
Cerebral Cortex May 2011;21:1178--1191

doi:10.1093/cercor/bhq188

Advance Access publication October 18, 2010

Neural Correlates of Developing and Adapting Behavioral Biases in Speeded Choice
Reactions—An fMRI Study on Predictive Motor Coding

Simon B. Eickhoff1,2,3, Witali Pomjanski4, Oliver Jakobs4, Karl Zilles2,3,4 and Robert Langner1,2,3

1Department of Psychiatry and Psychotherapy, RWTH Aachen University, 52074 Aachen, Germany, 2Institute of Neuroscience and
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In reaction-time (RT) tasks with unequally probable stimuli, people

respond faster and more accurately in high-probability trials than in

low-probability trials. We used functional magnetic resonance

imaging to investigate brain activity during the acquisition and

adaptation of such biases. Participants responded to arrows pointing

to either side with different and previously unknown probabilities

across blocks, which were covertly reversed in the middle of some

blocks. Changes in response bias were modeled using the

development of the selective RT bias at the beginning of a block

and after the reversal as parametric regressors. Both fresh

development and reversal of an existing response bias were

associated with bilateral activations in inferior parietal lobule,

intraparietal sulcus, and supplementary motor cortex. Further

activations were observed in right temporoparietal junction,

dorsolateral prefrontal cortex, and dorsal premotor cortex. Only

during initial development of biases at the beginning of a block, we

observed additional activity in ventral premotor cortex and anterior

insula, whereas the basal ganglia (bilaterally) were recruited when

the bias was adapted to reversed probabilities. Taken together, these

areas constitute a network that updates and applies implicit

predictions to create an attention and motor bias according to

environmental probabilities that transform into specific facilitation.

Keywords: functional imaging, implicit prediction, preparation, probability

learning, response bias

Introduction

Studies on speeded 2-choice reactions, with 2 responses
mapped onto 2 stimuli, consistently find that unequal stimulus
frequencies lead to faster (and more correct) responses to the
more likely stimulus—a finding referred to as the ‘‘probability

effect’’ (Laming 1969; Blackman 1972; Heuer 1982; Miller 1998;
Lungu et al. 2004). The size of this effect is reported to be
about 60--70 ms for a 75--80% preponderance of one of the

stimuli (Laming 1969; Miller 1998; Lungu et al. 2004). This
suggests that the brain represents and uses this probability
information to predict, selectively prepare, and facilitate

movements (Miller 1998).
Understanding how the brain uses the probability context of

events to facilitate corresponding action will greatly benefit
from examining how time-related changes in event predict-

ability are learned and represented. In contrast to previous
efforts (e.g., Strange et al. 2005; Bestmann et al. 2008), we did
not examine associations of brain activity with theoretically

derived, a priori measures of predictability but instead derived
predictors from actual response behavior. In our view, such

empirical measures reflect subjective representations of situ-

ational probabilities more validly. Furthermore, our predictors

did not reflect trial-by-trial levels of static measures of pre-

dictability but rather represented the trial-wise amount of

change thereof (see below).
Recently, Kilner et al. (2007) proposed that predictive motor

coding underlies the generation and adjustment of movements,

describing how predictions are implemented in motor cogni-

tion. They postulated several hierarchical levels of action pre-

paration that form a forward system of information processing

from a general intention to the movement of individual

muscles. Complementary to this intention-driven (top-down)

system of motor control, a corresponding bottom-up system

processes sensory (feedback) information and interacts with it

to form a hierarchical Bayesian system. Thus, motor responses

may be selectively sped up by top-down-driven (and bottom-

up-confirmed) biases toward the more frequent and, hence,

predicted movement (Miller 1998). This does not exclude

prediction benefits at perceptual levels, since contextual, for

example, visual, information may also be differentially antici-

pated within the overarching intention (see, e.g., Schultz and

Lennert 2009, on attentional bias shifts toward more frequent

target dimensions).
An important component of hierarchical predictive coding is

the presence of prediction errors that provide feedback to

higher hierarchical levels and can hence drive an adaptation of

predictions and behavior (Friston 2002; Fletcher and Frith

2009). While higher-level regions compute a probabilistic

model of future sensory input and the hereby required motor

commands, lower levels evaluate predicted against actual input

(Kilner et al. 2007; Friston and Kiebel 2009) and generate

a prediction error reflecting the difference between both. A

low error indicates a valid prediction whose associated

movement components should be reinforced. A high pre-

diction error, on the other hand, indicates that the internal

model may not provide an appropriate representation of the

current environment (Friston 2002; Courville et al. 2006;

Friston et al. 2006; Kilner et al. 2007; Jakobs et al. 2009). Thus,

in order to minimize future prediction errors and facilitate

faster processing, the previous sensorimotor model is updated

by incorporating current sensory data (Behrens et al. 2007). For

a graphical summary of the model, see Figure 1.
Exploiting the behavioral consequences of unequal stimulus--

response probabilities, we aimed to delineate brain areas

subserving the probability effect. We used a blocked 2-choice

reaction-time (RT) task with stimuli indicating a left or right

response, respectively, occurring in 20% versus 80% of the

trials. Additionally, in half the blocks, we implemented
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a probability reversal after about half the trials, as there should
be substantial overlap but also differences in the neural
correlates of initial bias development and bias adaptation.

As the blocks begin equally often with a preponderance of
left or right cues, respectively, participants should start off into
each block with ‘‘flat’’ priors, that is, unbiased predictions (but

see Behrens et al. 2007, for the concept of overarching
volatility priors). The development of a response bias toward
the more frequent stimulus then implies that stimulus
probability distributions are integrated over trials, increasingly

shaping predictions about upcoming events. In information-
theoretic terms (cf. Strange et al. 2005), the maximal entropy
(i.e., averaged uncertainty) at the outset of each block should

diminish over time, whereas the difference between surprise
intensities associated with either response cue should grow.
According to the predictive-coding framework outlined above,

this information then facilitates the processing of the more
likely outcome and produces the behavioral bias (Miller 1998).
As long as the probabilities remain unchanged, the predictions

appear valid and are therefore sustained. Hence, during the
start of each block, the initially flat priors become skewed to
reflect the current environment increasingly correctly until
most stimuli (i.e., the frequent ones) contain little surprise, that

is, new information.
In cases of a probability reversal, the starting situation is

different: biased predictions are already established, since task-

relevant probability information has been gathered and in-
tegrated during previous trials. Thus, entropy is rather small.
Now that probabilities are reversed, the current predictions

become invalid, and the previous behavioral advantage of their
application turns into a disadvantage. In other words, a large
prediction error is now elicited during most trials (i.e., the
previous low-probability alternative), leading to an adjustment

of predictions at higher levels. Specifically, amassing prediction
errors should be initially encountered by giving more weight to
bottom-up sensory information, reflecting a subjective increase

in entropy (which objectively remains constant after the rever-
sal). After reaching a maximum, perceived entropy returns to

lower levels over time, whereas initially large differences
between surprise at occurrence of either alternative first vanish
and then, in reversed form, reappear, reflecting the readjusted

bias. The main difference between the 2 situations (i.e., initial
vs. postreversal bias establishment) therefore is the different
baseline situation. At the beginning of a block, due to flat priors

(i.e., great entropy), there should be no surprise (i.e., no predi-
ction error) at either outcome. In contrast, at probability
reversal it should mainly be prediction errors, amassing during
low entropy, that signal a change in environment and drive the

adjustment of internal models.
Both processes, however, can be regarded as aspects of

predictive motor coding. Thus, core areas of a network

subserving predictive motor coding should not only be active
for the acquisition and modulation of biased models but their
recruitment should accord with the dynamics of the behavioral

change that derives from these models. Here, we investigated
their neural basis by functional magnetic resonance imaging
(fMRI). We expected predictive-coding--related activity in

frontal regions such as the supplementary motor area (SMA),
lateral pre-motor cortex (PMC), and the dorsolateral prefrontal
cortex (DLPFC), that is, regions associated with response
selection (Casey et al. 2001; Wang et al. 2009), visuomotor

mapping (Passingham et al. 2000; Jakobs et al. 2009), and
monitoring of movement execution (Nachev et al. 2008).
Moreover, given the role of the inferior parietal lobule (IPL)

and intraparietal sulcus (IPS) in spatial attention and stimulus--
response mapping (Vandenberghe and Gillebert 2009) and of
the cerebellum in different aspects of prediction processing

(Wolpert and Kawato 1998; Blakemore and Sirigu 2003; Pollok
et al. 2008), these structures may also contribute to predictive
motor coding.

Materials and Methods

Participants

We examined 20 healthy volunteers (age range 21--47, mean age 28.7
years; 7 females) without any record of neurological or psychiatric

Figure 1. A summary of the theoretical framework of predictive coding in the motor domain. Predictions are conveyed via cortical feedback loops and lead to selective facilitative
adjustments at various levels of the lower sensorimotor hierarchy, here collectively labeled ‘‘sensory processing’’ and ‘‘motor cognition.’’ Surprise reflects the deviation of sensory
input (produced by motor output or situational context) from these predictions; weighted by their precision, the resulting prediction errors are transmitted via feedforward
connections to higher cortical levels, where they lead to evaluations and—if necessary—adjustments of probability models and perceived entropy (i.e., predictability). See text for
details.
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disorders and normal or corrected-to-normal vision. All subjects gave
written informed consent to the study protocol, which had been
approved by the local ethics committee of the RWTH Aachen
University Hospital. Participants were right-handed, as determined by
the Edinburgh Handedness Inventory (Oldfield 1971).

Task and Stimuli

The task was to react as fast and correctly as possible to arrows
pointing to either the left or right side, which were presented briefly
(200 ms) with a size of 4� viewing angle in the central field of view.
Responses were given by pressing a button on an MRI-compatible
response pad (LumiTouch) with the corresponding index finger. All
visual stimuli were presented using the Presentation software package
(Version 11.0, Neurobehavioral Systems Inc.) and displayed on
a custom-built, shielded TFT screen (14� 3 8� viewing angle) at the
rear end of the scanner, visible via a mirror mounted on the head coil.
Before the start of the experiment, participants were familiarized with
the task by instruction and a short practice session outside the scanner.

We used a design in which task periods were periodically alternated
with resting baseline periods of 20-s duration each. Each task period
started with the instruction ‘‘Achtung’’ (‘‘attention’’), indicating that the
next one was about to start. The instruction was displayed on the screen
for 500 ms and was followed by a blank interval (empty screen), whose
duration was uniformly jittered between 1200 and 1400 ms. Then, the
arrows were presented for 200 ms each. The interval between
subsequent arrows was uniformly jittered between 600 and 800 ms to
prevent the temporal anticipation of the stimuli (cf. Jakobs et al. 2009) as
well as to optimize the variance in the blood oxygen level--dependent
(BOLD) signal time series. Likewise, in order to prevent anticipation of
the next baseline period potentially inducing a decrease in alertness
toward the end of a block, the total number of events per block was
varied between 24 and 30 in the following fashion: Each task period was
divided into 2 parts, each containing 12--15 stimuli (uniformly jittered).
Both parts followed each other immediately, such that participants did
not notice a change. Thus, the total length of each task block varied
between 21.6 and 27.0 s (mean: 24.3 s).

Experimental Conditions

The first aim of this study was to investigate the neural correlates of the
development of a response bias, that is, the integration of previous
experience into predictions as well as the increasing application of
these. The second aim was to delineate the neural substrates of
adapting predictions to changing task demands, that is, the dynamic
modification of these predictions when they do not match anymore
with the current stimulus--response probabilities. These aims were
pursued by employing the following experimental setup.

Constant Probability—No-Change Condition

Here, the percentage of arrows pointing to either the left or right side
remained constant throughout the entire block, that is, across the first
and second part. In half the no-change condition (NCC) blocks, 80% of
the arrows pointed to the left and 20% to the right. In the other half,
this ratio was inverted. Importantly, participants were not told that the
probabilities would be biased a priori, so that they would have to learn
the dominance of a given side purely based on the history of trials in the
current block.

Variable Probability—Change Condition

The first part of a block from this condition, that is, the first 12--15
events, equaled the first part of a NCC block. In the second part of these
blocks, however, stimulus--response probabilities were covertly re-
versed. That is, if a block started out with 80% probability for leftward-
pointing arrows, there would be a switch to 80% probability for
rightward-pointing arrows in the second part. This was the case in half
the change condition (CC) blocks. The other half started out with 80%
of the arrows pointing to the right and switched to 80% of them
pointing to the left in the second part.

Across the whole experiment, we presented 20 NCC blocks and 30
CC blocks. Block order was pseudorandomized so that participants
could not predict the nature of the upcoming condition and the initial

probability distribution. Accordingly, the participants’ expectations
should have been unbiased (flat) at the start of each block and could
only develop based on the history of the events within that block. The
transition between the 2 parts (i.e., the change in probability) was not
indicated in any explicit way. The first event of the second part
followed the last one of the first part within the usual stimulus onset
asynchrony (SOA) range, and the position of the transition was jittered
(occurring after 12--15 trials).

fMRI

Images were acquired on a Siemens Trio 3-T whole-body scanner using
BOLD contrast (gradient-echo echo-planar imaging [EPI] pulse se-
quence, repetition time = 1.6 s, echo time = 30 ms, flip angle = 90�, in-
plane resolution = 3.1 3 3.1 mm, 36 axial slices [3.1-mm thickness]
covering the entire brain). Image acquisition was preceded by 4
dummy images allowing for magnetic field saturation. These were
discharged prior to further processing. Images were analyzed using
SPM5 (www.fil.ion.ucl.ac.uk/spm).

First, the EPI images were corrected for head movement by affine
registration using a 2-pass procedure, by which images were initially
realigned to the first image and subsequently to the mean of the
realigned images. After realignment, the mean EPI image for each
subject was spatially normalized to the Montreal Neurological Institute
(MNI) single subject template (Holmes et al. 1998) using the ‘‘unified
segmentation’’ approach (Ashburner and Friston 2003). The resulting
parameters of a discrete cosine transform, which define the de-
formation field necessary to move the subjects data into the space of
the MNI tissue probability maps, were then combined with the
deformation field transforming between the latter and the MNI single
subject template. The ensuing deformation was subsequently applied to
the individual EPI volumes that were hereby transformed into the MNI
single subject space and resampled at 2 3 2 3 2 mm3 voxel size.
Normalized images were spatially smoothed using an 8-mm full-width
at half-maximum Gaussian kernel to meet the statistical requirements
of the general linear model and to compensate for residual macro-
anatomical variations.

Statistical Analysis

The fMRI data were analyzed using the general linear model as
implemented in SPM5. The event-related modeling of experimental
events (presentation of arrows) used a boxcar reference vector (width:
200 ms) convolved with a canonical hemodynamic response function
and its first-order temporal derivative. Choosing this model in spite of
the blocked nature of the task was crucial, even though the temporally
narrow trial spacing necessitated by the task precluded a direct
comparison between different trials (e.g., frequent vs. infrequent
response side) within a task block. Modeling each trial as a separate
event, however, allowed providing a value of the parametric modulators
for each event (Fig. 2E). Hereby, we were able to construct regressors
that modeled (smooth) adaptation and readaptation processes, which
can be reliably assessed in spite of the low-pass filter invoked by the
sluggish BOLD response. We included 3 parametric modulators of
event-related activity into the experimental design:

1. The first modulator reflected whether a particular event required
a left- or right-hand response. That is, whereas the main regressor
should contain the activity present in any (left- or right-hand)
response, side-specific activity should be captured by this first
parametric modulator.

2. The second parametric modulator reflected the acquisition of
a response bias at the start of a new block and was hence only
computed for the first part of each block. First, we calculated, for
each participant and trial, the difference in RT between right and left
responses. After equalizing the direction of the RT differences across
blocks (by inverting the values from blocks starting with 80% right-
sided trials), the differences were averaged across all blocks from
that participant. Lastly, we computed the absolute value of the first
derivative of these RT differences. The ensuing vector describes, for
each participant, the average development of response bias toward
the more frequent side during the first part of each block. As
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Figure 2. Behavioral results. (A) An RT advantage (mean RT ± standard error) was found for responses to high- versus low-probability stimuli, independent of response side, in
blocks without probability reversal (NCC blocks; A-1) as well as in blocks with probability reversal (CC blocks; A-2). (B) Panels B-1 and B-2 depict group-averaged (colored) and
individual mean RT differences between right- and left-response trials in NCC and CC blocks, respectively. (C) After multiplying the difference values from blocks starting with 80%
right-sided trials by --1, these values were averaged across right- and left-response trials, separately for NCC (C-1) and CC (C-2) blocks. (D) The amount of trial-to-trial change in
these RT differences was quantified by the first derivative of each difference score as shown in panels D-1 and D-2 for NCC and CC blocks, respectively. (E) Panel E shows the
group average of the 2 parametric modulators, which were computed for each participant based on the averaged absolute values of the trial-to-trial change scores for the first
half of NCC and CC blocks (‘‘initial learning’’) as well as the second (postreversal) half of the CC blocks (‘‘adapting/relearning’’).

Cerebral Cortex May 2011, V 21 N 5 1181
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participants start without any prior bias toward one side or the
other, this change, that is, the integration of previous information
into internal predictions, is particularly strong during the first couple
of trials in each block (cf. behavioral results, Fig. 2). A positive effect
on this modulator would thus be observed in brain regions that are
most active at the beginning of a block, when prior knowledge
cannot be used. In contrast, a negative effect would correspond to
a region that becomes more active once information is gathered and
predictions of the probabilistic structure can be employed by the
participant to facilitate the most likely response.

3. The third modulator was used to model the period of adapting the
previously acquired probability representations to the reversed
probabilities in the second half of CC blocks. Specifically, this
modulator reflects the change in response bias after the reversal of
probabilities led to a prediction mismatch, driving the switch of the
bias to the now more frequent side. This modulator was therefore
only present in the second part of the CC blocks. We again
computed, for each participant and CC block, the difference in RT
between right and left responses, equalized the direction of the RT
differences and averaged them across all blocks from that participant.
Lastly, we again computed the absolute value of the first derivative of
these RT differences. The ensuing vector describes, for each
participant, the average change in response bias toward a given side,
occurring from this trial to the next during the second part of CC
blocks. As the vector takes an upward bell-shaped form (cf.
behavioral results, Fig. 2) with maximum change of bias after a few
trials into the second part, a positive effect would indicate regions
becoming active during the process of adapting the current action
predictions to the new probability distribution, driven by a strong
prediction error. A negative effect, in turn, would be observed in
regions suppressed during the change of expectations and relearning.

In sum, we used 3 parametric modulators: the first reflected response-
side--specific activity (applied to both halves of each block); the second
reflected bias acquisition at the beginning of a block (applied to the first
half of each block); the third reflected bias reversal (applied to the
second half of CC blocks). That is, the 2 latter modulators were only
applied to those (nonoverlapping) periods of each CC and NCC block
from which the underlying behavioral data were derived.

Low-frequency signal drifts were filtered using a cutoff period of
128 s. Parameter estimates were subsequently calculated for each voxel
using weighted least squares to provide maximum likelihood estimators
based on the temporal autocorrelation of the data (Kiebel and Holmes
2003). No global scaling was applied. For each subject, simple main
effects for each experimental regressor (task condition and parametric
modulations thereof) were computed by applying appropriate baseline
contrasts. These individual first-level contrasts were then fed to a second-
level group analysis using a random-effects analysis of variance (ANOVA;
factor: condition; blocking factor: subject; Penny and Holmes 2003). In
the modeling of variance components, we allowed for violations of
sphericity by modeling nonindependence across images from the same
subject and allowing unequal variances between conditions and subjects
as implemented in SPM 5. Simple main effects of the task (vs. resting
baseline) and the parametric modulators as well as comparisons between
experimental factors were tested by applying appropriate linear
contrasts to the ANOVA parameter estimates. Composite main effects
(i.e., activations present in each of 2 different conditions) were tested by
conjunction analyses (Nichols et al. 2005). Note that in spite of the fact
that the parametric regressors should capture unique variance, the main
regressor and its (orthogonal) modulators may still explain variance in
the same brain region allowing for a significant effect in a conjunction
analysis using the strict minimum statistic as employed here (Nichols
et al. 2005). This is always the case if the fMRI signal can be modeled as
a linear combination of a general signal increase during the presence of
the task (main regressor) and an additional signal change conditioned on
the state of the modulatory variable (parametric regressor). As all
contrasts were based on t-statistics of the same ANOVA, the effective
residual degrees of freedom = 76 (using the Satterthwaite approximation
of the Greenhouse--Geisser correction for violations of the sphericity
assumption) were identical for all comparisons. The resulting SPM(T)
maps were then thresholded at P < 0.05 (cluster-level family-wise error-
corrected; cluster-forming threshold at voxel-level P < 0.001; Worsley

et al. 1996) and anatomically localized using version 1.5 of the SPM
Anatomy toolbox (www.fz-juelich.de/ime/spm_anatomy_toolbox; Eickh-
off et al. 2005, 2006, 2007).

Results

Behavioral Data

Debriefing after the experiment revealed that most participants

did not notice a structure or bias in the stimulus presentation.
Nevertheless, the behavioral data recorded in the scanner
showed the typical advantage for the more frequent response.

This is illustrated by the time course of mean RTs for responses
to either side across the length of the NCC blocks (Fig. 2A). At
the start of each NCC block, mean RT to stimuli on either side

was close to 400 ms. Quickly, however, participants got into
the rhythm of the serial stimulus presentation, and mean RT
across both sides decreased to approximately 300 ms. This
effect can be attributed to temporal preparation mechanisms,

enabling participants to roughly (though not completely due to
jittering) anticipate the occurrence of the next stimulus.
Importantly, however, starting from the second event, RT for

the frequent responses decreased considerably more than RT
for the rare responses, leading to an RT advantage of about 50
ms. As shown in Figure 2B, the change of this behavioral

advantage (i.e., the first derivative of the RT difference) was
maximal after the first stimuli and decreased quickly. The
change leveled out after about 7 trials, when the RT difference

reached a plateau and remained constant throughout the rest
of the block. The behavioral effects during NCC blocks can
hence be summarized as follows: On top of an initial general RT
decrease, presumably due to temporal preparation, there was

a clear and quickly developing behavioral advantage for
responding to the more frequent stimuli, which reached
a plateau after about 7 trials at a difference of 50 ms.

A virtually identical response pattern was observed in the first
partof theCCblocks.After the reversal of the stimulusprobabilities
in their second part, however, we observed a very clear behavioral

change. RT toward the previously rare (20%) stimuli, which now
occurredwith a probability of 80%, quickly decreased, while RT to
the previously more frequent stimuli started to increase. After
approximately 5 trials under the new distribution, responses

to either side became equally fast (RT � 300 ms). Behavioral
adaptation, however, did not stop at this equilibrium. Rather, the
behavioral advantagewas reversed after another 3 to 4 trials. By the

end of the CC block, participants had completely changed their
response bias and responded considerably (� 30 ms) faster to the
previously rare but now more frequent stimuli.

Error percentages mirrored the RT data: averaged across the
first part of all blocks, low-probability trials incurred more
errors (17%) than high-probability trials (3%). This bias

remained constant in the second part of NCC blocks (low-
probability trials: 21% errors; high-probability trials: 2%). In CC
blocks, however, the bias in error percentage reversed in the
second part in accord with the probability reversal (low-

probability trials: 13%; high-probability trials: 5%). This some-
what reduced bias is again consistent with the RT data and
presumably results from the shorter time available to establish

the new bias during the second half of the CC blocks.

Imaging Data—Task-Related Activity

Compared with resting baseline, performance of the RT task
per se, independent of any modulatory effects, recruited
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a widespread frontoparietal network (see Fig. 3A and Table 1).
Dorsal and ventral premotor cortices (dPMC/Area 6 and vPMC/

Areas 6 and 44; for cytoarchitectonic definitions, see Geyer 2004
and Amunts et al. 1999, respectively), the SMA (Area 6) as well as
the parietal lobe, including the superior parietal lobule (SPL/Areas

7A and 7C; cf. Scheperjans, Eickhoff, et al. 2008; Scheperjans,
Hermann, et al. 2008), the anterior parietal cortex (Area 2; cf.
Grefkes et al. 2001), the IPS (Areas hIP1-3; cf. Choi et al. 2006;

Scheperjans, Eickhoff, et al. 2008; Scheperjans, Hermann, et al.
2008), and the IPL (Areas PGa /PFm/PF; cf. Caspers et al. 2006,
2008), were bilaterally activated. The visual cortex (V5/hOc5; cf.

Malikovic et al. 2007), the anterior insula, and the cerebellum
(lobes IV--VIII) as well as the basal ganglia (putamen) were also
activatedbilaterally. Right-hemispheric activationwas observed in
the region of the temporoparietal junction (TPJ/Area PF;

cf. Caspers et al. 2006, 2008) and the DLPFC.
Analyzing the modulatory effects of right- vs. left-hand

responses as assessed by the first parametric regressor revealed

the well-established network of contralateral primary motor
(M1/Areas 4a and 4p; cf. Geyer et al. 1996) and somatosensory
(S1/Areas 3b, 3a, 1, 2; cf. Geyer et al. 1999, 2000; Grefkes et al.

2001) cortices, which were accompanied by activation of the

ipsilateral cerebellum (lobes IV, V, VII, VIII). Moreover, as the

decisive part of the stimulus (arrowhead) was also lateralized,
we also found significantly increased activation in contralateral
visual cortex (V3v, V3d, V4, V3A, Area 17, and Area 18; cf.

Amunts et al. 2000; Kujovic et al. 2007; Rottschy et al. 2007).
Results are depicted in Figure 3B.

Imaging Data—Applying Learned Predictions

Areas related to the acquisition and application of implicit

predictions about the probability structure of the stimuli and,
hence, the required responses were delineated by testing for
the second parametric modulator as described above. It

reflected the first derivative of the absolute RT difference
between left and right responses, that is, the change in
response bias presumably generated by developing a prediction
of upcoming events under decreasing entropy. The negative

effect on this modulator tested for areas that became
increasingly active once information about previous stimuli
accumulated and predictions about upcoming events could be

made based on this information. This analysis was further
restrained to areas showing a significant main effect of the task
per se by a conjunction approach. Significant results (see Fig. 4

and Table 2) were observed bilaterally in the IPL (mainly Area
PFm, to a lesser degree areas PF and PGa) spreading into the IPS
(Areas hIP1--3). Though present bilaterally, IPL activation was

predominantly right lateralized, extending into right TPJ (Area
PF). Additional effects were found in SMA (Area 6) and, on the
right side, in dPMC and vPMC (comprising both Area 6 and Area
44) as well as the anterior-dorsal insula. All of these regions

increased their activity when information from previous events
was increasingly integrated into a behaviorally evident pre-
diction of action probabilities, which could be used to facilitate

the most frequently correct response.
There was, however, no significant positive modulation,

testing for areas that were more active when the probabilistic

structure was unknown and decreased in activity once prior
knowledge could be used. Only at a considerably more liberal,
uncorrected level (P < 0.03), activation was found in the right

cerebellum (lobules VI and VIII).

Imaging Data—Dynamic Adaptation of Predictions

Areas related to behavioral adaptation, that is, relearning the
reversed probability structure of stimuli and responses, were
delineated by testing for the third parametric modulator as

described above. This modulator reflects the absolute change
in the RT difference between left and right responses during
the second half of CC blocks, that is, the modulation of the

response bias after the probability reversal (cf. Fig. 2). The
positive modulation by this inversely U-shaped regressor tested

Figure 3. (A) Activations associated with performance of the 2-choice RT task (main task effect relative to resting baseline, independent of response side and behavioral effects reflected
in respective parametric modulators). (B) Stimulus-side--specific activity captured by the first parametric regressor, shown separately for trials with left-pointing (red) or right-pointing
(green) arrows. Displayed activations are significant at P\ 0.05 (corrected at cluster level, voxel-wise inclusion threshold: P\ 0.001). rDLPFC, right dorsolateral prefrontal cortex.

Table 1

Brain regions recruited during task performance

Location Hemisphere Histological assignment t MNI coordinates

x y z

SMA Left BA 6 12.02 �8 2 54
Right BA 6 8.07 8 �2 62

dPMC Left BA 6 9.32 �36 �9 50
Right BA 6 9.26 42 �5 56

vPMC Left BA 6 7.63 �47 �5 39
Right BA 6 7.83 42 0 41
Right BA 44/BA 6 6.21 43 3 27

Putamen Left — 7.28 �24 11 �5
Right — 6.86 21 8 5

Insula Left — 6.10 �36 18 6
Right — 7.41 32 21 9

DLPFC Right — 4.43 39 42 27
IPS Left hIP1-3/7A/7PC 9.86 �30 �51 51

Right hIP1-3/7A/7PC 7.61 30 �47 41
IPL Left PGa/PFm/PF 5.49 �51 �51 53

Right PGa/PFm 5.93 59 54 33
TPJ Right PFm 7.86 62 �42 11
Visual cortex Left hOC5 (V5) 7.56 �48 �74 0

Right hOC5 (V5) 7.16 47 �62 3
Cerebellum (lateral) Left Lobus VI/VIIa 7.83 �36 �51 �33

Right Lobus VI/VIIa 7.43 36 �54 �30
Cerebellum (medial) Left Lobus VI 6.44 �11 �75 �24

Right Lobus VI 6.27 8 �72 �18

Note: Histological assignment was based on probabilistic cytoarchitectonic maps as implemented

in the SPM Anatomy Toolbox (Eickhoff et al. 2005, 2007). Significance level at P\ 0.05

(corrected at cluster level, voxel-wise P\ 0.001).
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for areas which first became increasingly active just after the

probability reversal, when expectations needed to be adapted
to produce an RT advantage for the opposite side, and which
later on became less active again, when the relearning was

finished and new predictions were established and applied
successfully. This analysis was again restricted to areas showing
a significant main effect of task execution per se. Significant

results (see Fig. 5 and Table 3) were observed bilaterally in the
SMA, dPMC (both Area 6), and IPS (predominantly hIP3). The
latter activation also reached into SPL (Areas 7A/7PC) and IPL

(Areas PF, PFm). During bias adaptation, right-lateralized
activation was found in the TPJ (Areas PFm and PF) and the
posterior part of the middle temporal gyrus (hOC5/V5). Finally,
activation positively correlated with the dynamic reorganiza-

tion of expectations was also found mainly on the right side of
the anterior nuclei of the thalamus, basal ganglia (caudate
nucleus, putamen) and the anterior-dorsal insula. No areas,

however, were significantly negatively correlated with the
behavioral adaptation, that is, showed reduced activity when
the probabilistic structure changed in the CC blocks.

Imaging Data—Areas for Predictive Motor Coding

Finally, we aimed to identify brain areas related to employing and
modifying predictions about the probability of specific events.
This question is based on the concept that predictions are

constantly evaluated against the current input. If the observed
stimulus or response matches the prediction, it will be

reinforced; if not, the prediction will be adapted to reflect
environmental changes. To delineate regions serving this
predictive coding, we performed a conjunction analysis across

the 3 contrasts reported above (task main effects as well as
second and third parametric modulators for establishing and
readjusting predictions, respectively). This analysis revealed

significant effects in the SMA (BA 6, bilaterally), the right IPS
(Areas hIP 1--3, spreading into superior parietal areas 7A and
7PC), and right IPL (Areas PF/PFm). Further overlap just below

the cluster-level corrected threshold (P < 0.05) was observed in
the right dPMC (Area 6), DLPFC, and TPJ (Area PF) as well as in
the left IPS and IPL (Areas hIP 1--3/PF, PFm). Results are

presented in Figure 6 and Table 4.

Discussion

This study assessed the behavioral and neural effects of biased
stimulus--response probabilities on choice RT performance in

order to provide further insights into predictive-coding mech-
anisms in the context of speeded motor responses. Participants
started each block naı̈ve about the relative stimulus probabilities

but quickly optimized their behavior as evidenced by an �50 ms
RT advantage for the more frequent side. When the probabilities
were inverted, the behavioral bias reversed within about 10

trials. The higher error rate for low-probability targets indicates
that the observed RT shifts do not reflect a mere shift in the
speed--accuracy tradeoff. Together, these data point to an
efficient, highly flexible mechanism for predicting upcoming

stimuli and facilitating the appropriate response.
The behavioral effects were associated with distinct patterns

of neural activation. To account for interindividual differences

in the time course of bias development and adaptation, fMRI
analysis was based on assessing the modulation of neuronal
activation by the subject-specific behavioral data. We showed

that establishing/applying and modifying implicit predictions
were correlated with increased activity in the parietal cortex
(IPL/IPS), PMC (dPMC and SMA), DLPFC, and TPJ. Thus,
predictive motor coding recruited a bilateral dorsal frontopar-

ietal network as well as 2 ventral right-hemispheric areas
(DLPFC and TPJ), which have previously been implicated in
integrative, ‘‘higher’’ aspects of attention and motor control.

Response Biases, Predictive Motor Coding, and

Information Theory

As an automated mechanism allowing the brain to structure the

environment and prepare adequate motor responses (Friston
2002; Kilner et al. 2007; Jakobs et al. 2009), predictive motor

Figure 4. Brain areas presumably involved in the application of initially developed predictions (conjunction across task main effect and areas negatively associated with the
second parametric regressor). Accumulated information on stimulus--response probabilities is used to establish selective facilitation, resulting in a response bias. Displayed
activations are significant at P\ 0.05 (corrected at cluster level, voxel-wise inclusion threshold: P\ 0.001). For a list of abbreviations, see Figure 3.

Table 2

Brain activity correlated with the increasing application of learned predictions

Location Hemisphere Histological assignment t MNI coordinates

x y z

IPL Left PFm 5.30 �53 �46 58
Right PGa/PFm/PF 5.93 59 �54 33

TPJ Right PF 4.51 66 �36 12
IPS Left hIP 1--3 3.41 �50 �45 42

Right hIP1-3/7A/7PC 5.02 41 �50 45
vPMC Right BA 6 5.41 53 �3 47

Right BA 44 4.39 42 8 23
dPMC Right BA 6 4.24 42 6 53
Anterior insula Right — 4.61 36 20 �2
SMA Left BA 6 5.34 �5 2 65

Right BA 6 4.54 11 �3 69
Caudate nucleus Left — 4.60 �9 6 9

Note: Histological assignment was based on probabilistic cytoarchitectonic maps as implemented

in the SPM Anatomy Toolbox (Eickhoff et al. 2005, 2007). Significance level at P\ 0.05

(corrected at cluster level, voxel-wise P\ 0.001).
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coding does not depend on conscious awareness. This view is
supported by the observation that our subjects, who were
required to focus on responding as fast and correctly as
possible to a rapid train of stimuli, did not report awareness of

the biases when debriefed after scanning.
In our experiment, predictive coding appeared behaviorally

advantageous as participants quickly developed faster respon-

ses to the predominant stimulus side. As no a priori information
was available and short SOAs largely prohibited conscious
anticipatory strategies, this implicit knowledge must have been

gathered on-line via integration of previous events into a
probabilistic model of expectations. Once established, this
model would then entail the observed bias and faster reactions

toward the more frequent, that is, predicted, side. Deviant
stimuli, in turn, should necessitate longer response latencies
due to reactive processing, as confirmed by our behavioral data.
Additionally, they should evoke a higher prediction error

indicating that the current model may no longer be valid. If
amassing, these errors should trigger changes in the model
structure to optimize future predictions, which is evident in

the progression of RT after the probability reversal in CC
blocks. In sum, the behavioral effects seen in the present
experiment are well explained by the theory of predictive

motor coding entailing the generation of a probabilistic

model at the start of each block and a change thereof, driven
by amassing prediction errors, in the second part of the CC
blocks.

A recent study using transcranial magnetic stimulation (TMS)
showed that 2 information-theoretic measures related to
probabilistic structure in a task, entropy and surprise, are

associated with the excitability of the motor pathway during
preparation for speeded action (Bestmann et al. 2008). In this
framework, entropy reflects the average uncertainty about

a given motor response, whereas surprise reflects the
improbability of the occurrence of a particular response cue
(cf. Strange et al. 2005). For instance, when 2 alternative
responses are equally probable, entropy is maximal but the

surprise at the occurrence of either alternative is at an
intermediate level. When unequal probabilities reduce entropy
(i.e., enhance predictability), surprise at occurrence of the

more probable alternative decreases at the expense of an
increase in surprise when the less probable alternative occurs.
This entails an important distinction between the 2 measures:

entropy is independent of the current event but reflects the
context established by previous events. In contrast, surprise
refers to the evaluation of the current event against expectations
based on the current entropy level (Strange et al. 2005). This

view effectively is a restatement, in quantifiable information-
theoretic terms, of the long-established differentiation between
the endogenous, expectancy-driven and exogenous, stimulus-

driven orienting of attention (cf. Corbetta and Shulman 2002).
In terms of information theory, predictive motor coding

should be subserved by regions that use decreasing entropy

(i.e., increasing predictability) to develop and represent
unconscious expectations (i.e., attentional biases). Given the
current data, we would argue for a role of the regions revealed

by the ‘‘applying learned predictions’’ contrast in these pro-
cesses. In particular, while the TPJ may represent a measure of
entropy (cf. Jakobs et al. 2009), the IPS and premotor cortex
may represent the ensuing expectations. Evidently, this process

also entails a growing difference in surprise associated with the
occurrence of the more and less likely alternative, respectively,
which is reflected well in our behavioral data. After the

probability reversal (which represents no objective change in
entropy as the average uncertainty remains constant), amassing
prediction errors are reduced by giving more weight to

bottom-up sensory input. This effectively equals a subjective
increase in entropy, which is then reduced again over the
further course of the block by the development of a new

Figure 5. Brain areas presumably involved in the dynamic adaptation of predictions and change in response bias after the probability reversal (conjunction across task main
effect and areas positively associated with the third parametric regressor). Amassing prediction errors lead to an update of existing predictions, thus generating a new, inverted
response bias. Displayed activations are significant at P\ 0.05 (corrected at cluster level, voxel-wise inclusion threshold: P\ 0.001). For a list of abbreviations, see Figure 3.

Table 3

Brain activity correlated with the dynamic adaptation of predictions

Location Hemisphere Histological assignment t MNI coordinates

x y z

IPS Left hIP 3/7A/7PC 5.01 �24 �60 51
Right hIP 3/7A/7PC 4.75 29 �44 38

IPL Left PGa/PFm/PF 4.86 �48 �47 54
Right PGa/PFm/PF 3.98 47 �44 47

TPJ Right PF/PFm 4.86 56 �41 20
SMA Left BA 6 6.03 �6 �2 54

Right BA 6 4.55 8 �2 71
dPMC Left BA 6 5.58 �42 �12 56

Right BA 6 5.22 41 �8 51
Visual cortex Right hOC5 (V5) 6.00 47 �71 �3
Anterior insula Left — 4.51 �32 26 6

Right — 5.98 32 21 12
Putamen Right — 4.66 21 17 �2

Left — 4.20 �24 12 11
Thalamus Right — 5.88 17 �12 9
Caudate nucleus Right — 4.18 21 9 14

Note: Histological assignment was based on probabilistic cytoarchitectonic maps as implemented

in the SPM Anatomy Toolbox (Eickhoff et al. 2005, 2007). Significance level at P\ 0.05

(corrected at cluster level, voxel-wise P\ 0.001).
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expectation. Importantly, the results of our conjunction across
both bias establishment and bias reversal are largely consistent

with a network associated with stimulus-bound surprise
identified by Strange et al. (2005) using a visual 4-choice RT
task with unequal response probabilities. The congruence of
these and our results with the ventral attention network (cf.

Corbetta and Shulman 2002) finally attests to the conceptual
overlap between surprise, reactive processing and the orient-
ing of attention to unexpected stimuli (see also Corbetta et al.

2008).

Brain Areas Implicated in Predictive Mechanisms

IPS and IPL

Bilateral activations of the IPS and IPL throughout all conditions
imply a central role of these regions in the implementation of

predictions in sensorimotor processing. In a recent review,
Creem-Regehr (2008) concluded that this region is responsible
for generating internal representations for action, which may

also contain probabilistic information as evident from our data.
In fact, a study in nonhuman primates found neurons in the
lateral IPS coding the hazard rate, that is, the conditional
probability of stimulus/response occurrence (Janssen and

Shadlen 2005). Also, studies on patients with IPL and TPJ
lesions revealed a role of these areas in producing spatial and
temporal biases in sensorimotor processing, suggesting a role

in the selection among competing targets for motor acts (Ro
et al. 2001; Shapiro et al. 2002). Thus, rising parietal activity

over the first half of a block may reflect the growing bias in the
representation of potential forthcoming actions. This also
agrees with the finding in nonhuman primates that IPS neurons

code action intentions (Snyder et al. 1997, 1998). Our data now
suggest that these signals may not only represent categorical
intentions (Mattingley et al. 1998) but also the probability of
their implementation and the associated bias in sensorimotor

processing.
Moreover, the parietal lobe has also been implicated in

attentional modulation of sensory processing (Corbetta and

Shulman 2002; Balan and Gottlieb 2006; Vandenberghe and
Gillebert 2009). This includes orienting to relevant environ-
mental stimuli (Corbetta and Shulman 2002) and shifting or

reengaging attention (Balan and Gottlieb 2006; Corbetta et al.
2008). Therefore, the observed IPS/IPL finding in our study may
relate to an increased bottom-up--driven reorienting of

attention attracted by the nonpredicted arrow (cf. Fletcher
and Frith 2009 for a discussion of the relationship between
prediction error of attention).

SMA

As the SMA is known to be involved in movement preparation
and initiation (Jenkins et al. 2000; Thickbroom et al. 2000;

Cunnington et al. 2003), its computations should primarily
concern the kinematics level and patterns of muscle co-
ordination of a movement. Using internal predictions, these

may partially be executed in advance, leading to a decrease of
computational load at the moment of execution and hence
faster movement initiation, that is, lower RT.

Miller (1998) used electroencephalography (EEG) to mea-

sure lateralized readiness potentials (LRPs or ‘‘Bereitschaftspo-
tential’’) during the performance of a 2-choice RT task with
unequal probabilities; he observed enhanced LRPs in high-

probability trials. Based on the temporal relation of this effect
relative to stimulus offset and motor responses, he concluded
that the probability effect is facilitated, at least partly, by motor

preparatory processes. In line with the current view of the SMA
as the generator of the LRP (Deecke and Kornhuber 1978;
Nachev et al. 2008), we would conclude that Miller’s (1998)
observations as well as our own results indicate a precompu-

tation of the predicted movement within the SMA. In the
hierarchical framework of predictive motor coding (Kilner
et al. 2007), SMA would thus correspond to a lower-level node

generating predictions about kinematical movement features.
Consequently, increased SMA activity concurrent with the

Figure 6. Core regions of a network subserving predictive motor coding, that is, brain areas presumably involved in both the application of initially developed predictions and the
dynamic adaptation of existing predictions after the probability reversal (conjunction across task main effect, areas negatively associated with the second parametric regressor,
and areas positively associated with the third parametric regressor). Yellow denotes common activations significant at P\ 0.05 (corrected at cluster level, voxel-wise inclusion
threshold: P\ 0.001); green denotes activations significant at: P\ 0.001 (voxel-wise, k 5 175 voxels). For abbreviations, see Figure 3.

Table 4

Brain areas involved in the computation of predictive motor coding

Location Hemisphere Histological assignment t MNI coordinates

x y z

SMA Left BA 6 4.37 �18 0 66
Right BA 6 4.27 9 �2 71

IPS Right hIP 1--3/7A/7PC 4.32 41 �42 44
IPL Right PFm/PF 3.98 47 �44 47
dPMC* Right BA 6 4.55 47 �6 53
DLPFC* Right — 4.21 38 41 29
TPJ* Right PF 4.50 57 �41 21
IPL* Left PFm/PF 4.06 �47 �50 53
IPS* Left hIP 1--3 3.98 �50 �45 51

Note: Histological assignment was based on probabilistic cytoarchitectonic maps as implemented

in the SPM Anatomy Toolbox (Eickhoff et al. 2005, 2007). Significance level at P\ 0.05

(corrected at cluster level, voxel-wise P\0.001). *, uncorrected for multiple comparisons (voxel-

level P\ 0.001; k 5 175 voxel).
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development of the behavioral bias should reflect the pre-
ponderance to prepare motor programs once a probabilistic
structure is learned. On the other hand, its recruitment during
the adaptation process would correspond to the modulation or

exchange of these prepared kinematical programs.

TPJ

Several studies suggested TPJ involvement in the stimulus-
driven reorienting of visual attention (Serences et al. 2005; Yeh

et al. 2007; Shulman et al. 2009). Corbetta and Shulman (2002)
proposed that TPJ activity is related to breaches of expectancy
(i.e., surprise) due to unexpected but behaviorally relevant

stimuli. This notion agrees with findings in our experiment
where task performance depends not only on preparing
responses to the more likely alternative but also on the ability

to reorient attention to unexpected events. Evidently surprise
and importance for deviance detection are dependent on the
establishment of a predictive model, which explains why at the
beginning of each block, TPJ activity increases in parallel with

the behavioral bias.
Higher TPJ activity was also observed during the adaptation

of predictions in the wake of the probability reversal where

the breach of expectations may have enforced more reactive
response processing including attentional reorientation (Kincade
et al. 2005; Jakobs et al. 2009). It has moreover been argued that

such reorientation would be triggered by the presence of
a higher prediction error (Mackintosh 1975; Pearce and Hall
1980) providing a predictive coding framework for the stimulus-

driven reallocation of attentional resources (Fletcher and Frith
2009). In summary, we would thus conclude that the TPJ may
relate to detecting and processing unexpected stimuli, which
would be in line with lower activity at the start of a block before

the formation of a prediction and higher activity after probability
reversal when most incoming information does not match the
expectation. Whether, however, attentional reorientation or

prediction error signaling may be differentiated and if so, which
role the TPJ plays in processing either, needs to remain open
for now.

dPMC and DLPFC

There is converging evidence from neuroimaging, lesion analy-
sis, and TMS interventions showing that the dPMC plays
a crucial role in motor planning, especially in integrating visual

input relevant for forthcoming motor commands and maintain-
ing the stimulus--response mapping (Halsband and Passingham
1985; Chouinard et al. 2005; Chouinard and Paus 2006). Hoshi
and Tanji (2007) more specifically argued that dPMC collects

and integrates sensory and memory information to establish
action intentions and develop the respective motor programs.
This view is supported by primate data showing that the

dPMC (Area F2) is involved in preparing movements based on
sensorimotor information and behavior-guiding rules (Rizzo-
latti et al. 1998; Luppino et al. 2003). We suggest that increased

activity of the dPMC in the first half of each block as well as
after probability reversal in the current study reflects a modu-
lation of the stimulus--response mapping according to the
current prediction, facilitating the predicted response.

This conclusion regarding the integration of lower-level
sensorimotor and higher-level contextual information in dPMC
for selecting (or preparing) the correct motor response from

available stimulus--response mappings is also consistent with
the hierarchical cascade model of cognitive control recently

proposed by Koechlin and Summerfield (2007). In this
framework, sensorimotor associations are maintained in dPMC;
their application to produce appropriate motor output,
however, is influenced by context information represented in

DLPFC.
Recent studies have supported a role for the DLPFC in

response selection (Hadland et al. 2001; Rowe et al. 2008; Wang

et al. 2009), acting as a filter for task-appropriate responses
(Mostofsky and Simmonds 2008). This proposal is also in line
with studies using the go/no-go paradigm (Nakata et al. 2008;

Yamaguchi et al. 2008), which found DLPFC activation when
a prepotent response needed to be inhibited. Consistent with
Koechlin and Summerfield’s (2007) cascade model of cognitive

control, which conceptualized the role of the anterior DLPFC
as providing contextual information for response selection, we
found activity related to bias development and readaptation in
this region. The context coded by anterior DLPFC activity

might thus include information, accumulated over previous
trials, on the predictability (i.e., average entropy) and proba-
bility of a given outcome. In light of this theorizing, the course

of DLPFC activity during the acquisition and modification of
stimulus--response probabilities may suggest that this region
receives probability estimations and error signals from poste-

rior regions, which it represents to provide executive control
over the implementation of motor output.

Cerebellum and Further Activations

While the above-mentioned regions were commonly activated
by the task per se as well as by the acquisition and modification
of stimulus--response probabilities, several other regions were

selectively associated with one of these components. For
instance, medial and lateral parts of the cerebellum (lobules VI
and VII) were significantly activated during task execution.
Given the employed jittered stimulus presentation, this finding

is consistent with previous evidence that the posterior
cerebellum (lobules VI/VII and crus 1) operates as an internal
timing system, providing precise temporal representations

(Sakai et al. 2000; Dreher and Grafman 2002). Contrarily to
our hypothesis, however, generating and updating predictions
did not produce an increased activation of this region, although

cerebellar contributions have been extensively discussed in the
context of sensorimotor predictions (Miall et al. 1993), error
detection (Oscarsson 1980), and predictive learning (Wolpert

and Kawato 1998; Schultz and Dickinson 2000). It has been
suggested, however, that the predictive functions of the
cerebellum are more related to emulating sensory consequen-
ces of motor actions and comparing these with actual

proprioceptive input (Blakemore and Sirigu 2003). Since these
processes are constantly invoked in all trials, they provide
another explanation for the association of this structure with

the task per se as well as for the lack of cerebellar involvement
in the establishment and adaptation of specific biases in
perceptual-motor predictions.

A significant rise in basal ganglia activity was selectively
observed when participants adapted their predictions following
the probability reversal. Several studies have shown that the basal
ganglia react specifically to task order unpredictability (Dreher

and Grafman 2002) or to unexpected attentional shifts (Shulman
et al. 2009). The observed basal ganglia activity therefore appears
to relate to the surprising change in the environment and thus

response requirements. These conclusions match recent results
by Den Ouden et al. (2009), who reported that the putamen is
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sensitive to surprising events and unexpected outcomes and
interpreted this finding as a reflection of prediction errors. As
prediction errors should be particularly prevalent after the
probability reversal, we support this interpretation and suggest

that the adjustment of the response bias should be driven by error
signals generated in this structure.

Activity of right BA 44 during task performance per se is in

line with the notion that this area may serve as an ‘‘executive
brake’’ when stimulus timing is unknown and hence action
needs to be inhibited until stimulus presentation (Brass et al.

2005; Chambers et al. 2006; Jakobs et al. 2009). As we
employed jittering of the stimuli, prepared responses needed
to be withheld while waiting for the expected arrow to prevent

premature responding (cf. Konishi et al. 1999). Moreover, the
need to withhold premature responses should increase with
increased preparation according to more firmly established
predictions. This may explain the increase in BA 44 re-

cruitment throughout the course of each block in parallel
with increased bias.

The anterior insula was involved in both task execution and

adaptation of predictions. This region is known to be involved
in representing bodily states (Craig 2002; Critchley et al. 2004)
and arousal induced by mental or physical stressors (Critchley

et al. 2000; Pollatos et al. 2007). Thus, general task-related
activity may be related to maintaining an appropriate level of
alertness, whereas the association of insula activity with
prediction adjustment might point to the long-known associ-

ation between surprise and arousal (for a recent review, see
Pfaff 2006).

Finally, activity in visual area V5 during general task execution

is in good agreement with the known responsiveness of this
region to moving or flickering/blinking stimuli (Zeki et al. 1991;
Jantzen et al. 2005; Grefkes et al. 2008). Although this activity

appeared right lateralized, we found additional left-hemisphere
V5 activity just below the corrected threshold. Moreover, our
results show V5 recruitment after the probability reversal, which

may be linked to an attentional modulation of visual processing
under increased uncertainty due to invalidated predictions
(Corbetta et al. 1990; O’Craven et al. 1997).

Limitations and Further Directions

The temporally narrow spacing of the trials, necessary for
pushing participants into biasing their responding according to

implicit predictions, unfortunately precluded a direct compar-
ison between different trials (e.g., correct vs. errors trials)
within a task block. Likewise, sequential effects reflecting the
effect of the preceding trial on the processing during the

current trial could not be analyzed. Longer intertrial intervals,
however, might have increased the likelihood of participants
becoming aware of the probability structure and deploy explicit,

conscious strategies rather than implicit expectations. Conse-
quently, we restricted our analysis to the evaluation of the
(smooth) adaptation and readaptation processes, which can be

reliably assessed in spite of the low-pass filter invoked by
the sluggish BOLD response.

As mentioned before, the third parametric modulator
reflected 2 subprocesses of bias reversal: removal of the

existing bias (‘‘bias debuilding’’) and implementation of the
reversed bias (‘‘bias rebuilding’’ or readaptation). The limita-
tions inherent to fMRI, however, appear to prohibit separate

analyses of the potentially different neural correlates thereof.
On the one hand, the number of data points reflecting bias

removal only consists of a few images per block, putting any
inference on unreliable ground. On the other hand, and even
more importantly, a statistical separation of these 2 processes
in fMRI data is not feasible at present because bias readaptation

inevitably directly follows bias removal without any chance to
randomize their order or to introduce a (variable and/or
sufficiently long) interval between them. Their convolution

with the hemodynamic response function acting as a low-pass
filter would thus be essentially collinear. Therefore, disentan-
gling the contribution of either subprocess to the sluggish

BOLD response during the major part of the second half of CC
blocks is statistically impossible. Moreover, since predictive
motor coding is conditioned upon a fast stimulus presentation

to avoid conscious preparation and explicit strategies, in-
creasing separability by prolonging the interstimulus interval is
precluded by the nature of the process under scrutiny.
Consequently, identifying distinct neural correlates of either

subprocess may depend on using imaging modalities with
higher time resolution such as MEG or EEG.

It should be noted that the present experiment used a rather

strongly biased probability distribution (20% vs. 80%), and it
remains to be investigated to what extent the network
discussed above would react parametrically to the size of the

bias. Likewise, the influence of hyperpriors on the volatility of
the environment (Behrens et al. 2007) also warrants further
investigation. In particular, it may be speculated that the
behavioral and neural bias may be attenuated once several

probability reversals have been presented in the same block.
The question whether the probability effect is more related

to biases at perceptual, response selection, or motor stages of

the reaction process has been discussed previously without
consensus. Some studies spoke for a perceptual locus
(Bertelson and Tisseyre 1966; LaBerge et al. 1969), while

a more recent study (Miller 1998) provided evidence for
selective motor preparation. Our data suggest that all process-
ing stages may be affected by unequal probabilities, since we

found probability effects in areas related to perception (V5),
response selection (IPS, IPL, DLPFC), and motor preparation
(SMA, dPMC). It remains to be tested whether the contribu-
tions of these different components may be segregated.

Conclusions

This study investigated effects of unequal stimulus probabilities
on brain activity during 2-choice RT task performance, showing
that high-probability stimuli were responded too faster and
more correctly, while this bias became inverted after a covert

probability reversal. Within the theoretical framework of predi-
ctive coding, such biases can be explained by a constant adjust-
ment of internal predictions about forthcoming actions to the

observed environment at different hierarchical levels, affecting
both perceptual and motor stages of the reaction process.
Our study revealed several brain regions associated with the

dynamic change of the response bias: TPJ may act as a detector
for unpredicted but relevant low-probability stimuli by in-
tegrating predictions with sensory input. IPS and IPL may
form a center for generating prediction-dependent action

representations. In turn, biases in stimulus--response mapping,
kinematic preparation, and the executive control thereof
may be attributed to the dPMC, SMA, and DLPFC, respectively.

To sum up, the association of these areas’ activity level with
parametric indices of probability-related behavior provides
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strong evidence for their involvement in generating flexible,
context-dependent response biases. They may thus form the
core nodes of a network that mediates the generation of
predictive motor codes and their transformation into selective

action facilitation.
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