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Neural control of fast nonlinear systems

Application to a turbocharged SI engine with VCT
Guillaume Colin, Yann Chamaillard, Gérard Bloch, and Gilles Corde

Abstract— Nowadays, (engine) downsizing using turbocharging
appears as a major way in reducing fuel consumption and
pollutant emissions of Spark Ignition (SI) engines. In this context,
an efficient control of the air actuators (throttle, Turbo Wastegate
and Variable Camshaft Timing (VCT)) is needed for engine
torque control. This work proposes a nonlinear model-based
control scheme which combines separate, but coordinated, control
modules. Theses modules are based on different control strate-
gies: Internal Model Control (IMC), Model Predictive Control
(MPC), and optimal control. It is shown how neural models can
be used at different levels and included in the control modules
to replace physical models, which are too complex to be on-
line embedded, or to estimate non measured variables. The
results obtained from two different test benches show the real
time applicability and good control performance of the proposed
methods.

Index Terms— Neural Networks, Nonlinear Control, Engine
Control, Internal Model Control, Model Predictive Control.

I. INTRODUCTION

More stringent standards are being imposed to reduce fuel

consumption and pollutant emissions for Spark Ignited (SI)

engines. Modern automobile engines must therefore satisfy

the challenging, and often conflicting, goals of minimizing

pollutant emissions and fuel consumption while satisfying

driving performance over a wide range of operating conditions.

A solution for reducing fuel consumption and thus carbon

dioxide (CO2) emissions is to improve the efficiency of the

engine and, to this end, several solutions have been developed:

lean combustion, variable valve actuation, downsizing, hybrid

engine, fuel cells, etc. . .

Downsizing is the use of a smaller capacity engine operating

at higher specific engine loads, i.e. at better efficiency points.

Without having to completely change the engine structure,

like in hybrid or fuel cell approaches, downsizing appears as

a major way for reducing fuel consumption while maintaining

the advantage of low emission capability of three-way catalytic

systems and combining several well known technologies [1].

A well-adapted turbocharger seems to be the best solution to

feed the engine with the aim of reducing fuel consumption.

Unfortunately, turbocharger inertia involves a long torque
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time response [1]. This problem can be solved by combining

turbocharger and Variable Camshaft Timing (VCT) for air

scavenging from the intake to the exhaust. Moreover, VCT

decreases pollutants emission especially nitrogen oxides

(NOx).

With the multiplication of complex actuators, advanced

engine control is necessary to obtain an efficient torque control

[2]. This notably includes the control of the ignition coils,

fuel injectors and air actuators. The air actuator controllers

generally used are PID controllers which are difficult to tune.

Moreover, they often produce overshooting and bad set point

tracking because of the system nonlinearities. Only model-

based control can enhance engine torque control.

Several common characteristics can be found in engine

control problems. First of all, the descriptive models are

dynamic and nonlinear. They require a vast amount of work

to be determined, particularly to fix the parameters specific

to each engine type ("mapping"). For control, a sampling

period variable with the engine speed (very short in the

worst case) must be considered. The actuators present strong

saturations. Moreover, many internal state variables are not

measured, partly because of the physical impossibility of

measuring and the difficulties in justifying the cost of setting

up additional sensors. On a higher level, the control must be

multi-objective, in order to satisfy contradictory constraints

(performance, comfort, consumption, pollution). Lastly,

the control must be implemented on on-board computers

(Electronic Control Units, ECU), whose computing power is

increasing, but remains limited.

In addition, artificial neural networks have been the focus

of a great deal of attention during the last two decades,

due to their capabilities to solve nonlinear problems by

learning from data. Although a broad range of neural network

architectures can be found, MultiLayer Perceptrons (MLP)

and Radial Basis Function Networks (RBFN) are the most

popular neural models, particularly for system modeling

and identification [3]. The universal approximation and

flexibility properties of such models enable the development

of modeling approaches, and then control and diagnosis

schemes, which are independent of the specificities of the

considered systems. They allow construction of nonlinear

global models, static or dynamic. Moreover, neural models

can be easily and generically differentiated so that a linear

model can be extracted at each sample time and used

for the control design. Neural systems can then replace a

combination of control algorithms and look-up tables used

in traditional control systems and reduce the development
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effort and expertise for the control system calibration of

new engines. Neural networks can be used as observers or

software sensors, in the context of a low number of measured

variables. They enable the diagnosis of complex malfunctions

by classifiers determined from a base of signatures. For the

control synthesis, high frequency models (or simulators) can

be used. They are very complex and accurate but cannot be

embedded. As physical models are too complex, black-box

solutions as neural networks become attractive techniques

for engine modeling and control. Moreover, the learning

processes can be achieved on simulators and/or engine

test benches. Recurrent networks, i.e. including internal

loops, were used as system direct models and as controllers

determined by specialized training for various automobile

applications: ABS, active suspension systems and idle control

[4]. Neural networks were used also for AFR regulation [5]

and could model a variable valve timing engine [6].

As a parsimonious and flexible universal approximator, the

perceptron with one hidden layer and with a linear output unit

is used here. Its form is given, for a single output fnn, by:

fnn =
n
∑

k=1

w2
k g





p
∑

j=1

w1
kjϕj + b1

k



+ b2 (1)

where the ϕj are the p inputs of the network (or regressors),

and w1
kj , b1

k are weights and biases (or parameters) of n hidden

neurons (or nodes), the activation function g is a sigmoid

function (often the hyperbolic tangent g(x) = 2/(1+ e−2x)−
1), and w2

k, b2 are the weights and bias of the output neuron.

The neural structure can contain direct linear links between

the inputs and output nodes to accurately model mixed linear

and nonlinear relationships.

In addition, this neural model can be easily differentiated

with respect to the inputs, which is interesting when linearizing

around an operating point:
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where ġ is the derivative of g with respect to its inputs.

Thus, for a SISO system, from the input u, the state x and

the measured output y, a general output predictor is written:

ŷ(t + 1) = fnn(y(t), . . . , y(t − ny), u(t), . . . , (t − nu),
x(t), . . . , x(t − nx))

(3)

The work presented here deals with the airpath control

of SI engines. It is an extension of [7] which deals only

with the turbocharger control. More precisely, it presents an

up-to-date coordinated control scheme of all the air actua-

tors: intake throttle, turbine wastegate and Variable Camshaft

Timing (VCT). The control of dual equal VCTs has been

studied in [8] and [9], but only in simulation, and is not

completely detailed. [10] presented the control of dual equal

VCT controllers, based on Hammerstein model. The coordi-

nation of the throttle and dual equal VCT has been studied in

[11]. The application treated here, the turbocharged SI engine

with a twin independent VCT, is more complex, because

the engine has more degrees of freedom. Moreover, it deals

with high level variables which permit to control pollutant

emissions, combustion stability, air scavenging, etc. . . , through

a supervisor.

The control scheme proposed here combines separate, but

coordinated, control modules for the different actuators. These

modules are based on different model-based control strate-

gies: Internal Model Control (IMC), Model Predictive Control

(MPC), and optimal control. It is shown how neural models

can be used at different levels and included in the control

modules. The corresponding control principles are briefly

recalled and the inclusion of neural models in such schemes

is described. Particularly, it is shown how to include neural

models in Nonlinear Model Predictive Control for such a fast

system while ensuring low computational load. This is pri-

marily obtained by instantaneous linearization and constraints

holding by simple saturation.

In the next section, the air intake of a turbocharged SI

engine, the control problem and the proposed torque control

based on a coordinated control scheme of all the air actuators

are presented. In the third section, the air mass control is

described. First, the internal model control of the throttle,

in which a neural model is used, is presented. Next, the

wastegate control is described based on a Neural Predictive

Control strategy. The air mass control has been tested on an

engine test bench without Variable Camshaft Timing (VCT)

and on a engine simulator with VCT [12]. In the fourth section,

burned gas mass and scavenged air mass control is presented

and the control of the Variable Camshaft Timing is described.

It implements a neural model-based optimal control scheme,

which consists of a minimization algorithm to be solved in real

time. In this part, the controlled variable is not measured. This

control has been tested on an engine test bench with VCT. All

tests shown in this paper have been made on a test bench.

II. TURBOCHARGED SI ENGINE WITH VARIABLE

CAMSHAFT ACTUATION

A. Air intake description

The air intake of a turbocharged SI Engine, represented in

Figure 1, can be described as follows.

The compressor (pressure Pint) produces a flow from the

ambient air (pressure Pamb and temperature Tamb). This air

flow Dthr is adjusted by the intake throttle (section Sthr) and

enters the intake manifold (pressure Pman and temperature

Tman). The flow that goes into the cylinders Dcyl passes

through the intake valves, whose timing is controlled by the

intake Variable Camshaft Timing V CTin actuator. After the

combustion, the gases are expelled into the exhaust manifold

through the exhaust valve, controlled by the exhaust Variable

Camshaft Timing V CTexh actuator. The exhaust flow is split

in two parts: the turbine and wastegate flows. The turbine flow

powers up the turbine and drives the compressor through a

shaft. Thus, the supercharged pressure Pint is adjusted by the

turbine flow which is controlled by the wastegate WG.
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Fig. 1. Airpath of a Turbocharged SI Engine with VCT

B. Torque control

The objective of engine control is to supply the torque

requested by the driver while polluting the least amount as

possible. For a SI engine, the torque is directly linked to the

air mass trapped in the cylinder for a given engine speed Ne.

For this reason, an efficient control of the air mass trapped in

the cylinder is required to obtain the desired torque.

As the engine must pollute as little as possible, it is

necessary to also control the back-flow of burned gases in

the cylinder. Indeed, the residual burned gases in the cylinder

reduce the pollutant formation (especially NOx) because of

the dilution, but the combustion stability and efficiency can be

reduced as well. Thus an optimal value of burned gases in the

cylinder must be tracked. The Recirculated Gas Mass RGM ,

that includes the burned gases, is controlled by the Variable

Camshaft Timing (VCT).

The proposed torque control of the turbocharged SI engine

with variable camshaft actuation is presented in Figure 2. The

Torque Set Point is directly linked to the driver’s request. The

supervisor, not described in this paper, provides then two set

points: the Air Mass Set Point Mair_sp and Recirculated Gas

Mass Set Point RGMsp, linked to pollutant emissions. The

control is split into two parts: the air mass control, presented in

more detail in part III, and the Recirculated Gas Mass control,

detailed in part IV.

More precisely, as presented in Figure 3, the air mass control

manipulates the throttle Sthr (block 2, section III-B) and the

WasteGate WG (block 3, section III-C). It is necessary to

compute beforehand a Manifold Pressure Set Point Pman_sp

from the Air Mass Set Point Mair_sp (block 1, section III-A).

Furthermore, the Recirculated Gas Mass control manipulates

the Variable Camshaft Timing of the Intake V CTin and of the

Exhaust V CTexh (block 4, section IV).

III. AIR MASS CONTROL

A. From air mass to manifold pressure

This section corresponds to block 1 in Figure 3. To obtain

the desired torque of a SI engine, the air mass trapped in

Air Mass Set Point

Mair_sp

Recirculated Gas

Mass Set Point

RGMsp

Sthr

WG

VCTin

Air 

Path

VCTexh

Super-

visor
Torque 

Set 

Point

Recirculated Gas

Mass Control

Air Mass Control

Fig. 2. Proposed scheme for torque control
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Fig. 3. Proposed scheme for air actuator control

the cylinder must be precisely controlled. For an SI engine

without Variable Camshaft Timing (VCT), the corresponding

measurable variable is the manifold pressure, linearly related

to the air mass trapped, as shown in Figure 4. Conversely,

for an engine with Variable Camshaft Timing, there is no

more one-to-one correspondence between the air mass trapped

and the intake manifold pressure. Figure 4 also shows the

relationship between the air mass trapped and the intake

manifold pressure at two particular VCT positions for a fixed

engine speed.

Thus, it is necessary to model the intake manifold pressure

Pman. The static model chosen is a perceptron with one

hidden layer (1). The regressors have been chosen from

physical considerations: air mass Mair (corrected by the intake

manifold temperature Tman), engine speed Ne, intake V CTin

and exhaust V CTexh camshaft timing and then:

Pman = fnn1 (Mair, Ne, V CTin, V CTexh) (4)

The supervisor gives an air mass set point from the torque

set point. From this air mass set point Mair_sp, the previous

model gives the intake manifold pressure set point Pman_sp.

So, the controlled variable is the intake manifold pressure

Pman. The problem is therefore to manipulate the throttle Sthr
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Fig. 4. Relationship between the manifold pressure (in bar) and the air mass
trapped (in mg) for a SI Engine with VCT (green, two examples) and without
VCT (red), at 2000 rpm

and the Wastegate WG to track the manifold pressure set point

Pman_sp.

B. Intake throttle control

This section corresponds to block 2 in Figure 3.

1) Internal Model Control principle: The Internal Model

Control (IMC) is a controller design strategy originally pro-

posed for linear systems described by transfer function models

[13], but extended to nonlinear systems [14] [15]. IMC has

the following advantages: it is intuitively simple, easy to

implement, and the only design parameter is for the filter.

However, IMC can only be applied to stable processes. For

unstable processes, a stabilizing feedback must be first carried

out. Moreover, if the system has an unstable inverse, IMC

cannot be applied. Due to the IMC structure, the integral action

is implicitly included in the controller. In the linear case, one

can prove that IMC allows to obtain the PID gains [16].

Inverse 

Model

+-

++-+ System
Output

Filter

Direct 

Model

Disturbances

Set Point

Fig. 5. Principle of Internal Model Control

Internal Model Control is based on the knowledge of a

model of the process as shown in Figure 5. The internal

models can be physical models or models identified from

data. In the case where the direct model is perfect, the

feedback signal is only the perturbation. Otherwise, the

feedback signal includes the model error and some robustness

can be obtained by acting on a filter. This robustness filter

can be a first order filter whose time constant is selected to

ensure closed loop stability [14]. Moreover, if the steady-state

gain of the inverse model is the inverse of the steady state

gain of the direct model, a zero-offset is guaranteed.

2) Control scheme: The controlled variable is the intake

manifold pressure Pman and the manipulated variable is the

intake throttle Sthr.

a) Direct Model Description: The direct model used here

is based on physical equations, as they present interesting char-

acteristics: good extrapolation, good meaning, high reliability.

This model is based on the perfect gas law:

PmanVman = MmanRTman (5)

with:
Pman intake manifold pressure (measured),

Vman manifold volume (known),

Mman intake manifold mass,

R perfect gases constant,

Tman intake manifold temperature (measured).

Differentiating this equation and considering a constant

intake temperature (or slow variations) gives:

Ṗman =
RTman(Dthr − Dcyl)

Vman

(6)

with:
Dthr flow through the throttle (in the manifold),

Dcyl flow through the intake valve (out the manifold).

On one hand, the flow through the throttle Dthr is calculated

by the Barré de Saint-Venant equation [17]:

Dthr = SthrPintf(Tman, Pman/Pint) (7)

where:











































f(T, Pr) =

√

2γ
(γ−1)RT

(

Pr
2
γ − Pr

γ+1
γ

)

if Pr ≥ ( 2
γ+1 )

γ
γ−1 ≃ 0.5

f(T, Pr) =

√

2γ
(γ−1)RT

(

(

2
γ+1

)
2γ

γ−1

−
(

2
γ+1

)
γ+1
γ−1

)

else
(8)

with γ a thermodynamic constant.

On the other hand, the flow through the intake valve Dcyl

is calculated by a classical volumetric efficiency technique:

Dcyl =
ncylηvolVcylPmanNe

120RTman

(9)

with:
ncyl number of cylinders (known),

ηvol volumetric efficiency,

Vcyl cylinder volume (known),

Pman intake manifold pressure (measured),

Ne engine speed (measured),

Tman intake manifold temperature (measured).
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Without Variable Camshaft Timing, this volumetric effi-

ciency ηvol is a function of the engine speed Ne and the

intake manifold pressure Pman, practically given by a look-

up table. With Variable Camshaft Timing, the intake V CTin

and exhaust V CTexh Camshaft Timings have to be taken into

account. So, a neural model is built:

ηvol = fnn2 (Pman, Ne, V CTin, V CTexh) (10)

b) Inverse Model Description: The inverse model can be

a static model [13]. Here, the static inverse model is given by

considering Ṗman = 0 in (6). This gives simply:

Dthr = Dcyl (11)

and then, with (7):

Sthr =
Dcyl

Pintf(Tman, Pman/Pint)
(12)

As the direct and the inverse models are derived from the

same equations, the steady state gain of the inverse model

is the inverse of the steady state gain of the direct model.

Consequently, a zero-offset is guaranteed.

The Internal Model Control of the throttle is summarized

in Figure 6. The direct model is given, after discretization, by

(6), with (7), (8), and (9), and the inverse model by (12), with

(8) and (9). For both direct and inverse models, the volumetric

efficiency can be given by a lookup-table ηvol = f(Ne, Pman)
without VCT, or the neural model (10) with VCT. Variables

Pint, Tman and Ne are measured.

+-

+
+-

+

Disturbances

Direct Model

(6)

Intake Manifold
Inverse Model

(12)

Filter

SthrPman sp
Pman

Pint Tman Ne

Pint Tman Ne

Fig. 6. Internal Model Control of the throttle

3) Engine test bench results: IMC was compared to a

classical feedforward control scheme based on (12) plus a

PID controller. Figure 7 shows the results obtained on a 0.6

Liter turbocharged 3 cylinders Smart engine (without Variable

Camshaft Timing). The IMC results are clearly better. But the

main advantage of IMC is the easy synthesis and tuning of

the control.

C. WasteGate control

This section corresponds to block 3 in Figure 3.
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man
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Fig. 7. Intake Manifold Pressure Pman (bar): setpoint, variable controlled
by feedforward control (Pmanfeedforward) and Internal Model Control
(PmanIMC). Results obtained on test bench

1) Principle of Model Predictive Control: Model Predictive

Control (MPC) or Receding Horizon Control (RHC) has

become an attractive control strategy especially for linear

processes or nonlinear processes with large time constant.

MPC uses an explicit model to predict the future response

of the process and an algorithm optimizing the future process

behavior. In general, MPC is formulated as solving on-line,

at each sampling instant, a finite horizon open-loop optimal

control problem subject to system dynamics and constraints

involving states and controls [18]. The optimization produces

an optimal control sequence and only the first value in this

sequence is applied to the process.

Linear Model Predictive Control deals with old and intuitive

ideas, but has only expanded more rapidly in the 1980’s.

Linear MPC uses a linear model to predict the process

behavior, so that the solution or a part of the solution can be

calculated off line. For a good introduction to the theoretical

and practical issues associated to linear MPC, see [19], [20],

and [21]. Many systems are, however, nonlinear by nature, and

linear models are often inadequate to describe such processes.

This motivates the development of Nonlinear Model Predictive

Control (NMPC) [22]. Due to the use of a nonlinear model,

NMPC strategy is based on solving a non-convex optimization

problem on-line, which requires an important computational

load. If neural models are associated in the NMPC strategy,

the control scheme is called Neural Predictive Control [23].

Model Predictive Control, illustrated for a SISO system in

Figure 8, unfolds in three steps. The first step is the prediction

of the output on a horizon Tp from inputs (present and future)

and measured outputs. This prediction can be made by a

physical model or an identified model which can be linear

or not. The second step consists in simulating the output set

point ysp on the same horizon Tp with a reference model. To

allow a soft attenuation of the error, a first order exponential

trajectory could be chosen:
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Set Point ysp
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Open loop control
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control

Output prediction ŷ

Fig. 8. Principle of Model Predictive Control

yref (t + i) = y(t) + [ysp(t) − y(t)]
(

1 − e−
iTe

τ

)

(13)

with:
τ time constant of the desired transient,

y measured process output,

ysp output set point,

Te sampling period.

The last step consists of the minimization over a finite

horizon of a (most often) quadratic performance index J:

J =

m
∑

i=1

(

Tpi
∑

j=1

[(yiref (t+j)−ŷi(t+j)]2

)

+
n
∑

i=1

(

ρi

Tc
∑

j=0

[ui(t+j) − ui(t+j−1)]2

) (14)

with respect to the control vector:

U = [u1(t) . . . un(t); . . . ;u1(t + Tc) . . . un(t + Tc)] (15)

subject to the constraint U ∈ D

with:
n,m number of inputs and outputs,

Tpi ith prediction horizon,

Tc control horizon,

yiref reference for the ith output,

ŷi ith predicted output,

ρi weighting factors,

D variation domain of the control.

Only the first control vector [u1(t) . . . un(t)] is applied to

the process.

Real time requirement is an important problem for practical

control systems especially with NMPC. All the iterative min-

imizations must be solved on-line at each step which requires

intensive computations. Very few works deal with real-time

implementation of NMPC [24] or the works are applied to

plants that have a large time constants [23]. For real-time

implementation, a solution for the optimization problem is

needed which should not be an intensive iterative procedure.

Furthermore, the available optimization algorithms cannot

guarantee that the solution can be obtained in guaranteed

time and that the solution obtained is a global minimum.

These problems can be partially overcome by instantaneous

linearisation.

The local linearization of a particular form of (3):

ŷ(t + 1) = fnn (y(t), u(t), x(t)) (16)

around an operating point y0, x0 and u0 gives:

ŷ(t + 1) = a0 + b0y(t) + c0u(t) (17)

with:

a0 = fnn|0 −
∂fnn

∂y(t)

∣

∣

∣

0
y0 − ∂fnn

∂u(t)

∣

∣

∣

0
u0

b0 = ∂fnn

∂y(t)

∣

∣

∣

0

c0 = ∂fnn

∂u(t)

∣

∣

∣

0

(18)

For sake of clarity, the changes on the states x(t) around x0

have been assumed to be sufficiently small. In a matrix form,

for a SISO system, the prediction vector with Tc = Tp − 1 is

given by:

Ŷ = G + HU (19)

with:

Ŷ = [ŷ (t + 1) · · · ŷ (t + Tp)]
T

U = [u (t) · · ·u (t + Tp − 1)]
T (20)

H =













c0 0 · · · 0

b0c0 c0
. . .

...
...

. . .
. . . 0

b
Tp−1
0 c0 · · · b0c0 c0













(21)

G =















a0 + b0y(t)
a0 + a0b0 + b2

0y(t)
...

a0

Tp−1
∑

j=0

bj
0 + b

Tp

0 y(t)















(22)

The performance index (14) can be thus written:

J =
(

Ŷ − Yref

)T (

Ŷ − Yref

)

+
(

UT ΓU − 2βT U + r
)

(23)

with:
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Yref = [yref (t + 1) · · · yref (t + Tp)]
T

Γ = ρ













2 −1 0

−1
. . .

. . .

. . . 2 −1
0 −1 1













, β = ρ











u0

0
...

0











, r = ρu2
0

(24)

Then, the minimization problem can be written:

min
U∈D

1

2
UT

(

HT H + Γ
)

U +
(

(G − Yref )
T

H − βT
)

U (25)

To deal with the constraint, two solutions can be used. The

first one is an iterative procedure for the constrained minimiza-

tion. In the second one, the control is the saturated solution of

the unconstrained minimization so that an analytical solution

is found:

U = sat
{

(

HT H + Γ
)−1 (

β − HT (G − Yref )
)

}

(26)

This control scheme, which guarantees a satisfactory com-

putational burden, is called here the Saturated Linearized

Neural Predictive Control (SLNPC) [7].

2) Control scheme: The torque set point is rewritten into a

Air Mass Set Point Mair_sp that gives the manifold Pressure

set point Pman_sp (see section III-A). If the manifold pressure

is less than the ambient pressure (Pman_sp < Pamb), the

WasteGate is opened (WG = 0), and the manifold pres-

sure is controlled by the throttle (see section III-B). But if

the manifold pressure is greater than the ambient pressure

(Pman_sp > Pamb), there is an infinite number of solutions

for actuators opening (Sthr and WG), but only one is optimal

from the efficiency point of view. To maximize the efficiency,

i.e. to reduce the pumping losses [17], the throttle should be

wide open. It is worth noting that throttle is opened when

Pint ≈ Pman, and thus the supercharging pressure target is

the same as the manifold pressure target Pman_sp.

In summary, the controlled variable is here the supercharg-

ing pressure Pint and the manipulated variable is the wastegate

WG. Moreover the WasteGate control is multiobjective: to

have the maximum opening of the throttle Sthr and to track

the intake manifold pressure set point Pman_sp.

a) Prediction Model: A Linear Model Predictive Con-

troller would give bad results because of the static non-

linearities shown in Figure 9. It can be noticed that these

nonlinearities, given at a fixed engine speed Ne, look like

sigmoïdal functions.

A neural black-box predictor of Pint is used because the

corresponding physical model of the turbocharger is poor and

too complex to be embedded and differentiated, in the MPC

framework. The neural model is trained from test bench data

(but can be learned on a simulator too). The learning data

base has been built so that there is no gap in the frequency

and amplitude domains. Based on physical considerations, the

following regressors have been chosen: Pint(t), WG(t), the

wastegate closing, and Dcyl(t), the air mass flow entering the

Fig. 9. Static Non Linearities of the supercharged pressure (Pascal) versus
WasteGate closing (%) and Air Mass (mg) at a fixed engine speed Ne = 3000

rpm

cylinders obtained by an estimator given by (9). This air mass

flow Dcyl(t) is chosen because it is an image of the engine

load and takes into account the Variable Valve Actuation. The

model is then given by:

P̂int(t + 1) = fnn3 (Pint(t),WG(t), Dcyl(t)) (27)

where fnn3 is a one hidden layer perceptron with 5 neurons

and with a sampling period of 0.03 s. The training signals have

been collected on the same 0.6 Liter turbocharged 3 cylinders

Smart engine and then scaled. To train the neural model, steps

of wastegate and throttle are applied with the same range of

the test signals. These steps are generated by an Amplitude

modulated Pseudo Random Binary Sequence (APRBS) [25]

for various engine speeds (1500, 2000, 2500, 3000 and 3500

rpm). It is worth noting that only 200 seconds are necessary

to collect the data (for each engine speed). Training has been

performed by minimizing the mean squared error, using the

Levenberg-Marquardt algorithm [26]. The model validation

is illustrated in Figures 10 and 11. Figure 10 shows the

estimation error and the very good prediction given by the

neural model overwritten by the actual value of Pint. Figure

11 shows the responses of the actuators for the same test. For

that test, the autocorrelation function of the prediction error is

satisfying as shown in figure 12 so that the model is accepted.

b) Performance Index: The performance index of the

Neural MPC applied to the turbocharged SI engine is given

by:

J =

Tp
∑

j=1

[(Pintref (t+j)−P̂int(t+j)]2

+ρ
Tp−1
∑

j=0

[WG(t+j) − WG(t+j−1)]2
(28)

where the prediction horizon is set according to the system

dynamics (Tp = 3). The weight factor ρ is set to 5e-2

(after normalizing) to reach a good compromise between fast
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on test bench
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Fig. 12. Autocorrelation function of the prediction error versus lag

system response and low actuator solicitation. The reference

model is given by (13) where the time constant is fixed to

0.05 s. The target of the supercharging pressure (Pint) is the

same as the target of the manifold pressure (Pman) so that

the throttle is opened as wide as possible.

3) Engine test bench results: Some results of the Saturated

Linearized Neural Predictive Control (14), for the same engine

test bench, are displayed in Figures 13 and 14. Figure 13 shows

the manifold pressure set point, the supercharging pressure

(which cannot be less than Pamb ≈ 1bar) and the manifold

pressure when the torque target changes. Figure 14 shows the

actuators response during the same test. The chosen engine

speed (2750 rpm) is not included in the training data of

the supercharging pressure Pint. Various engine speeds were

tested with nearly the same results. This shows the good

control performances of the proposed method. Note that the

throttle is opened as wide as possible, because Pint ≈ Pman,

so that the objectives are satisfied.

0 2 4 6 8 10 12 14
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Time (s)

b
a
r

set point

P
int

P
man

Fig. 13. Pressures (bar) versus time (seconds): setpoint, supercharged
pressure Pint, intake manifold pressure Pman, at Ne=2750 rpm. Results
obtained on test bench

The torque control is split in two parts as shown in Figure

2. The air mass control has been described in this section. The

Recirculated Gas Mass control is presented below.

IV. RECIRCULATED GAS MASS CONTROL

This section corresponds to block 4 in Figure 3.

A. Neural model of the Recirculated Gas Mass

The effects of Variable Camshaft Timing (VCT) can be

summarized as follows. On the one hand, cam timing can

inhibit the production of nitrogen oxides (NOx) because of

the in-cylinder burned gases. Indeed, by acting on the cam tim-

ing, combustion products which would otherwise be expelled

during the exhaust stroke are retained in the cylinder during

the subsequent intake stroke. This dilution of the mixture in

the cylinder reduces the combustion temperature and limits
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Fig. 14. Wastegate closing (PWM ratio, %) (top) and throttle opening
(position, %) (bottom) at 2750 rpm. Results obtained on test bench

the NOx formation. Therefore, it is important to control the

burned gas back-flow in the cylinder.

On the other hand, with camshaft timing, air scavenging

can appear, that is air passing directly from the intake to the

exhaust through the cylinder. For that, the intake manifold

pressure must be greater than the exhaust pressure when the

exhaust and intake valves are opened together. In that case,

the turbocharger and engine torque dynamic behavior are

improved (the response times are decreased). Indeed, the flow

which passes through the turbine is increased and the energy

retrieved by the turbine is given to the compressor. In transient,

it is very important to control this scavenging.

Because scavenging and burned gas back-flow correspond

to the same flow phenomenon, only one variable, noted here

as RGM (Recirculated Gas Mass), is necessary:

RGM =

{

Mburned gas if Mburned gas > Mscavenged

−Mscavenged else
(29)

Note that, when there is scavenging from the intake to the

exhaust, the burned gases are insignificant. Figure 15 shows

the Recirculated Gas Mass RGM on an operating point, i.e.

at a fixed engine speed and a fixed manifold pressure.

Studying this variable is complex because it cannot be

measured on-line (or the measurement is too complex). To

control RGM , the only method is to build a model from a

complex but accurate high frequency simulator. A static neural

model has been chosen:

R̂GM = fnn4(Pman, Ne, V CTin, V CTexh) (30)

with:
R̂GM Recirculated Gas Mass observation,

Pman intake manifold pressure,

Ne engine speed,

V CTin intake camshaft timing,

V CTexh exhaust camshaft timing.

0

20

40

0510152025303540

−80

−60

−40

−20

0

20

40

VCT
exh

VCT
in

Scavenged Air Mass

Burned Gases Mass

Fig. 15. Recirculated Gas Mass at Ne = 2000 rpm and Pman = 1.4 bar

The choice of the regressors is based on physical considera-

tions. The learning bases (about 6800 points) comprises all the

representative static operating points : manifold pressure from

0.3 bar to 2.4 bar, engine speed from 750 rpm to 5500 rpm,

intake camshaft timing and exhaust camshaft timing from 0 to

40oCA (crankshaft angle degree).

B. Control scheme

The controlled variable is the non-measured variable R̂GM
and the manipulated variables are the intake Variable Camshaft

Timing (V CTin) and the exhaust Variable Camshaft Timing

(V CTech). A feedforward control scheme based on an inverse

model cannot be applied, because the system is not bijective as

shown in figure 15. Thus, the burned gas control consists of a

neural model-based scheme solving in real time the following

minimization:

minJ
0≤V CTin≤40
0≤V CTexh≤40

(31)

with:

J =

(

R̂GM − RGMsp

)2

+ρ1(∆V CTin)
2

+ ρ2(∆V CTexh)
2

(32)

R̂GM Recirculated Gas Mass observation,

RGMsp Recirculated Gas Mass set point,

∆V CTin intake camshaft timing variation,

∆V CTexh exhaust camshaft timing variation,

ρ1, ρ2 weighting factors.

Many options are available for this minimization [25]. The

chosen method is a full-Newton Levenberg-Marquardt method

[23]. The advantage of a such method is the convergence

and the computational aspect for small order systems. The

minimization of the performance index J (32) with respect to

the control vector V CT = [V CTin, V CTexh] can be written

in ten steps:
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① Select initial sequence of V CT (0) = [V CT
(0)
in , V CT

(0)
exh]

and evaluate J [V CT (0)]. Initialise λ and set i = 0
② Evaluate the gradient G[V CT (i)] and the hessian

H[V CT (i)].
③ Cholesky factorization of the matrix H[V CT (i)]+λI . If

the matrix is not positive definite, the factorization is not

possible and set λ = 4λ and go to 2.

④ Determinate the search direction f (i) by :
(

H[V CT (i)] + λI
)

f (i) = −G[V CT (i)]
⑤ Evaluate J [V CT (i) + f (i)] and calculate the ratio

r(i) = 2 J[V CT (i)]−J[V CT (i)+f(i)]
λ(f(i))T f(i)−(f(i))T G[V CT (i)]

⑥ If r(i) > 0.75 λ = λ/2 and go to 8

⑦ If r(i) < 0.25 λ = 2λ and go to 8

⑧ If r(i) > 0 V CT (i+1) = V CT (i) + f (i),

i = i + 1
⑨ If

∥

∥V CT (i+1) − V CT (i)
∥

∥ < δ or i > number of

iterations, go to 10, else go to 2.

⑩ Accept the sequence V CT (i) = [V CT
(i)
in , V CT

(i)
exh] and

terminate

In the practical control system, this optimization algorithm

is solved with only 2 iterations because of computational load

aspect.

C. Engine test bench results

Some experimental results of the control of burned gases

obtained on a 1.8 Liter turbocharged 4 cylinders engine

with Variable Camshaft Timing are given to illustrate the

effectiveness of the proposed method. Figure 16 shows the

response of the controlled variable, that is the Recirculated

Gas Mass. Figure 17 represents the corresponding response of

the actuators. In these figures, it is shown the good dynamic

behavior of the in-cylinder burned gases at 2000 rpm.
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Fig. 16. Target (RGMsp) and observation (R̂GM ) of the Recirculated Gas
Mass (mg) versus time (s). Results obtained on test bench

D. Validation of the proposed control scheme

One of the main ideas of the proposed control is to inde-

pendently control the torque and the Recirculated Gas Mass
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Fig. 17. Intake (V CTin) and exhaust (V CTin) valve timing (oCA,
crankshaft angle degree). Results obtained on test bench

RGM . This permits a way to optimize pollutant emissions

via RGM for a given torque. So, for a validation test, one

can change the RGM set point RGMsp without changing the

torque set point. Figure 18 shows the effect of the Recirculated

Gas Mass on the torque with the proposed control scheme.

In this figure, one can see that the torque is nearly constant

(nearly ±5% of variation) so the coordinated control works

well. To prove the effectiveness of the proposed controller,

another test has been done without taking into account the

variation of RGM in the control scheme, that is the model

(4) does not take into account the variation of the VCT’s.

Figure 19 shows the effect of the Recirculated Gas Mass on

the torque without taking into account the RGM , i.e. without

the proposed control scheme. In this figure, one can see that

the torque is not constant (nearly ±40% of variation).
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Fig. 18. Effect of the Recirculated Gas Mass (mg, bottom) on the Indicated
Torque (Nm, top) with the proposed control scheme
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Torque (Nm, top) without the proposed control scheme

V. CONCLUSION

This paper has presented the inclusion of neural models

in various automotive engine control schemes. The proposed

approach has been tested on a up-to-date nonlinear fast cou-

pled system, the air intake control of a turbocharged SI engine

with the aim of downsizing. The control scheme, tested on

two different engine test benches for various engine speeds,

uses three controllers: the throttle controller, the wastegate

controller, and the VCT controller. Instead of using a com-

plex unique controller, the idea is to combine separate, but

coordinated, control modules that are easier to synthesize, to

implement and to tune.

The Internal Model Control of the throttle is mainly based

on a first principle model. The wastegate control is a Model

Predictive Control where a neural model is used as nonlinear

predictor. The proposed method, linearized neural predictive

control, guarantees the application to fast time constant non-

linear systems. The Variable Camshaft Timing control uses a

model-based control scheme where a neural model gives an

observation of a non measured variable. In these cases, neural

networks are used to replace physical models, which are too

complex to be on line embedded.

The good control performances of the proposed methods

were demonstrated on two engine test benches. While a part of

the work presented here has been tested on a test bench without

Variable Camshaft Timing (for the wastegate and the throttle),

further work will be to apply the complete control scheme

to an engine bench with Variable Camshaft Timing. Finally,

further research will deal with the supervisor synthesis.
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