
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where d1,ic and d2,ic are positive constants satisfying 0 <
d1,ic < d2,ic, ωi are positive constants with ωi ≥ 1.

Remark 2: The switching function m(·) are scaled to

m(·) = 1 in the compact set Ω1 and m(·) = 0 outside the

domain Ω2 as show in Fig. 4. Therefore the adaptive NN

control can be thoroughly disabled when the neural active

region is no longer remain.

Then, the adaptive global NN robot control law is designed

as

τi =−K2izi − JT
i (qi)P − JT

i (qi)fdi
−Qi(Zi)Φ

a
i

− (1−Qi(Zi))Φ
b
i

(32)

where K2i = diag{k2,i1, k2,i2, · · · , k2,iNi
} is an designed

positive definite diagonal matrix, fdi is the desired internal

force, P is the transient controller specified in (15). Φa
i and

Φb
i are designed as

Φa
i = F̂i(Zi), Φb

i = FU
i (Zi) Γi

(

FU
i (Zi)zi
̟

)

(33)

where F̂i is the estimate of Fi, and FU
i =

diag{fU
i,1(Zi), f

U
i,2(Zi), · · · , f

U
i,Ni

(Zi)}, Γi

(

FU
i (Zi)zi

̟

)

=

[tanh(Fi(Zi)zi1
̟

), tanh(Fi(Zi)zi2
̟

), · · · , tanh(
Fi(Zi)ziNi

̟
)]T

with ̟ being a positive parameter.

The NN weight adaptive law is designed as

˙̂
Wi = Θi(Qi(Zi)S(Zi)zi − γiŴi) (34)

where Θi is a positive definitive matrix, and γi is a positive

constant.

Remark 3: The controller proposed in (32) consists of an

adaptive NN controller Φa
i and an extra robust controller Φa

i .

When the tracking runs in the NN active domain Ω1, the term

Φa
i plays a decisive role, once the the NN runs out of the Ω2,

the extra robust term Φb
i will pull the state back. If the NN

runs in the domain between the Ω2 and Ω1, both terms work

and will pull the state back to the compact set Ω1.

Consider the following Lyapunov function

Vi = Vi2 +
1

2

Ni
∑

j=1

W̃T
i,jΘ

−1
i W̃i,j (35)

where ˜(∗) = ˆ(∗) − (∗). Taking derivative of (35) along time,

and considering the control law (32) and the adaptive law (34),

yields

V̇i = V̇i1 + zTi

(

−K2izi + ̺izi − JT
i (qi)P + JT

i (qi)f̃i

)

+ zTi

(

−Qi(Zi)Φ
a
i − (I −Qi(Zi))Φ

b
i + Fi(Zi)

)

+

Ni
∑

j=1

W̃T
i,jΘ

−1
i

˙̂
Wi,j (36)

where f̃i = fi − fdi. Substituting (29), (33) and (34) in (36),

we have

V̇i ≤ V̇i1 + zTi (−K2izi − JT
i (qi)P + JT

i (qi)f̃i + ̺izi)

+

Ni
∑

j=1

(

zijf
U
i,j − zijf

U
i,j tanh(

zijf
U
i,j

̟
)
)

+

Ni
∑

j=1

(

−γiW̃
T
i,j(W

∗

ij + W̃i,j) + zijεij

)

(37)

Notice that following inequalities hold in terms of the

Young’s inequality,

−W̃T
i,j(W

∗

ij + W̃i,j) ≤ −
1

2
||W̃i,j ||

2 +
1

2
||Wi,j

∗||2

zijεij ≤
1

2
z2ij +

1

2
ε2ij (38)

And the following inequality holds for any ̟ > 0 and z ∈ R:

0 ≤ |z| − z tanh
( z

̟

)

≤ κ̟ (39)

where κ is a constant satisfying κ = e−(κ+1), i.e., κ = 0.2785.

Substituting (22), (38) and (39) into (37), we have

V̇i ≤ −

N0
∑

k=1

k1j
ξ2k

(1− ξ2k)
+
(

ė+ (K1 + σ)e
)T

f̃i

+

Ni
∑

j=1

(

−(k2,ij − ̺i −
1

2
)z2ij −

1

2
γi‖|W̃i,j ||

2

)

+

Ni
∑

j=1

(

1

2
γi||Wi,j

∗||2 +
1

2
ε2ij + κ̟

)

(40)

Then, taking the Lyapunov function V = V1 + V2 and

considering the property of internal forces, we have

V̇ = V̇1 + V̇2 ≤

N0
∑

k=1

(

−2k1k ln
1

(1− ξ2k)

)

+

2
∑

i=1

Ni
∑

j=1

(

−kc,ijz
2
ij −

1

2
γi‖|W̃i,j ||

2

)

+

2
∑

i=1

Ni
∑

j=1

(

1

2
γi||Wi,j

∗||2 +
1

2
ε2ij + κ̟

)

(41)

where kc,ij = k2,ij − ̺i − 1
2 , and the fact

ξ2k
(1−ξ2

k
)

≥

ln 1
(1−ξ2

k
)
, ∀|ξk| < 1 has been used.

D. Stability Analysis

Theorem 1: Consider the bimanual robot system in (6),

together with the virtual controllers αi in (19), the control law

(32), the adaptation law in (34), and the performance functions

in (9). Given initial conditions ek satisfy that ϕa,k(0) <
ek(0) < ϕb,k(0), the proposed adaptive control scheme can

guarantee that: (i) the tracking error e are bounded by the

predefined function ϕaj , ϕaj , (ii) all the tracking signals in

the close loop system are uniformly ultimately bounded; (iii)

the tracking error e converge to a small neighbourhood of zero.
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Proof: From (12), (26) and (35), we have

V =

N0
∑

k=1

(

ln
1

1− ξ2k

)

+
1

2

2
∑

i=1

zTi Mi(zi)zi

+
1

2

2
∑

i=1

Ni
∑

j=1

W̃T
i,jΘ

−1
i W̃i,j

(42)

According to (42), the inequality (41) can be represented as

V̇ (t) = −ηV (t) + µ (43)

where η = min{2λmin(K1),
2λmin(Kci

)

λmax(Mi)
, γi

λmax(Θ−1
i

)
, |i =

1, 2}, µ =
2
∑

i=1

Ni
∑

j=1

(

1
2ε

2
i +

1
2 ||W

∗
i,j ||

2 + κ̟
)

, and Kci =

diag{kc,i1, kc,i2, · · · , kc,iNi
}.

Multiplying both sides by eηt in (43), and applying the

integration over [0, t], we have

V (t) ≤ (V (0)− µ/η)Ee−ηt + µ/η ≤ V (0) + µ/η (44)

From the above inequality, and in terms of (12), (26), (35),

as well as the initial condition of ξk(0), we can conclude

that the terms ln(1/(1 − ξ2k)), zi as well as the NN weight

estimation errors W̃i,j are bounded. Thus we can conclude

that ϕa < e < ϕb, which implies the transient performance are

guaranteed. And since ϕa and ϕb are bounded function, e must

be bounded. From (8), we can obtain that x is also bounded.

therefore Ji is bounded. From the definition of αi, we can

know that αi is also bounded. In terms of the boundness of

zi and αi and according to q̇i = zi + αi, q̇i is also bounded.

Hence, all the signals in the closed-loop dual arm robot system

are bounded. This completes the proof.

Remark 4: The designed matrices K1 and Kci in the con-

troller can be chosen simply as positive definite diagonal

matrices. The gains in the NN adaptive law Θi and γi should

be positive. And in term of (44), if the gains K1, K2i and γi
are chosen to be relatively small, while Θi chosen relatively

large, then the amplitude of tracking error could be made

smaller.

Theorem 2: The proposed global adaptive NN controller

(32) also guarantee the error of the internal force f̃i converge

to a small neighborhood of the origin.

Proof: See the Appendix.

IV. EXPERIMENTAL STUDIES

The Baxter bimanual robot, as shown in Fig. 5, is used in

the experiment. It is of two 7-DOF arms and advanced sensing

technologies, including position, force and torque sensors and

control at every joint. The resolution for the joint sensors is

14 bits with 360 degrees (0.022 degrees per tick resolution),

while the maximum joint torques that can be applied to the

joints are 50 Nm (the first four joints) and 15Nm (the last 3

joints).

In the experiment, the Baxter robot is commanded to grasp

an object by using its two robotics arms with grippers mounted

on the end-effectors. For each robotic arm, we initialized the

position of the joints to make the arm locating in a horizontal

plane as shown in Fig. 5. For simplicity and without loss of

workstation

Baxter robot

s0
e1

w1

Fig. 5. Illustration of the setup of the experiment. [photo taken at South
China University of Technology]

generality, we use three parallel revolute joints (s0, e1, w1) of

each arm to derive the motion in the experiment. The grasped

object is a cylinder made of plastic, with 0.1 kg in weight,

0.1m in length and 0.06m in diameter. The internal forces

could be calculated by using torque sensors equipped with

each joint together with gravity compensation model built in

[42] and in terms of the equation (5).

In order to well approximate the robot dynamics and consid-

ering both the accuracy and the computational efficiency, we

divide the inputs of RBFNN into 2 groups, with one group

contains [qTi , α̇
T
i ]

T ∈ R6 and another [qTi , q̇
T
i , α

T
i ]

T ∈ R9,

and employ three centres for each input dimension of the

NNs, and ended up with totally l1 = 20412 NN nodes for

each neural network. The centres of the neural networks nodes

are evenly spaced between the upper and lower bound of the

motion range and speed limits of each joint, in [−1.7, 1.7] ×
[−1.05, 2.61] × [−1.57, 2.09] × [−1.5, 1.5] × [−1.5, 1.5] ×
[−1.5, 1.5]

⋃

[−1.7, 1.7] × [−1.05, 2.61] × [−1.57, 2.09] ×
[−1.5, 1.5] × [−1.5, 1.5] × [−1.5, 1.5] × [−1.5, 1.5] ×
[−1.5, 1.5] × [−1.5, 1.5]. And the NNs weight matrix are

initialized as Ŵ1(0) = 0 ∈ R
3l1×3 and Ŵ2(0) = 0 ∈

R
3l2×3. And the gains of NN adaptive law are chosen as

Θ1 = diag{2}, Θ2 = diag{2}. The designed parameters K1

and K2i of the controller are specified as K1 = diag{10, 9, 9},

K21 = K22 = diag{9, 4.5, 1.2}. And the parameters ̟ in the

controller (32) are selected as ̟ = 0.1.

In the experiment, the object is required to trace the follow-

ing trajectory specified in the Cartesian space




x
y
θ



 =





0.65 + 0.1 sin(2π/5t)
0.12 cos(2π/5t)

0



 (45)

The initial configuration of the object is (0.55, 0.2, 0.2), and

the initial velocity is set to ẋ(0) = 0, ẏ(0) = 0, θ̇(0) =
0. The desired internal force are chosen as fd1 = [0, 3, 0],
fd2 = [0,−3, 0]. The parameters of performance functions

(9) are designed with ρ01 = ρ02 = 0.2, ρ03 = 0.4, ρ∞1 =
ρ∞2 = 0.012, ρ∞3 = 0.025, and ak = 2.5, β1k = β2k = 1,

k = 1, 2, 3.

A. Experimental Results

The experimental results are presented in Figs. 6-9. The

tracking performance of the manipulated object in task space



7

time(s)

0 5 10 15 20 25

x
(m

)

0.5

0.6

0.7

0.8

x   (actual)

x
d
 (desired)

(a)

time(s)

0 5 10 15 20 25

y
(m

)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15
y   (actual)

y
d
 (desired)

(b)

time(s)

0 5 10 15 20 25

3
(r

a
d
)

-0.4

-0.2

0

0.2

0.4

3   (actual)

3
d
 (desired)

(c)

0.8
0.75

0.7
0.65

0.6
0.55

0.5-0.2

-0.1

0

0.1

0.2

0

-0.4

-0.2

0.4

0.2

0.3

autual trajectory

desire trajectory

(d)

Fig. 6. Tracking performance of the manipulated object (a) x. (b) y. (c) θ (d) Task space tracjectory
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Fig. 7. Tracking error of the object manipulation. (a)(b)(c) tracking errors
with the proposed controller. (d)(e)(f) tracking errors with the modified
controllers u1(t) and u2(t).

is shown in Fig. 6(d) where the proposed controller is observed

with a good performance when following a circular trajectory.

The trajectories with respect to x, y and θ are depicted in

the Figs. 6(a) - 6(c). The tracking errors of the manipulated

object are shown in Figs. 7(a)-7(c). As shown in these figures,

the grasped object follows the reference trajectories very well,

the tracking errors converge to a neighborhood around zero

without violation of the prescribed transient bound (red dash

line ‘-’). The trajectories of control inputs, internal force

errors, joint positions and NN weight norm are depicted as

shown in Figs. 8 and 9. We can see from the figures that

close-loop signals are bounded and the internal force errors

converge to a neighborhood of zero. In addition, comparative

experimental results based on two modified controllers are

shown in Figs.7(d)-7(f) (u1(t) controller without NN adapta-

tion; u2(t) controller without both transient and NN control).

As shown in these figures, without using the NN control and

transient control, the tracking errors violated the the prescribed

transient bounds, while relatively larger steady-stage errors

are observed without using the NN control. The experimental

results illustrate that our proposed controller can successfully
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Fig. 8. Control inputs and internal force errors of each arm of the Baxter

robot (a) τ1. (b) τ2. (c) f̃1 = f1 − fd1 . (d) f̃2 = f2 − fd2 .
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Fig. 9. Trajectory of joint position and the convergence of NN weight (a)
joint angles qij (b) NN weight norm ||Wij || (i = 1, 2, j = 1, 2, 3).

guarantee the tracking errors remaining in the predefined

region and ensure the prescribed transient bounds to be never

violated.

V. CONCLUSION

In this paper, we designed an adaptive neural control for

general dual-arm robot systems, with prescribed tracking per-

formance and guaranteed global stability. By introduction of

a set of boundary functions and integration of them into the

controller design, specified motion precision in both transient

and steady states are achieved. The transient response such

as overshoot, settling time, and final tracking RBFNNs are

employed to approximate the unknown dynamics of both the

robot arms and the manipulated object. Semi-global stability

achieved by the conventional neural control has been extended

to global stability by incorporation of a switching mechanism

into the controller. The resulted neural control also ensures

proper internal force applied on the object, as specified by the

designer. Experiment studies have demonstrated the effective-

ness of the proposed control scheme.
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VI. APPENDIX

Proof of Theorem 2: Combining the equations (6) and (32),

we can obtain the error dynamics equation as

Miżi + Cizi + Gi + εi + (I −Qi)(−Φa
i − Φb

i ) +K2izi

= JT (qi)f̃i − JT
i (qi)P (46)

Then, multiplying Ji(qi)M
−1
i on both sides on the equation

(46), we have

Mci f̃i = Ji(qi)M
−1
i (I −Qi)(−Φa

i − Φb
i ) +MciP

+ Ji(qi)M
−1
i

(

(Ci +K2i)zi + Gi + εi

)

+ Ji(qi)żi
(47)

where Mci = Ji(qi)M
−1
i JT (qi). And since Ji(qi)zi = ė +

(−K1 + σ)e, we can obtain that

J̇i(qi)zi + Ji(qi)żi = ë+ Λė (48)

where Λ = −K1 + σ. Substituting (48) into (46), we have

Mci f̃i = ë+Λė+χi, where χi = Ji(qi)M
−1
i (I−Qi)(−Φa

i −

Φb
i )+MciP +Ji(qi)M

−1
i

(

(Ci+K2i)zi+Gi+εi

)

− J̇i(qi)zi.

Then, let us compute the term and consider the following

equality by using the property of internal forces, Uf̃ = H

where f̃ = [f̃T
1 , f̃T

2 ]T , H = [χT
1 − χT

2 , 0]
T , and U =

[
Mc1 −Mc2

I I
]. Since the terms Mc1 and Mc2 are positive

definite, we can obtain that U is bounded and invertible. As

analyzed in the proof of Theorem 1, qi, q̇i, e and zi are all

bounded, we can deduce that χi is also bounded, hence H is

bounded. Therefore, the vector of internal forces errors f̃ are

bounded. This complete the proof.
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