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Time interval estimation is involved in numerous behavioral processes, but its underlying neural mechanisms remain unclear. In

particular, it has been controversial whether time is encoded on a linear or logarithmic scale. Based on our previous finding that

inactivation of the medial prefrontal cortex (mPFC) profoundly impairs rat’s ability to discriminate time intervals, we investigated how

the mPFC processes temporal information by examining activity of mPFC neurons in rats performing a temporal bisection task. Many

mPFC neurons conveyed temporal information based on monotonically changing activity profiles over time with negative accelerations,

so that their activity profiles were better described by logarithmic than linear functions. Moreover, the precision of time-interval dis-

crimination based on neural activity was lowered in proportion to the elapse of time, but without proportional increase in neural

variability, which is well accounted for by logarithmic, but not by linear functions. As a population, mPFC neurons conveyed precise

information about the elapse of time with their activity tightly correlated with the animal’s choice of target. These results suggest that the

mPFC might be part of an internal clock in charge of controlling interval-timing behavior, and that linearly changing neuronal activity on

a logarithmic time scale might be one way of representing the elapse of time in the brain.

Introduction
The ability to estimate time interval is ubiquitous in the animal
kingdom, but its underlying neural mechanisms remain unclear.
Behavioral studies in animals and humans have shown that the
precision of time-interval discrimination is lowered in propor-
tion to its duration, which is consistent with Weber’s law. More-
over, the subjective midpoint between two different time
intervals lies near the geometric rather than the arithmetic mean
(Gallistel, 1990; Gibbon et al., 1997; Buhusi and Meck, 2005).
These findings are well accounted for by assuming that time is
represented on a logarithmic scale in the nervous system (Church
and Deluty, 1977; Staddon and Higa, 1999; Roberts, 2006; Yi,
2009). However, they can also be accounted for by assuming that
time is represented on a linear scale, but with proportionally
increasing variability (Gibbon, 1977; Gibbon and Church, 1981;
Roberts, 1981; Church and Gibbon, 1982; Gallistel, 1999;
Wearden and Jones, 2007; scalar variability). Although each ac-
count is supported by behavioral data, their interpretations are
based on various assumptions, casting doubts on the validity of
the conclusions. Clearly, examining timing-related neural activ-

ity would be helpful to resolve the controversy and to elucidate
the neural basis of interval timing.

It has been proposed that the brain is equipped with multiple
time-measurement systems associated with different types of
interval-timing behavior. The proposed systems include subsec-
ond versus suprasecond timing (Ivry, 1996; Lewis and Miall,
2003b), perceptual versus motor timing (Schubotz and von Cra-
mon, 2001; Merchant et al., 2008), automatic versus controlled
timing (Lewis and Miall, 2003a), and explicit versus implicit tim-
ing (Coull and Nobre, 2008), which are partially related catego-
ries. Frontal cortex-basal ganglia circuitry, in particular, has been
implicated in suprasecond (Meck and Benson, 2002; Mauk and
Buonomano, 2004; Buhusi and Meck, 2005; Koch et al., 2009),
cognitively controlled (Lewis and Miall, 2003a), and explicit
(Coull and Nobre, 2008) timing. Here, we focused on the neural
basis of interval timing in the prefrontal cortex (PFC). Involve-
ment of the PFC in interval timing is well supported by several
lines of evidence. Brain-imaging studies in humans have found
activation of the PFC during various timing tasks (Penny and
Vaitilingam, 2008), and local lesion/inactivation studies have
shown that the PFC is crucially involved in time-interval discrim-
ination in humans (Mangels et al., 1998; Koch et al., 2003; Jones
et al., 2004), monkeys (Glickstein et al., 1964; Onoe et al., 2001),
cats (Rosenkilde and Divac, 1976), and rats (Dietrich et al., 1997;
Dietrich and Allen, 1998). We also have found that inactivation of
the medial PFC (mPFC) profoundly impairs rat’s ability to dis-
criminate time intervals in the range of a few seconds (Kim et al.,
2009b). In the present study, to investigate how the mPFC pro-
cesses temporal information, we examined activity of mPFC neu-
rons in rats performing the same temporal discrimination task as
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used in our previous behavioral study (Kim et al., 2009b). We
found that mPFC neurons convey precise information about
the elapse of time largely based on linearly changing activity on a
logarithmic time scale.

Materials and Methods
Subjects
Six young male Sprague Dawley rats (�9�11 weeks old, 280�380 g)
were individually housed in the colony room and initially allowed ad

libitum access to food and water with extensive
handling for 1 week. Their body weights were
gradually reduced to 80�85% of their free-
feeding weights by water deprivation and, once
behavioral training began, they were allowed to
have access to water only during two daily be-
havioral sessions. Experiments were per-
formed in the dark phase of 12 h light/dark
cycle, one in the morning and one in the eve-
ning. The experimental protocol was approved
by the Institutional Animal Care and Use
Committee of the Ajou University School of
Medicine.

Behavioral tasks
Two separate groups of animals (3 animals
each) performed two different temporal dis-
crimination tasks on a modified T-maze (63 �

69 cm, elevated 30 cm from the floor; 8-cm-
wide track with 2.7 cm walls around the track
except the central connecting bridge; Fig. 1B).
The experimental procedures were identical
for the two tasks except that different durations
of sample intervals were used. Animals in the
first group (Experiment 1) were required to
discriminate six different durations of time in-
tervals into short or long periods to obtain wa-
ter reward (Kim et al., 2009b). A new trial
began when the animal came back from either
goal location (Fig. 1 B, white circles) to the cen-
tral arm via the lateral alley and broke the cen-
tral photobeam (Fig. 1B, arrow). The
beginning of a time interval was signaled by a
brief auditory tone (3.3 kHz, 200 ms, 90 db)
when the animal broke the central photobeam.

The end of a time interval was signaled by lowering the central bridge that
allowed the animal to navigate to either goal location. Six different dura-
tions of time interval, which were spaced evenly on a logarithmic scale,
were programmed to be presented in equal probability for a total of 300
trials in random order, and the animals performed 164�273 (mean �

SD, 232.7 � 21.5) trials per session. The animal had to navigate to one
designated goal (left, n � 2 animals; right, n � 1 animal) when a short
(3018, 3310, or 3629 ms) interval was presented, and navigate to the
opposite goal when a long (3979, 4363, or 4784 ms) interval was pre-
sented to obtain water reward (30 �l). The presentation of sample inter-
vals, delivery of water, and raising/lowering of the central bridge were
automatically controlled by a personal computer using LabView software
(National Instruments). The animals were trained to perform the task as
previously described (Kim et al., 2009b) over the course of 28 d before
electrode implantation. They were further trained for 14 d after recovery
from the surgery. Thus, the animals were well trained in the task by the
time unit recordings began. Also, before each recording session, the an-
imals went through 20 practice trials that consisted of the shortest (3018
ms) and the longest (4784 ms) intervals only (10 trials each).

Animals in the second group (Experiment 2) were required to discrim-
inate two different durations of time interval into short or long periods in
a given block to obtain water reward on the same maze. The animals had
to discriminate 2 versus 4 s sample intervals in the first block (60�70
trials; mean � SD, 67.5 � 3.0), 4 versus 8 s in the second block (60�70
trials, 67.2 � 3.1), and then 2 versus 4 s again in the third block (55�117
trials, 74.4 � 16.1) without an intersession break. They experienced
15�20 forced-choice trials that consisted of 2 and 4 s intervals before
each recording session. The sequence of sample interval durations within
each block was randomized. The animals were trained to perform this
task for 30 d before and 17 d after electrode implantation, so that they
were overtrained before unit recording. Although the animals quickly
adapted to block changes within a few trials (1�5 error trials before the
first correct choice after block transition), the initial 10 trials of each
block were excluded from the analysis.

Figure 1. Recording sites, behavioral task, and behavioral performance in Experiment 1. A, Activity of single neurons was

recorded from the dorsal ACC, prelimbic cortex (PLC), and infralimbic cortex (ILC), as indicated by shading. The diagram is a coronal

section view of the brain (2.7 mm anterior to bregma). Modified with permission from Elsevier (Paxinos and Watson, 1998). B,

Temporal bisection task. One of six different time intervals was presented to the animal in each trial, and the animal had to navigate

to either goal location (white circles) depending on the duration of the sample interval (short vs long). The arrows indicate

photobeam sensors. Scale bar, 10 cm. C, The graphs show the fraction of long-target choices (Plong) as a function of sample interval

duration. The solid lines were determined by logistic regression and the shading indicates 95% confidence interval. Error bars, SEM.

Figure 2. Unit classification. Recorded units (n � 1693; 993 in Experiment 1 and 700 in

Experiment 2) were classified into two groups based on mean discharge rate and spike width.

Those neurons with mean firing rate �8.83 Hz and spike width �0.276 ms were classified as

putative pyramidal cells (PC; n � 1372, 81.0%), and the rest were classified as putative in-

terneurons (IntN; n � 321, 19.0%). The curves are Gaussian fits. Examples of averaged spike

waveform for a putative pyramidal cell and a putative interneuron are shown on the right.

Calibration: 0.5 ms, 0.1 mV.
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Unit recording
Twelve tetrodes were chronically implanted in
the left or right mPFC (2.7 mm anterior and 0.7
mm lateral to bregma) and unit signals were
recorded from the dorsal anterior cingulate
cortex (ACC), prelimbic cortex, and infralim-
bic cortex (Fig. 1A), while the animals were
performing either temporal discrimination
task. Unit signals were amplified 10,000�, fil-
tered between 600 and 6000 Hz, digitized at 32
kHz, and stored on a personal computer using
a Cheetah data acquisition system (Neural-
ynx). The animal’s head position was moni-
tored by tracking a set of light-emitting diodes
mounted on the headstage at 60 Hz. When re-
cordings were completed, small marking le-
sions were made by passing an electrolytic
current (50 mA, 30 s, cathodal) through one
channel of each tetrode and recording loca-
tions were verified histologically as previously
described (Baeg et al., 2001).

Analysis
Choice behavior. Animal’s choice data in the
first experiment (6-interval discrimination
task) were averaged according to sample inter-
val duration across all sessions for each animal
and subject to the following logistic regression:

log� plong

1 � plong
� � a � bT

where Plong is the proportion of long-target
choice trials, T denotes the sample interval du-
ration, and a and b are constants.

Unit classification. Unit signals were isolated
by manual cluster cutting of various spike
waveform parameters using the MClust soft-
ware (A.D. Redish) as previously described
(Baeg et al., 2003). Recorded unit signals in all
areas were classified into putative pyramidal
cells and putative interneurons based on mean
discharge rate and spike width (Fig. 2). Al-
though both types of neurons were included in
the analyses, essentially the same results were
obtained when putative interneurons were ex-
cluded from the analysis (data not shown).

Multiple linear regression. Dependence of in-
dividual neuronal activity on time was exam-
ined in two different ways. First, each sample
interval was divided into 10 equal-duration
bins on a linear time scale and mean discharge

rate of a neuron within each time bin was re-

lated to time since interval onset. This analysis was repeated for each

interval duration separately (n � 6 for both Experiment 1 and 2). Second,

mean discharge rate of a neuron during the last 500 ms of each sample

interval was related to time since interval onset. For both analyses, to

examine whether individual neuronal activity was better explained by

the elapse of time on a linear or logarithmic time scale, neuronal activity

was related to raw (to check linear time encoding) as well as log-

transformed (to check logarithmic time encoding) time since interval

onset. To factor out potential influences of confounding behavioral vari-

ables, the regression model included movement-related variables and the

animal’s previous goal choice as represented in Equation 1 as the follows:

S � a0 � a1T � a2PC � a3X � a4Y � a5D � �, where S indicates

trial-by-trial spike discharge rate of one neuron within a specific time

window (during the last 500 ms or 1 of 10 equal-duration bins of a sample

interval); T represents raw or log-transformed time since the interval

onset; X, Y, and D denote animal’s mean lateral head position (X-position),

mean vertical head position (Y-position), and overall movement (dis-

placement), respectively, in the corresponding analysis time window; PC

represents the animal’s goal choice in the previous trial (dummy variable

of �1 and 1 for the left and right goal choice, respectively); � is the error

term; and a0�a5 are the regression coefficients.

Principal component analysis. A mean spike density function was con-

structed for each neuron for each sample interval duration using all

correct trials by applying a Gaussian kernel (� � 100 ms) to each spike.

For the neural data collected in Experiment 1, the six spike-density func-

tions were aligned serially from the shortest to the longest. For those

collected in Experiment 2, the six spike-density functions from the three

blocks were aligned serially (Blocks 1, 2, and 3; shortest first in each

block). They were converted to a perievent time histogram (PETH) in 50

ms time bins, and the mean and SD of firing rates were calculated across

all bins. Then each bin’s firing rate was normalized to unit variance by

subtracting the mean and dividing with the SD, and principal component

analysis (PCA) was applied to the matrix of PETHs for all analyzed neu-

Figure 3. Examples of individual neuronal activity. A–H, Spike raster plots and spike density functions (��100 ms) are shown

for example mPFC neurons (Experiment 1). Trials were grouped according to the length of sample interval and the abscissa denotes

time since the onset of each sample interval. Gray vertical lines denote the onset and offset of each time interval. As shown, diverse

types of neuronal activity were observed during sample interval presentation. The first four (A–D) are examples of ramping activity

neurons.
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rons (rows, neurons; columns, normalized discharge rate during 50 ms
time bins).

Decoding temporal information. Temporal information transmitted by
neural activity was assessed by examining (1) how well neural activity
classified the length of sample intervals as either short or long (length
classification) and (2) how well the neural activity kept track of the elapse
of time (decoding elapsed time) using a linear discriminant analysis. For
the former, neural activity during the last 500 ms of each sample interval
was analyzed and, for the latter, each time interval was divided into 10
equal-duration bins (on a linear time scale; e.g., 478.4 ms each for the
longest sample interval in Experiment 1) and the order of the middle

eight bins was decoded based on neural activity
within each bin. Decoding of temporal informa-
tion was based on individual neuronal activity
(single neuron decoding) as well as neuronal en-
semble activity (population decoding). For the
latter, temporal information was decoded based
on simultaneously recorded as well as all re-
corded units that were pooled across sessions
(with mean firing rate �1 Hz during sample in-
terval presentation). For decoding elapsed time
based on all recorded units, the number of cor-
rect trials was equalized across sessions according
to the smallest number of correct trials per ses-
sion for each interval duration (21�44 trials in
Experiment 1 and 20�41 trials in Experiment 2).
For length classification based on all recorded
units, the number of correct trials was addition-
ally equalized across sample interval durations
(n � 21 and 20 trials in Experiment 1 and 2, re-
spectively). For the comparison of correct and
error trials based on all recorded units (Experi-
ment 1 only; see Fig. 13), the numbers of correct
as well as error trials were equalized across
sessions.

A single trial was removed, and a linear dis-
criminant function was generated based on the
neural activity in the remaining correct trials
separated according to the animal’s goal choice
(for length classification) or bin number (for
decoding elapsed time). This procedure was re-
peated for all correct trials (and also error trials
when comparing neural activity during correct
and error trials) and the percentage of long-
target choice (i.e., classification of a sample in-
terval into a long duration, Plong; length
classification) or decoding error (i.e., the dis-
tance between the actual and decoded bin
numbers; decoding elapsed time) was calcu-
lated. Neural population decoding was based
on the assumption of independence among
neurons unless noted otherwise. Behavioral
decoding was performed in the same manner
except that a behavioral index (mean
X-position, mean Y-position, and/or overall
displacement) was used instead of neural data.

Neuron-dropping analysis. To assess the rela-
tionship between the size of mPFC neuronal
ensemble and the amount of temporal infor-
mation, the number of neurons in the ensem-
ble was systematically reduced (Wessberg et al.,
2000). The same decoding analyses were re-
peated 100 times after randomly dropping a
given number of neurons from the original en-
semble, and mean correct classification of in-
terval durations (percentage correct; length
classification) or mean decoding error (the dis-
tance between the actual and predicted bins;
decoding elapsed time) was calculated for each
step of neuron dropping.

Mahalanobis distance. Mahalanobis distance of neuronal ensemble ac-
tivity between two adjacent bins was calculated according to the follow-
ing equations:

Distance � 	 x� � y�
T ��1 	 x� � y�


x� �

�
i�1

N

xi

N
,

Figure 4. Examples of neuronal activity correlated with the elapse of time, the animal’s movement, or both. Shown are three

example neurons that were recorded simultaneously. Same format as in Figure 3 except that time courses of movement variables

(X-position, Y-position, and displacement) are also shown. A, Time courses of behavioral variables (gray, trial-by-trial data; black,

their mean across trials). B–D, Neuronal activity correlated with the animal’s X-position (B), the elapse of time (C), or both (D).

Figure 5. Examplesofneuronalactivitycorrelatedwiththeelapseoftimewithminimalbehavioralvariationsovertime.Shownaretwo

example neurons that were simultaneously recorded in a behavioral session with small behavioral variations over time. Same format as in

Figure 4. A, Time courses of behavioral variables. B, C, Neurons that gradually decreased (B) or increased (C) their activity over time.
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y� �

�
i�1

N

yi

N

where N is the total number of trials, xi and yi are firing vectors of N
neurons in two adjacent bins in trial i, and � is the covariance matrix of
x and y.

Statistical tests
Student’s t tests were used to test statistical significance of mean decoding
error and regression coefficients. Binomial tests were used to test signif-
icance of the fraction of correct neural classification and the number of
neurons that significantly modulated their activity according to linear or
logarithmic passage of time. � 2 tests were used to test whether numbers
of neurons whose activity were preferentially explained by logarithmic
versus linear passage of time significantly deviated from an even distri-
bution. A p value �0.05 was used as the criterion for a significant statis-
tical difference. Data are expressed as mean � SEM unless noted
otherwise.

Results
Behavioral performance
In Experiment 1, the probability for the animal to choose the long
target (Plong) increased as a function of the sample interval dura-
tion, which was well accounted for by a logistic regression model

(R 2 � 0.963 � 0.005; Fig. 1C). The animals chose the correct
target in 80.0 � 0.0% of trials.

Activity profiles of individual neurons
A total of 993 well isolated single units were recorded in Experi-
ment 1 and the majority were putative pyramidal cells (n � 791,

Figure 6. Relationship between temporal information and logarithmic activity profile. A, B,

There was a significant correlation between temporal information (A, percentage correct clas-

sification; B, mean decoding error) conveyed by an individual neuron and the extent to which a

logarithmic function can explain a neuronal activity profile (R 2 value; Eq. 1 with log-

transformed time used as a regressor). Shown are the results for the longest sample interval in

Experiment 1 (4784 ms).

Figure 7. Results of PCA. A, Eigenvectors are shown for the first three principal components

relative to the time of sample interval onset. They accounted for 30.9, 10.4, and 6.3% of total

variance in neuronal activity, respectively. B, The eigenvector for PC1 was plotted on a logarith-

mic scale. The gray vertical lines indicate the onset of a time interval and the dashed vertical

lines mark 300 ms following a time-interval onset. C, Mean error in the prediction of elapsed

time based on individual PCs (PC1�PC8, which explained �80% of total variance in neural

activity) as well as their linear combinations are shown together. Shown are the results ob-

tained from the analysis of the longest sample interval in Experiment 1 (4784 ms). Error bars,

SEM.

Table 1. Comparison of R
2 values for linear and logarithmic functions (Experiment 1)a

Interval duration 3018 ms 3310 ms 3629 ms 3979 ms 4363 ms 4784 ms

R 2 of linear function 0.099 � 0.004 0.105 � 0.004 0.114 � 0.004 0.117 � 0.004 0.116 � 0.005 0.118 � 0.005

R 2 of log function 0.102 � 0.004 0.108 � 0.004 0.117 � 0.004 0.120 � 0.005 0.119 � 0.005 0.120 � 0.005

p value (t test) �10 �7 �10 �5 �10 �5 �0.001 �10 �4 �0.001
aR 2 values of all analyzed neurons (n � 733) were compared for the regression models containing linear versus log-transformed time (Eq. 1) for each sample interval duration (mean � SEM). R 2 values were significantly larger for the model
containing log-transformed time for all interval durations (paired t test).

Table 2. Numbers of neurons whose activity profiles were preferentially explained by linear versus logarithmic functions (Experiment 1)a

Interval duration 3018 ms 3310 ms 3629 ms 3979 ms 4363 ms 4784 ms

Number of neurons significantly modulating their activity

according to linear and/or log time

352 375 338 358 411 425

Number (percentage) of neurons with higher R 2 values

for linear functions

138 (39%) 160 (43%) 131 (39%) 157 (44%) 179 (44%) 190 (45%)

Number (percentage) of neurons with higher R 2 values

for logarithmic functions

214 (61%) 215 (57%) 207 (61%) 201 (56%) 232 (56%) 235 (55%)

p value (�2 test) �10 �4 0.005 �10 �4 0.020 0.009 0.029
aFor each sample interval duration, of those neurons whose activity profiles were significantly correlated with linear or logarithmic passage of time, the numbers of neurons whose activity profiles were better explained by linear versus
logarithmic passage of time were compared (Eq. 1). The number of neurons whose activity profiles were better explained by the logarithmic model was significantly larger than that whose activity profiles were better explained by the linear
model for each sample interval duration (�2 test).
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79.7%; Fig. 2). Of these, only those units with mean firing rate �1
Hz during sample interval presentation (n � 733, 555 putative
pyramidal cells and 178 putative interneurons) were subject to
analysis, and only correct trials were included in the analysis un-
less noted otherwise. Diverse types of neuronal activity profiles
were observed during sample interval presentation in Experi-
ment 1 (Fig. 3). Of these, the most abundant type was a mono-
tonically changing activity profile (“ramping activity”) (Fuster,
1997; Durstewitz and Seamans, 2006); many neurons gradually
increased or decreased their activity over time. Also, for the ma-
jority of ramping activity neurons, the rate of activity change
became progressively smaller over time (Figs. 3–5). These obser-
vations raise the possibility that the mPFC might convey tem-
poral information based on monotonically changing activity
profiles over time with negative accelerations, which would be
better explained by logarithmic than by linear functions. To test
this possibility, we compared how well linear versus logarithmic

passage of time explains activity of indi-
vidual mPFC neurons. For each neuron
(n � 733) and each interval duration (n �
6), we divided sample intervals into 10
equal-duration bins and examined de-
pendence of trial-by-trial neuronal activ-
ity within each time bin on linear or log-
transformed time using a linear regression
model. We included the animal’s mean
X-position, mean Y-position, and total
displacement during each time bin, along
with the animal’s previous goal choice, as
confounding variables in the regression
model (Eq. 1) because the animals made dif-
ferent degrees of head movement during
sample intervals (Figs. 4, 5) that might affect
neuronal activity (Euston and Mc-
Naughton, 2006; Cowen and Mc-
Naughton, 2007). Indeed, time-
dependent neural activity was often
confounded with movement-related
neural activity (Fig. 4), although time-
dependent neural activity was apparent
with minimal movement variations
over time in some sessions (Fig. 5).

During the longest sample interval
(4784 ms), there were 399 and 380 (out of 733; 54.4 and 51.8%,
respectively) mPFC neurons whose activity profiles were signifi-
cantly correlated with linear and logarithmic passage of time,
respectively (354 were significantly correlated with both), which
were significantly above chance level (binomial test, p � 10�20

for both comparisons). Activity profiles of 269 (36.7%), 265
(36.2%), and 237 (32.3%) neurons were significantly correlated
with the animal’s mean X-position, mean Y-position, and total
displacement, respectively during the longest sample interval,
and, of these, 172, 181, and 143 were additionally correlated with
the linear or logarithmic passage of time. Thus, mPFC neural
activity was influenced by both the elapse of time and the animal’s
movement during sample intervals. Of all neurons whose activity
profiles were significantly correlated with linear or logarithmic
passage of time during the longest sample interval (n � 425), 242
(56.9%) and 183 (43.1%) were activity-increasing and activity-
decreasing types, respectively, which deviated significantly from
an equal distribution (�

2 test, p � 0.004). Of these 425 neurons,
activity profiles of 235 (55%) and 190 (45%) neurons were better
explained (in terms of R 2) by logarithmic and linear passage of
time, respectively, which deviated significantly from an equal dis-
tribution (�

2 test, p � 0.029). Also, R 2 values of all analyzed
neurons (n � 733) determined with the logarithmic model were
significantly larger than those determined with the linear model
(0.120 � 0.005 vs 0.118 � 0.005, respectively; paired t test, p �
0.001). Similar results were obtained for all other sample dura-
tions (Tables 1, 2).

We also applied the multiple linear regression analysis (Eq. 1)
to individual neural activity during the last 500 ms of all six sam-
ple intervals and examined its dependence on linear or log-
transformed sample interval duration. Activity profiles of 187
and 187 mPFC neurons were significantly correlated with linearly
and logarithmically coded sample interval duration, respectively
(185 were significantly correlated with both), which were signif-
icantly above chance level (binomial test, p � 10�20 for both
comparisons). Of all neurons whose activity profiles were signif-
icantly correlated with linear or logarithmic passage of time (n �

Figure 8. Activity profiles of individual mPFC neurons. A, Temporal profiles of normalized activity (z-score) are shown for all

analyzed neurons (n � 733) for each sample interval duration (from left to right, short to long) that were sorted according to PC1

loading value. Red and blue indicate neural activity above and below zero mean, respectively. B, All neurons were grouped into

quintiles according to their PC1 loading values and their mean normalized activity (z-score, left) and SD (right) are shown for all six

interval durations in 50 ms time bins. The bottom panels in B show mean normalized activity and mean SD for all neurons. The

abscissa denotes time since the onset of each sample interval.

Figure 9. Precision of temporal discrimination as a function of time. A, Mahalanobis dis-

tance was assessed between two adjacent bins (9 pairs total for each sample interval). B, Same

as A except that simulated neural data obtained from linearly (red) or logarithmically (black)

changing functions were analyzed for the longest sample interval (4784 ms). The error bars

(SEM) are too small to see.
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189), there were more activity-increasing
(n � 109, 57.7%) than activity-decreasing
neurons (n � 80, 42.3%; �

2 test, p �
0.035). Of these 189 neurons, the majority
preferentially modulated their activity ac-
cording to logarithmically than linearly
coded sample duration (118 and 71, re-
spectively; �

2 test, p � 0.001). In addition,
R 2 values of all neurons (n � 733) for the
logarithmic model (0.0962 � 0.0034)
were significantly larger than those for the
linear model (0.0960 � 0.0034; paired t
test, p � 0.001).

If the mPFC relies on ramping activity
in conveying temporal information, then
the ramping activity neurons should con-
vey higher temporal information than the
remaining neurons. To test this, we sepa-
rated for each sample interval duration
all analyzed neurons in Experiment 1
(n � 733) whose activity profiles were sig-
nificantly correlated with logarithmic
passage of time, from those whose activity
profiles were not significantly correlated
with logarithmic passage of time (Table
1). Temporal information of individual
neural activity was quantified based on
how well individual neuronal activity clas-
sified the length of sample intervals
(length classification) as well as kept track
of the elapse of time (decoding elapsed
time; see Materials and Methods). For the
longest sample interval, as expected, the
ramping activity neurons conveyed higher amounts of temporal
information than the other group (length classification, 55.2 �
0.5 vs 52.7 � 0.6% correct classification; t test, p � 0.001; decod-
ing elapsed time for the longest interval, 1.97 � 0.03 vs 2.34 �
0.03 bins of decoding error; p � 10�15). Also, there was a signif-
icant correlation between the amount of temporal information
transmitted by individual neurons and the degree to which an
individual activity profile was explained by a logarithmic func-
tion (i.e., R 2 value of the logarithmic model; Fig. 6). Similar re-
sults were obtained for all other sample durations (data not
shown).

Principal component analysis
The above results suggest that gradually changing neuronal activ-
ity with negative acceleration is a major activity pattern in the
mPFC during sample interval presentation and that such activity
pattern conveys a relatively large amount of temporal informa-
tion. To test this further, we characterized activity profiles of
mPFC neurons during sample intervals using a PCA (Narayanan
and Laubach, 2009; Machens et al., 2010). The first principal com-
ponent (PC1) was a monotonically, yet nonlinearly increasing func-
tion for each sample interval duration; the rate of change became
progressively smaller (Fig. 7A). When PC1 was plotted on a logarith-
mic time scale, it increased linearly during the time period between
�300 ms following the onset of each sample interval and its offset
(Fig. 7B). Also, PC1 conveyed a relatively large amount of temporal
information compared with other principal components (Fig. 7C),
and the absolute PC1 loading value was significantly correlated with
the amount of temporal information each neuron conveyed [corre-
lation with percentage correct classification (length classification),

r � 0.116; p � 0.002; correlation with decoding error (decoding
elapsed time), r � �0.127, p � 0.001]. These results further support
the conclusion that the mPFC conveyed temporal information
largely based on linearly changing neuronal activity on a logarithmic
time scale.

Figure 8A shows normalized activity profiles of all analyzed
neurons (n � 733) during correct trials that were arranged ac-
cording to their PC1 loading values. As shown, those neurons
with high absolute values of PC1 loading showed monotonically
changing activity profiles during each sample interval. When the
neurons were divided into quintiles according to their PC1 load-
ing values, those with large positive (or negative) values showed
monotonically increasing (or decreasing) activity profiles with
the rate of change becoming progressively smaller (Fig. 8B).

Precision of temporal discrimination as a function of time
To further test linear versus logarithmic encoding of time, we
examined the relationship between the precision of temporal dis-
crimination and the elapse of time. For this, we divided each
sample interval into 10 equal-duration bins and calculated Ma-
halanobis distance (MacDonald et al., 2011) between two adja-
cent bins based on neuronal ensemble activity (n � 733 neurons).
As shown in Figure 9A, Mahalanobis distance decreased gradu-
ally over time. A linear regression analysis indicated that the
slopes of all six curves were significantly different from 0 (p �
0.015 for all curves).

The above results can be accounted for by logarithmic encod-
ing of time with constant variability as well as linear encoding
time with gradually increasing variability. Variability of individ-
ual neuronal activity changed over time approximately in pro-
portion to mean neuronal activity (r � 0.90 � 0.06; the longest

Figure 10. mPFC neuronal ensemble conveys temporal information. A–D, Classification of sample intervals into short and long

intervals based on simultaneously (A, B) or all (C, D) recorded units. A, Gray, Probability to classify sample intervals into long ones

as a function of sample interval duration in one session. Black, Their mean and SEM across sessions. B, Results of a neuron-dropping

analysis for A, showing the relationship between the size of neuronal ensemble and the fraction of correct decoding (Pcorrect). C,

Gray, Results of trial-by-trial classification (0, short interval; 1, long interval). Black, Their mean and SEM. D, Results of a neuron-

dropping analysis for C. E–H, Neural decoding of elapsed time. The longest sample interval (4784 ms) was divided into 10

equal-duration bins, and the order of the middle eight bins was decoded based on the activity of simultaneously (E, F ) or all (G, H )

recorded units within each bin. E, Gray, Mean decoded bin number for each bin for one session. Black, Their mean and SEM across

sessions. F, Results of a neuron-dropping analysis for E, showing the relationship between the size of neuronal ensemble and mean

decoding error (mean distance between the actual and predicted bins). The horizontal dashed line denotes the chance level. G,

Gray, Trial-by-trial decoding results for each bin. Black, their mean and SEM across trials. H, Results of a neuron-dropping analysis

for G. Error bars are too small to see in A, C, E, and G. Decoding results based on a single session (24�35 units) are not shown in B

and F.
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sample interval was divided into 10 equal-duration bins and cor-
relation between mean discharge rate and SD was calculated for
each neuron). Because there were both activity-increasing and
activity-decreasing neurons, the mean variability stayed more or
less similar over time (Fig. 8B). Thus, the latter is an unlikely
possibility. Nevertheless, to discriminate between these two pos-
sibilities more precisely, we assessed Mahalanobis distance be-
tween two adjacent time bins of linear and logarithmic functions
that were simulated based on the variability of the original neural
data. For each neuron (n � 733), linear and logarithmic func-
tions were separately determined for the longest sample interval
(4784 ms) based on a maximum likelihood procedure (Eq. 1)
and, for each function, trial-by-trial neural activity was generated
200 times by a Gaussian random number generator based on
mean firing rate of the simulated function and SD of the original
neural data at 50 ms time resolution. Then 100 neurons were
randomly selected for the analysis of Mahalanobis distance be-
tween adjacent 10 equal-duration bins, which was repeated 100
times. Mahalanobis distance decreased gradually over time for
the simulated logarithmic functions, but not for the simulated
linear functions (Fig. 9B). A linear regression analysis showed
that the slope of the curve was significantly different from 0 for
the simulated logarithmic functions (p � 0.002), but not for the
simulated linear functions (p � 0.149).

Temporal information of mPFC neuronal ensemble

We then quantified the amount of temporal information con-
veyed by mPFC neuronal population (Experiment 1). We first
examined how well neuronal ensemble activity during the last
500 ms of each sample interval classified a given sample interval
as short or long (length classification). Simultaneously recorded
mPFC neuronal ensembles (5�32 units per session; mean � SD,
14.9 � 4.7) classified sample intervals significantly better than
chance level (mean � SEM, 65.6 � 0.7% correct classification;
paired t test, p � 10�20; Fig. 10A,B). Performance was somewhat
lower when full covariance among neural activity was considered
(61.9 � 0.8% correct classification; comparison with length clas-
sification with the assumption of independence among neurons,
paired t test, p � 10�7), suggesting that correlated mPFC neuro-
nal activity at the time resolution of 500 ms conveyed redundant
temporal information. Length classification based on all re-
corded units across sessions (n � 733 neurons) assuming inde-
pendence among neurons was nearly perfect (99.0% correct;
significantly above chance level; binomial test, p � 10�20; Fig.
10C,D).

Second, we examined how well the mPFC neuronal ensemble
kept track of the elapse of time (decoding elapsed time; each
interval was divided into 10 equal-duration bins). The mean er-
ror in the prediction of elapsed time based on simultaneously

Figure 11. Neural coding of temporal information for different levels of behavioral variation. To test whether temporal information conveyed by mPFC neural activity was because of variations

in the animal’s ongoing behavior during sample intervals, performance of neural decoding was compared after dividing the behavioral sessions into quintiles according to the amount of temporal

information (A, B, length classification; C, D, decoding elapsed time) conveyed by each or the whole set of three behavioral variables (X-position, Y-position, and displacement). Red, Results of neural

decoding. Blue, Results of behavioral decoding. A, Probability of long classification (Plong) as a function of sample interval duration. B, Mean correct classifications (Pcorrect) as a function of behavioral

variations. C, Decoded bin number versus actual bin number. The longest sample interval (4784 ms) was divided into 10 equal-duration bins and the order of the middle eight bins was decoded. D,

Accuracy in decoding elapsed time (mean encoding error) as a function of behavioral variations. The error bars (SEM) are too small to see.
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recorded units was 0.94 � 0.04 (mean � SEM) bins for the lon-
gest sample interval (4784 ms), which was well below chance level
(3 bins; paired t test, p � 10�20; Fig. 10E,F). Again, the perfor-
mance was somewhat lower when full covariance among neural
activity was considered (decoding error, 1.15 � 0.04 bins; paired
t test, p � 10�14). When all recorded units (n � 733) were used
for decoding elapsed time assuming independence among neu-
rons, the mean error was only 0.70 � 0.04 bin for the longest
sample interval (4784 ms), which was well below chance level
(paired t test, p � 10�20; Fig. 10G,H). Similar results were ob-
tained for all other sample durations (data not shown). Neuron-
dropping analyses revealed that �100 neurons were needed for
asymptotic performance of neural decoding (Fig. 10D,H), which
is in contrast to the finding that only a few mPFC neurons are
sufficient for near-maximal decoding of rat’s binary choices in a
working memory task (Baeg et al., 2003). These results suggest
that many more neurons are required to accurately keep track of
elapsed time in the range of a few seconds compared with repre-
senting the animal’s choice in a simple binary-choice task.

To examine the possibility that temporal information con-
veyed by mPFC neural activity was because of variations in the
animal’s ongoing behavior during sample interval presentation,
performance of neural decoding was compared after dividing the
behavioral sessions into quintiles according to the amount of
temporal information conveyed by each or the whole set of three
behavioral variables (X-position, Y-position, and displacement).
The pattern of sample interval classification (short vs long) based
on neuronal ensemble activity was similar across the quintiles of
behavioral variations (percentage correct classification of sample
intervals based on behavioral data; Fig. 11A) so that there was no
significant variation in the percentage of correct neural clas-
sification across the quintiles (1-way ANOVA, X-position,
p � 0.459; Y-position, p � 0.454; displacement, p � 0.178; all
variables, p � 0.244; Fig. 11B). Likewise, the pattern of decoding
elapsed time based on neuronal ensemble activity was similar
across the quintiles of behavioral variations (the accuracy in pre-
dicting elapsed time based on behavioral data; Fig. 11C) so that
there was no significant variation in mean neural decoding error
across the quintiles (longest sample interval, 1-way ANOVA,
X-position, p � 0.509; Y-position, p � 0.188; displacement, p �
0.269; all variables, p � 0.860, respectively; Fig. 11D). Similar
results were obtained for all other durations of sample intervals
(data not shown). These results indicate that temporal informa-
tion conveyed by mPFC neural activity was not because of varia-
tions in the animal’s ongoing behavior during sample interval
presentation.

To test whether mPFC neurons conveyed information on
sample interval duration after its offset, we applied a multiple
linear regression analysis (Eq. 1) to individual neural activity
around the offset of sample intervals. We first determined the
duration of the time period between the sample interval offset
and the animal’s choice of action (i.e., beginning of the leftward
or rightward movement) for each session as in our previous stud-
ies (Kim et al., 2009a; Sul et al., 2010). The average duration of
this time period was 316 � 98 ms. Based on this value, we deter-
mined fractions of neurons that significantly modulated their
activity according to log-transformed sample interval duration
during a 300 ms time window that was advanced in 100 ms time
steps. Of 733 mPFC neurons, those with mean firing rates �1 Hz
during 1150 ms time period following the sample interval offset
were included in this analysis (n � 640 neurons). As shown in
Figure 12, significant fractions conveyed information on sample
interval duration after sample interval offset.

Timing-related neural activity has been found in many differ-
ent areas of the brain, which is consistent with the view that the
brain is equipped with multiple intrinsic clocks rather than a
central dedicated clock (Mauk and Buonomano, 2004; Ivry and
Schlerf, 2008). Therefore, simply finding neural activity convey-
ing temporal information does not tell us much about neural
processes controlling interval-timing behavior. For this, one
needs to go one step further to show neural activity that is tightly
correlated with animal’s interval-timing behavior. If the mPFC
plays an important role in interval-timing behavior, as suggested
by our previous inactivation study (Kim et al., 2009b), then
mPFC neural activity is expected to be correlated with the ani-
mal’s interval-timing behavior. We tested this prediction by com-
paring performances of neuronal ensemble activity (n � 733)
during correct and error trials in classifying sample intervals into
short or long periods. The longest and shortest time intervals
were excluded from this analysis because of low error rates (from
short to long durations, 6.4 � 0.6, 17.1 � 0.7, 36.0 � 1.1, 35.3 �
1.3, 17.1 � 0.9, and 7.8 � 0.7% per session, respectively), and the
discriminant function was generated using only correct trials
(i.e., neural activity in each trial was compared with averaged

Figure 12. Temporal information after sample interval offset. A, The graph shows the frac-

tion of neurons that significantly modulated their activity according to sample interval duration

during a 300 ms time window that was advanced in 100 ms time steps. Time 0 indicates the

offset of each sample interval, and the vertical dashed line denotes the mean latency for the first

behavioral manifestation of the animal’s goal choice. The shading indicates the minimum frac-

tion significantly above chance level (binomial test, p � 0.05). B, C, A spike raster plot (correct

trials only) and spike density functions (� � 100 ms; darker tone, longer duration) of an

example neuron that modulated its activity according to sample interval duration after its

offset. Trials were grouped according to sample interval duration, and aligned to the offset of

each sample interval. D, Mean firing rate of the example neuron between 0 and 1 s time period

after sample interval offset as a function of sample interval duration. The abscissa is in logarith-

mic scale. The line was determined by linear regression (R 2 � 0.971).
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neural activity in the remaining correct trials). As expected, op-
posite patterns of neural decoding were observed for correct and
error trials (Fig. 13A), indicating that mPFC neural activity was
tightly correlated with the animal’s choice of target. We also com-
pared decoding of the elapse of time based on neural activity
during correct and error trials. As expected, error-trial neural
decoding tended to underestimate elapsed time when the correct
choice was the long target and, conversely, overestimate elapsed
time when the correct choice was the short target (Fig. 13B,C).

Temporal discrimination with variable temporal ranges
Many mPFC neurons monotonically changed their activity dur-
ing entire sample interval durations (up to 4784 ms) in Experiment
1, suggesting that they are not likely to represent simple sensory-
related or motor preparation-related responses. Nevertheless, we
cannot rule out the possibility that seemingly timing-related neural
activity might actually represent sensory-related or motor
preparation-related neural activity. To further investigate this mat-
ter, we examined mPFC neuronal activity in a separate group of rats
(n � 3) performing a time-interval discrimination task that con-
sisted of multiple blocks of trials with the length of time intervals
varied up to 8 s (Experiment 2). The animals had to discriminate 2
versus 4 s intervals in the first block, 4 versus 8 s intervals in the
second block, and then 2 versus 4 s intervals again in the third block.
If neural activity during the 4 s time interval changes according to the
range of time interval discrimination, it would be difficult to explain

the result in terms of a timing-independent
neural process (such as a simple sensory
response).

The animals chose the short or long
target correctly in 92.1 � 0.8% of trials per
session in the first block, 90.5 � 0.6% in
the second block, and 86.9 � 0.9% in the
third block. Thus, the animals well dis-
criminated a given time interval (4 s) as
either short or long according to the be-
havioral context. A total of 700 units were
recorded in Experiment 2 (putative pyra-
midal cells, n � 581, 83.0%). Only those
units with mean firing rate �1 Hz during
sample interval presentation (n � 372,
282 putative pyramidal cells and 90 puta-
tive interneurons) were subject to analysis
and only correct trials were included in
the analysis of neural data. The mPFC
neuronal ensemble conveyed a significant
amount of temporal information (Fig.
14A–D) and the precision of temporal dis-
crimination was lowered as a function of
time (Fig. 14E–F) without a parallel in-
crease in neuronal variability (Fig. 14G),
which is more consistent with logarithmic
than linear representation of time as in
Experiment 1.

Neuronal activity profile during the 4 s
interval changed across the first and second
blocks (Fig. 15A–C). PC1 during the 4 s in-
terval in the first block was more similar to
PC1 during the entire 8 s interval in the sec-
ond block that was normalized in the time
domain (cumulative difference based on
root mean square values at 50 ms time res-
olution, 0.009) than PC1 during the 4 s in-

terval in the second block (cumulative difference, 0.030; first 0.5 s of
each trace was deleted to avoid effects of transient sensory responses;
Fig. 15C). Thus, mPFC neurons tended to stretch their activity pro-
files in the time domain in proportion to the range of time interval
discrimination. Unexpectedly, the magnitude of PC1 in the third
block was smaller compared with PC1 in the first block (Fig. 15B,C),
which could not be explained by gradual time-dependent changes in
neural activity (Fig. 16). There was a significant positive correla-
tion between the difference in behavioral performance and the
difference in neural response across the first and third blocks
(Fig. 15D), suggesting a potential influence of a global modu-
lating factor (such as motivation level) on overall timing-
dependent neural activity during the third block.
Nevertheless, when the response magnitude was normalized
across blocks, PC1 during the 4 s interval in the third block was
more similar to that in the first than the second block (Fig.
15E). These results indicate that mPFC neurons tended to
change their temporal activity profiles according to the range
of time-interval discrimination, arguing against the possibility
that timing-related mPFC neural activity merely reflected sim-
ple sensory-related or motor preparation-related neural activ-
ity.

Discussion
We examined neuronal activity in the mPFC while rats were per-
forming a temporal discrimination task, and obtained two major

Figure 13. Comparison of neural activity during correct and error trials. The longest and shortest sample intervals were ex-

cluded from the analysis because of small numbers of error trials. A, Classification of sample intervals into short and long ones based

on activity of all recorded units (n � 733) during correct (blue) and error (red) trials. Same format as in Figure 10C. The lines

represent perfect (100% correct) classification. B, Decoding of elapsed time based on activity of all recorded units during correct

(blue) and error (red) trials. Same format as in Figure 10G. C, Spike raster plots and spike density functions (�� 100 ms) for correct

(blue) and error (red) trials are shown for an example neuron.
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findings. First, mPFC neuronal popula-
tion conveyed precise information about
the elapse of time, which suggests a clock
function of the mPFC. Second, mPFC
neurons tended to convey temporal infor-
mation based on linearly changing activity
on a logarithmic time scale, which pro-
vides evidence for logarithmic representa-
tion of time in the brain.

Role of PFC in interval timing
It is well established that the PFC is cru-
cially involved in time-interval discrimi-
nation in humans (Mangels et al., 1998;
Koch et al., 2003; Jones et al., 2004) and
animals (Glickstein et al., 1964; Rosen-
kilde and Divac, 1976; Dietrich et al.,
1997; Dietrich and Allen, 1998; Onoe et
al., 2001; Kim et al., 2009b). However, the
exact role of the PFC in interval timing
behavior has not been clear. It has been
suggested that estimation of a time interval
(clock), its storage and retrieval (memory),
and comparison with a newly estimated
time interval (comparison/decision) are
three basic processes for all internal clock
models (Wearden, 1999). The PFC might
be in charge of one or more of these steps.
Alternatively, the intact PFC might be
needed for interval-timing behavior be-
cause of its general executive functions
(Mangels et al., 1998; Tregellas et al., 2006;
Livesey et al., 2007; such as attentional
control). If PFC neurons are found to
convey information about time intervals
only after their offsets, but not during
their presentation, for example, this
would be an indication that the PFC is
involved in the memory or comparison/
decision stage rather than the clock stage.

In a study that employed a fixed inter-
val procedure with two different interval
durations, some neurons in the rat ACC
modulated their activity according to the
interval duration (Matell et al., 2003). For
a physiological study, a fixed or peak in-
terval procedure suffers from confound-
ing of timing with motor activity, because
animals emit motor responses that vary
with the elapse of time. Thus, it is difficult
to isolate clock function-related neural
activity from motor response-related neu-
ral activity using this procedure. For this
reason, the previous study (Matell et al.,
2003) focused on those neurons that
showed differential activity between the
short and long interval durations (i.e.,
duration-coding neurons). In our task, by
contrast, timing-related neural activity
was not strongly confounded with motor
responses, because the animals initiated
navigation only after a time-interval offset.
By carefully analyzing potential influence of

Figure 14. Neural decoding of temporal information in Experiment 2. A, Classification of sample intervals into short and

long periods based on activity of all recorded units (n � 372) in Blocks 1, 2, and 3 (B1, B2, and B3, respectively). Same

format as in Figure 10C. B, Results of a neuron-dropping analysis for A. C, Neural decoding of elapsed time. The 8 s time

interval in the second block was divided into 10 equal-duration bins and the order of the middle eight bins was decoded

based on activity of all recorded units within each bin. Same format as in Figure 10G. D, Results of a neuron-dropping

analysis for C. E, Precision of temporal discrimination as a function of elapsed time. Each sample interval was divided into

10 equal-duration bins and Mahalanobis distance was calculated for each pair of adjacent bins. The slopes are significantly

different from 0 for all curves ( p � 0.040). F, Mahalanobis distance for the simulated neural data obtained from linearly

(red) or logarithmically (black) changing functions during the longest sample interval (8 s). The slope is significantly

different from 0 for the logarithmic ( p � 0.003), but not for linear function ( p � 0.433). The error bars (SEM) are too small

to see. Same analysis procedure and same format as in Figure 9. G, All neurons were grouped into quintiles according to

their PC1 loading values and their mean normalized activity (z-score, left) and SD (right) are shown for all six interval

durations in 50 ms time bins. The bottom panels show mean normalized activity and mean SD for all neurons. Same format

as in Figure 8B.

Figure 15. Neural activity during temporal discrimination with variable time ranges (Experiment 2). A, PC1 of neural

activity during three blocks of trials. PC1 accounted for 21.2% of total variance in neural activity. The abscissa denotes time

since the onset of each sample interval. B, PC1 for neural activity during the 4 s interval in each block (B1, Block 1; B2, Block

2; B3, Block 3) and PC1 for neural activity during the 8 s interval in the second block were compared. C, Same plot as in B

except that the abscissa denotes normalized time [t/T, where T denotes the time range excluding the first 0.5 s (3.5 or

7.5 s)]. D, Relationship between behavioral performance and neural response. The abscissa indicates the difference in the

fraction of correct choices (�Pcorrect) and the ordinate indicates the difference in neural response (cumulative difference in

neural activity during the 4 s interval) between the first and third blocks. The line was determined by linear regression

(slope � 0.325, p � 0.014). E, Comparison of normalized PC1. PC1s for neural activity during the 4 s interval in Blocks 1

(B1), 2 (B2), and 3 (B3) were compared after normalizing baseline and response magnitude [normalized PC1 � (PC1 �

B)/(E � B), where E and B denote the mean PC1 values during the last and initial 300 ms of the 4 s interval, respectively].

Numbers indicate cumulative differences (sum of root mean square values at 50 ms time resolution) between B1 and B2

(B1 � B2), B1 and B3 (B1 � B3), and B2 and B3 (B2 � B3) traces.
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uncontrolled behavioral variations on neural activity, we were
able to show that mPFC neurons conveyed precise information
on the elapse of time that cannot be explained by behavioral
variations during sample intervals. Another potential confound-
ing variable in our task was the animal’s internal decision. How-
ever, mPFC neurons conveyed information on elapsed time for
all interval durations, including the shortest (i.e., well before the
animal switched its decision into the long target), thus timing-
related mPFC neural activity cannot be explained by the animal’s
internal decision. Together, our results provide compelling evi-
dence that the mPFC conveyed significant information on
elapsed time throughout the sample interval presentation. This
finding is consistent with the possibility that the mPFC is part of
an internal clock, although we cannot rule out the possibility that
timing-related mPFC neural activity was driven by neural activity
in another upstream brain structure.

Previous physiological studies have found neuronal activity
that might be related to the storage and comparison processes in
the PFC. Some neurons in the rat ACC showed different activity
between two different interval durations (Matell et al., 2003).
Also, when monkeys were required to discriminate durations of
two successfully presented stimuli, some PFC neurons showed
duration-dependent activity during the time period between the
two stimuli (Sakurai et al., 2004; Oshio et al., 2006; Genovesio et
al., 2009), suggesting the involvement of the PFC in holding the
information on the first time interval as working memory, which
might be a step toward long-term storage of temporal informa-
tion (Wearden, 1999). Also, after presentation of the second
stimulus, some PFC neurons signaled relative durations of the
two stimuli (Genovesio et al., 2009), suggesting the involvement
of the PFC in the comparison process as well. We also found that
some neurons in the rat mPFC modulated their activity according to
sample interval duration after sample interval offset. These results

suggest the involvement of the mPFC in
maintaining temporal information as work-
ing memory and possibly in comparing this
information with a reference time interval
stored in long-term memory. Collectively,
the present and previous physiological stud-
ies in rats and monkeys suggest the involve-
ment of the PFC in multiple processes of
time-interval discrimination, raising the
possibility that the PFC might be part of a
central neural system controlling interval
timing behavior. Previous physiological
studies have found timing-related neuronal
activity in various brain structures, such as
the striatum (Matell et al., 2003), motor cor-
tex (Lebedev et al., 2008; Mita et al., 2009;
Matell et al., 2011), parietal cortex (Leon
and Shadlen, 2003; Schneider and Ghose,
2012), and hippocampus (Itskov et al., 2011;
MacDonald et al., 2011). It remains to be
determined how the PFC works together
with these brain structures in controlling in-
terval timing behavior.

Logarithmic versus linear encoding
of time
It has been controversial whether time is
represented on a linear or logarithmic
scale (see Introduction). Our study pro-
vides neurophysiological evidence that

linearly changing neuronal activity on a logarithmic scale might
be one way of representing time over the range of a few seconds.
First, more than half of all recorded neurons showed monotoni-
cally changing activity profiles and logarithmic functions were
superior to linear functions in explaining activity of individual
mPFC neurons. Note that potential influences of behavioral vari-
ations and the animal’s previous goal choice were taken into
consideration in this analysis. Also the extent to which a logarith-
mic function explains neural activity (R 2 values) was significantly
correlated with the amount of temporal information each neuron
carried. Second, the largest variance of neural activity was ex-
plained by a monotonically increasing function with negative
acceleration (PC1) and it was in charge of a large fraction of
temporal information. This was the case for all interval durations,
including the shortest one (i.e., well before reaching the decision
threshold). Thus it is unlikely that logarithmic activity profiles
were because of variable trial-by-trial neural activity that changed
abruptly at the decision threshold. Third, temporal discrimina-
tion became progressively imprecise over time without propor-
tional increase in neuronal variability. These results are more
consistent with logarithmic than linear encoding of time, which
can explain why the precision of time-interval discrimination is
lowered in proportion to its duration according to Weber’s law.

In a study that employed a motor timing task for monkeys
(Mita et al., 2009), activity of some neurons in the supplementary
motor area (SMA) and pre-SMA was well described by exponen-
tial decay functions. These neurons are comparable to those
mPFC neurons that gradually decreased discharge rates in the
present study; they might be involved in estimating self-
generated time intervals. Note that we use the term “logarithmic”
in a loose sense to describe monotonically changing neuronal
activity with a progressively smaller rate of change. Activity of
these mPFC neurons can be equally well described by exponential

Figure 16. Stability of neuronal activity in Experiment 2. A, An example of recorded unit signals during the first (left) and last

(right) 5 min of a session. Each unit cluster is indicated in different color. Horizontal and vertical axes indicate the energy of spike

signals recorded through channels 3 and 4 of a tetrode, respectively. Averaged spike waveforms recorded through four tetrode

channels are shown below for each cluster in corresponding colors. Calibration: 1 ms, 0.1 mV. Only those unit clusters that were

stably maintained throughout the entire recording session as shown in the example were included in the analysis. B, Stability of

mean firing rates across blocks. Mean normalized firing rates (mean firing rate in each block was divided by overall mean firing rate

for each neuron) across Blocks 1, 2, and 3 are shown. There was no significant variation across blocks (1-way ANOVA, p � 0.305).

Error bars, SD. C, Index of firing rate change [�X � Y�/(X � Y ) where X and Y are mean firing rates of a neuron during different

epochs] between the first and second halves of Block 1 (B1 � B1�), between the second half of Block 1 and the first half of Block 2

(B1��B2), between the first and second halves of Block 2 (B2�B2�), between the second half of Block 2 and the first half of Block

3 (B2� � B3), and between the first and second halves of Block 3 (B3 � B3�). Particularly large changes in mean firing rate were

not observed across Blocks 2 and 3. Error bars, SD. D, Stability of neural responses within each block. Neural activity during 4 s time

interval in each block was analyzed. Each block was divided into four equal-trial epochs and PC1s for all four epochs were plotted

together. E, F, The neurons were grouped into quintiles according to their PC1 loading values and mean normalized activity was

plotted for each epoch as in D for the first (E) and last (F ) quintiles of neurons.
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or power functions. In an earlier perceptual timing task in mon-
keys (Leon and Shadlen, 2003), some neurons in the lateral intra-
parietal area monotonically increased their firing rates during the
presentation of a test time interval provided that the target for
“longer” judgments fell within their receptive fields. Notably,
their averaged activity profile was not linear, but resembled log-
arithmic activity profiles of those mPFC neurons that monoton-
ically increased their activity in the present study (Leon and
Shadlen, 2003, their Fig. 3). Thus, nonlinear representation of
time might be common in the brain.

Although our results provide supporting evidence for loga-
rithmic encoding of time, they by no means indicate that loga-
rithmic encoding is the only way of representing time in the
brain. We cannot exclude the possibility that linear encoding is
employed in other brain structures or in the PFC during different
behavioral tasks (e.g., Komura et al., 2001; Machens et al., 2010).
In addition, activity profiles of a substantial fraction of neurons
were better explained by linear than logarithmic functions, al-
though their preferential correlations with linear functions might
be an outcome of noisy individual neuronal activity. At the level
of individual neurons, therefore, we cannot rule out the possibil-
ity that both logarithmic and linear encoding schemes are simul-
taneously used for representing the elapse of time. For these
reasons, our results do not provide clear evidence for or against
linear encoding of time. It remains to be determined in future
studies whether linear and logarithmic encoding of time are si-
multaneously used by different neurons in the same brain region.
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