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This study aimed to identify neural mechanisms that underlie perceptual learning in a visual-discrimination task. We trained two

monkeys (Macaca mulatta) to determine the direction of visual motion while we recorded from their middle temporal area (MT),

which in trained monkeys represents motion information that is used to solve the task, and lateral intraparietal area (LIP), which

represents the transformation of motion information into a saccadic choice. During training, improved behavioral sensitivity to

weak motion signals was accompanied by changes in motion-driven responses of neurons in LIP, but not in MT. The time course

and magnitude of the changes in LIP correlated with the changes in behavioral sensitivity throughout training. Thus, for this task,

perceptual learning does not appear to involve improvements in how sensory information is represented in the brain, but rather

how the sensory representation is interpreted to form the decision that guides behavior.

Training can induce long-lasting improvements in our ability to detect,
discriminate or identify sensory stimuli1. Despite the prevalence of this
phenomenon, called perceptual learning, our understanding of the
underlying neural plasticity is incomplete. Changes in early sensory
areas of the cortex have been inferred from psychophysical studies2 (but
see refs. 3,4) and identified in monkeys trained on auditory5 and
somatosensory6 tasks. However, monkeys trained on visual tasks show
only moderate or no change in early visual cortex7–11. Changes in
higher stages of processing, including those that contribute to decision-
making and attention, have also been inferred from psychophysical and
physiological studies4,8,12–14. However, such changes have not been
identified directly in the brain. We sought to identify experience-
dependent changes in visual processing in two different cortical
areas, one in extrastriate visual cortex and the other in parietal cortex,
and to determine their relative contributions to perceptual learning.

We trained monkeys to determine the direction of motion of a
random-dot stimulus and to indicate their direction decision with an
eye movement. Most neurons in area MT of extrastriate visual cortex
are tuned for the location and direction of moving visual stimuli15. In
trained monkeys, MT responses can be as sensitive to random-dot
motion signals as the monkey’s behavioral reports and are weakly
predictive of the monkey’s choices on the discrimination task16,17.
Moreover, MT lesions degrade performance18 and MT microstimula-
tion biases performance on the task19. Therefore, MT provides at least
some of the motion information used to form the direction decision.

Neurons in area LIP of parietal cortex, which has been implicated in
a variety of cognitive and visuomotor functions, including attention,
intention, reward anticipation and decision-making20–23, also respond
while monkeys carry out the discrimination task. These responses are
modulated by the strength and duration of the motion stimulus and

can be strongly predictive of the monkey’s saccadic choices24,25. LIP
microstimulation can bias performance on a reaction-time version of
the task26. Therefore, area LIP appears to be involved in transforming
motion information into a saccadic choice, although that role might be
shared among several oculomotor regions, including the frontal eye
field (FEF) and superior colliculus, that show similar responses during
task performance27,28.

We recorded the activity of individual MT and LIP neurons while
two naive monkeys were trained on the direction-discrimination task.
Behavioral sensitivity to weak motion signals improved continuously
during training, long after monkeys had acquired the stimulus-
response association. This improvement in behavioral sensitivity cor-
responded to changes in the responses of neurons in LIP, but not in MT,
during motion viewing. The results are consistent with a model in
which perceptual improvements result from changes in how sensory
evidence is interpreted and used to instruct behavior, as reflected in
LIP, but not in changes to the representation of the evidence itself
in MT.

RESULTS

Discrimination threshold improved with training

We trained two rhesus monkeys on a one-interval, two-alternative
direction-discrimination task (monkey C, 165 sessions over 645 d;
monkey Z, 155 sessions over 473 d; Fig. 1a). Each daily training session
began by introducing recording electrodes into MT and/or LIP
(Fig. 1b). As in previous studies, quantifying the relationship between
behavioral and neuronal performance depended on matching the
visual stimulus to the properties of the neuron(s) being recorded16,25.
Under this constraint, we sought to minimize changes in the stimulus
configuration across sessions by selecting neurons with consistent
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tuning properties, including the receptive field (RF) location and
direction preference of MT neurons and the response field location
of LIP neurons (Supplementary Fig. 1 online). After finding the
appropriate neuron(s), we placed the motion stimulus in the MT RF
(or in its modal location if no MT neuron was found) and one of the
two choice targets in the LIP response field (or in its modal location if
no LIP neuron was found). Training occurred only while the responses
of at least one MT or LIP neuron were isolated and recorded, allowing
us to make direct, session-by-session comparisons of behavioral and
neuronal performance as training progressed.

Behavioral performance improved steadily for both monkeys with
training (Fig. 2). In early sessions, we trained monkeys on a simplified
version of the task using only the strongest motion stimulus (99%
coherence) to reinforce the association between motion direction and
saccade target. After their performance on this easy condition improved
to well above chance (4B75% correct), we introduced more difficult
stimuli using randomly interleaved motion coherences and viewing
durations (indicated as session 1 in Fig. 2c). Nevertheless, we continued
to randomly interleave trials with 99% coherence in each session
throughout training (Fig. 2c). For both monkeys, declining error
rates on these high-coherence trials as a function of session were
fit by a single-exponential function with a lower asymptote
of zero (mean ± s.e.m., initial value ¼ 0.51 ± 0.02 for monkey C,

0.48 ± 0.01 for monkey Z; time constant ¼ 3.6 ± 0.4 sessions for
monkey C, 30.4 ± 1.1 sessions for monkey Z). Thus, both monkeys
learned how to perform the task in early sessions and were soon able to
express the visuomotor association for high-coherence stimuli with few
or no errors.

In addition to learning the association, the monkeys learned to
better discriminate weaker and weaker motion signals at shorter
viewing times. We examined the performance of monkey C in
two sample sessions, one early and one late in training (Fig. 2a).
For nearly all coherences and viewing times, the percentage of
correct responses was greater in the later session than in the
earlier session. Indeed, throughout training, performance im-
proved significantly for all nonzero coherences for monkey C and
for 12.8–99.9% coherence for monkey Z (linear regression of
percent correct per coherence with training session; H0: slope ¼ 0,
P o 0.05).

To further quantify improvements in performance with training, we
used a time-dependent cumulative Weibull function (equation (1) and
solid lines in Fig. 2a,b) to estimate the discrimination threshold, which
is the motion strength at which the monkey correctly discriminated the
direction of motion B82% of the time for a 1-s viewing duration, for
each session. This function takes into account associative (high coher-
ence) errors (l in equation (1)) and can therefore indicate changes in
threshold that are distinct from changes in associative learning or lapses
of attention (Supplementary Fig. 2 online). Thresholds improved from
B67% to B15% coherence for monkey C and from B68% to B19%
coherence for monkey Z, with a time course that was substantially
longer than that for the associative improvements (mean ± s.e.m., time
constants of single-exponential solid curves ¼ 24.6 ± 0.4 sessions for
monkey C and 58.5 ± 2.5 sessions for monkey Z, final
value ¼ 14.7 ± 0.1% coherence for monkey C and 19.3 ± 0.4%
coherence for monkey Z, Fig. 2c; improvements in high-coherence
errors were limited to early sessions, whereas improvements in thresh-
old were apparent throughout most of training; Fig. 2d). Other
behavioral parameters, including the shape and time dependence of
the psychometric function, did not show similar systematic
changes with training (Supplementary Table 1 online). The goal
of this study was to identify changes in the response properties of
MT and LIP neurons that accompanied the improvements in
discrimination threshold.

Eye movement

Motion on

Targets on

Fixation

LIP RF
MT RF

Tim
e
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b MT LIP

Figure 1 Task and anatomical localization. (a) Direction-discrimination task.

The motion stimulus matched the RF location and preferred direction (and its

1801 opposite) of the middle temporal area (MT) neuron being recorded or

the modal values from previous sessions if no MT neuron was found. One

target was placed in the response field of the LIP neuron being recorded or

the modal location from previous sessions if no LIP neuron was found, and

the other was placed in the opposite visual hemifield. (b) Anatomical

localization of recording site locations in areas MT (left, cyan) and LIP (right,
red) using magnetic resonance imaging. Top, volume rendering using the

AFNI49 render plugin showing the three-dimensional orientation of the

recording cylinders relative to the head. Middle, partial reconstruction of the

cortical surface along with the projection of the recording cylinder using Caret

and SureFit50 (http://brainmap.wustl.edu/caret) and custom software. The

yellow arrow in the left panel points to the location of area MT (red) along the

superior temporal sulcus. The yellow arrow in the right panel points to the

location of area LIP (brown) along the intraparietal sulcus. Bottom, partial

penetration maps of successful recording sites (black points) superimposed on

planes of sections perpendicular to the long axis of the recording cylinder. MT

sites (top) ranged in depth from 6–9 mm from the dura mater. LIP sites

(bottom) ranged in depth from 4–7 mm from the dura mater. These images

were generated with previously described methods (Kalwani, R.M., Bloy, L.,

Hulvershorn, J., Elliot, M.A. & Gold, J.I. Soc. Neurosci. Abstr. 454.14, 2005).
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MT responses did not change with training

We recorded the responses of individual MT neurons to the motion
stimulus both before and during training (monkey C, n ¼ 50 MT
neurons recorded during a passive viewing condition before discrimi-
nation training began and n ¼ 92 during training; monkey Z, n ¼ 47
before and n ¼ 60 during training; Fig. 3). MT responses before and
during training showed a pattern of activation similar to that reported
in trained monkeys16. Motion in the preferred direction elicited an
increase in spike rate and motion in the opposite direction elicited a
decrease in spike rate to relatively constant values that depended on
motion strength and were sustained throughout motion viewing
(Fig. 3a). To quantify these responses and test for changes with
training, we fitted a simple linear model to the normalized responses
of individual neurons. This model describes the neural responses in
terms of the baseline firing rate and three stimulus-based terms: a
dependence on motion coherence that does not change with viewing
time, a dependence on viewing time that does not change with motion
coherence and a dependence on the (multiplicative) interaction
between coherence and viewing time that is consistent with an
accumulation of motion information over time29 (equation (3),
Fig. 3b and Supplementary Fig. 3 online). For both monkeys, only
the coherence-alone term was typically 40, consistent with the idea
that MT responses provide evidence about motion direction that
depends only on stimulus strength and not on viewing time. Moreover,
none of the three terms changed significantly with training (linear
regression versus session, computed separately for each term and
monkey, before and during training, H0: slope ¼ 0, P 4 0.05 for
all conditions).

We also quantified the motion sensitivity of individual MT neurons
by computing a ‘neurometric’ discrimination threshold using the same
time-dependent cumulative Weibull function that was used to estimate
behavioral threshold (equation (1), Supplementary Fig. 4 online).
Neurometric thresholds were, on average, B4% better during training
than before training, but the differences were not significant (monkey
C: geometric mean threshold coherence before training ¼ 25.9%,
during training ¼ 21.0%, Mann-Whitney U test P ¼ 0.20; monkey
Z: before ¼ 21.1%; during ¼ 18.4%, P ¼ 0.48). Moreover, the
neurometric thresholds of the whole population or of the most-
sensitive 50% of the MT neurons did not change systematically as a
function of session either before or during training (linear regression,
H0: slope of log threshold versus session ¼ 0; before training: monkey C
P ¼ 0.76, monkey Z P ¼ 0.95; during training: monkey C, whole
population P ¼ 0.95, 50% most sensitive P ¼ 0.99, monkey Z, whole
population P¼ 0.89, 50% most sensitive P¼ 0.95). Notably, this lack of
long-term changes across sessions occurred despite the short-term
changes that occurred within sessions, as has been reported pre-
viously30 (geometric mean ± s.e.m. ratio of psychometric thresholds
in the second 200 versus the first 200 trials, 0.92 ± 0.22 in monkey C
and 0.84 ± 0.29 in monkey Z; ratio of neurometric thresholds in MT in
the second 200 versus the first 200 trials, 0.87 ± 0.23 in monkey C and
0.98 ± 0.29 in monkey Z). Other response properties, including the
width of directional tuning, were unaffected by training (Fig. 3 and
Supplementary Table 1).

There was, however, a slight strengthening with training of the
relationship between the trial-by-trial variability of MT responses and
the monkeys’ choices. This analysis, called choice probability, has
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Figure 2 Behavior. (a,b) Behavioral performance (a) and discrimination threshold (b, best fits and 68% confidence intervals, CIs) as a function of viewing

time (0.3-s-wide bins in 0.15-s intervals) for different motion strengths (see legend) from two representative sessions, early (left) and late (right) in training.

Discrimination thresholds in b were computed for each time bin using a cumulative Weibull function16. Solid lines in a and b represent behavioral performance
and discrimination thresholds computed from a time-dependent cumulative Weibull function (equation (1) fit to each dataset; not binned by viewing duration),

respectively. We report error rates at 99.9% coherence (COH; dashed arrows in a, m in c and d) and discrimination thresholds at 1-s viewing duration from the

fits (dashed arrows in b, � in c and d). (c,d) Discrimination threshold (� ; note the logarithmic scale on the left ordinate) and error rate at 99.9% coherence

(m; linear scale on the right ordinate) with 68% CIs plotted as a function of training session for the two monkeys. Prior to session 1, monkeys were trained

mostly with 99.9% coherence motion. Solid lines are best-fitting single exponential functions. (d) Learning rates (best fits and s.e.m.) of discrimination

thresholds (�) and errors at 99.9% coherence (m) during training for the two monkeys. The learning rate was computed as the slope of a linear fit to the

behavioral data (log discrimination thresholds or errors at 99.9% coherence) in a 41-session-wide bin. A negative learning rate implies that the behavioral

parameter improved during that particular epoch of training.
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shown that MT neurons predict choice slightly, but reliably, in fully
trained monkeys (B0.55, where 0.5 is chance and 1.0 is perfect; ref. 17),
which is the relationship expected for elements in a pool of weakly
correlated neurons that provide noisy evidence for the decision31.
Choice probability increased as a function of training session (com-
bined data from both monkeys, mean ± s.e.m., choice probability of
0.493 ± 0.011 for the first 30% and 0.549 ± 0.018 for the last 30% of
sessions). Moreover, the relationship between choice probability and
motion sensitivity in the MT changed systematically over the course of
training such that more-sensitive neurons became more predictive of
the monkey’s direction decision as training progressed (correlation
coefficient between choice probability and neurometric thresholds of
MT neurons in the first one-third of the sessions, r ¼ 0.02, H0: r ¼ 0,
P ¼ 0.56; second one-third of the sessions, r ¼ –0.23, P ¼ 0.11; third
one-third of the sessions, r ¼ –0.34, P ¼ 0.04; Fig. 3c).

In principle, the increases in choice probability could arise from
an increase in correlated firing among MT neurons. In a small number
of simultaneously recorded pairs of MT neurons, however, preli-
minary evidence indicated that the degree of correlation was
similar before (mean ± s.e.m., correlation coefficient r ¼ 0.16 ± 0.06,
n ¼ 8) and during (r ¼ 0.18 ± 0.04, n ¼ 9) training and did not
increase over the course of training (linear regression, H0: slope ¼ 0,
P ¼ 0.57). Thus, the systematic change in choice proba-
bility probably reflects an increasingly selective readout of activity
from MT neurons, particularly those most sensitive to the
motion stimulus.

LIP responses changed with training

The responses of individual LIP neurons dur-
ing motion viewing were recorded throughout
training (monkey C, n ¼ 123; monkey Z,
n¼ 99 LIP neurons recorded during training).
We determined the average spike rates of the
population of LIP neurons recorded from
monkey C aligned to motion onset and sac-
cade onset for different training epochs
(Fig. 4a). Throughout training, in trials in
which the monkey selected the saccade target
in the neuron’s response field, LIP activity
tended to increase gradually during motion
viewing, stay elevated during the subsequent
delay period and then increase just before
saccade onset. In trials in which the other

target was selected, LIP activity tended to decrease gradually during
motion viewing and then remain below baseline levels until after the
saccade. The perisaccadic activity tended to be smaller in the first
15 sessions (average activity from –0.5 to –0.1 s before saccade onset
was 18.6 spikes s–1 from sessions 1–15 and 31.3 spikes s–1 from sessions
16–160, t-test, P ¼ 0.02 for monkey C; 27.0 spikes s–1 from sessions 1–
15 and 48.6 spikes s–1 from sessions 16–130, P o 0.01 for monkey Z),
but then remained relatively stable throughout the rest of the training
(linear regression, H0: slope of average activity versus session was 0,
P ¼ 0.12 for monkey C; P ¼ 0.31 for monkey Z). In contrast, the
responses during motion viewing changed substantially throughout
training, with the rates of rise and fall becoming steeper and increas-
ingly dependent on motion strength (higher coherences corresponding
to steeper slopes).

To quantify the effects of training on the coherence-dependent
LIP responses, we fit spike-rate data from individual neurons to
the same linear model that we used for the MT responses (Fig. 4b).
For both monkeys, the coherence- and time-alone terms tended to
be near zero throughout training (although the coherence term
decreased slightly with training to small negative values in both
monkeys, and the time term increased slightly with training to
small positive values in monkey C). A larger effect was seen in the
coherence � time interaction term, which began near zero, indicating
that there was little or no influence of the motion stimulus on the
LIP responses at the beginning of training, and progressed steadily to
more positive values. Because these neurons were selected on the basis

0 0.5 1.0
0

30

60

Time (s)

R
es

po
ns

e 
(s

pi
ke

s 
pe

r 
s) Pretraining

n = 50

0 0.5 1.0

Sessions 1–50
n = 33

0 0.5 1.0

Sessions 51–100
n = 31

0 0.5 1.0

Sessions 101–160
n = 25

–3

0

3 Pretraining

Monkey C

(%
 C

O
H

–1
)

(s
–1

)

C
O

H
 (
k 1

)
T

im
e 

(k
2)

Training

–3

0

3

1 25 50
–3

0

3

(C
O

H
 ×

 s
)–1

C
O

H
 ×

 ti
m

e 
(k

3)

Session (d)

1 50 100 150

Session (d)

–3

0

3

Monkey Z

Pretraining Training

–3

0

3

1 25 50
–3

0

3

Session (d)

1 40 80 120

Session (d)

3 5 10 20 40 80

0.4

0.5

0.6

0.7

Threshold (% COH)

C
ho

ic
e 

pr
ob

ab
ili

ty

First 1/3 sessions

5 10 20 40 80

Second 1/3 sessions

5 10 20 40 80

Third 1/3 sessions

a

b

c

Motion
strength
(% COH)

99.9
51.2
25.6
12.8
6.4
3.2
0.0

Figure 3 MT responses. (a) Average activity of

MT neurons as a function of viewing time (using

0.1-s-wide time bins with 0.025-s increments) for

different motion strengths (see legend) for each

neuron’s preferred (solid line) and null (dashed

line) motion during different training periods for

monkey C. Pretraining refers to responses to the

motion stimulus measured while the monkey was
rewarded for simply fixating a central spot,

before being trained on the discrimination task.

(b) Coherence, viewing time and coherence �
viewing time dependence (equation (3) of indivi-

dual MT neurons before and during training for

monkeys C, left, and Z, right). Error bars are 68%

CIs. (c) Relationship between neurometric

threshold and choice probability for individual MT

neurons during different training periods for

monkeys C (’) and Z (.). Error bars are 68%

CIs. Solid lines are linear fits.

508 VOLUME 11 [ NUMBER 4 [ APRIL 2008 NATURE NEUROSCIENCE

ART ICLES
©

20
08

 N
at

ur
e 

P
ub

lis
hi

ng
 G

ro
up

  
ht

tp
://

w
w

w
.n

at
ur

e.
co

m
/n

at
ur

en
eu

ro
sc

ie
nc

e



of spatially tuned presaccadic activity (see Methods and Supplemen-
tary Fig. 5 online), this result implies that training both established
and then shaped the sensory-driven responses in these sensory-
motor neurons.

The changes in sensory-driven LIP responses reflected the improve-
ments in behavioral sensitivity to weak motion signals. The pattern of
coherence-specific changes in LIP was similar to the pattern of
coherence-specific behavioral improvements. Both the rate of the rise
of stimulus-driven LIP responses and discrimination performance
increased as a function of training session for most nonzero coherences,
with greater increases for higher coherences (H0, slope of a linear
regression between session number and either average LIP rate of rise
or percent correct for each coherence was 0, P o 0.05 for coherences
Z6.4% for LIP data and Z3.2% for behavioral data for monkey C, and
for coherences Z25.6% for LIP data and Z12.8% for behavioral data

for monkey Z; Fig. 4c). Moreover, LIP activity was correlated with
behavioral threshold across sessions after taking into account the
high-coherence errors (partial correlation ra; ðk3 lj Þ ¼ –0.42, H0:
r ¼ 0 using Fisher’s Z transformation, P o 10�5 for monkey C;
ra; ðk3 lj Þ ¼ –0.35, P o 0.01 for monkey Z; Fig. 5), but the converse
was not true; there was no correlation between high-coherence errors
and LIP activity after taking into account the changes in behavioral
threshold (rl(k37a) ¼ 0.05, P¼ 0.62 for monkey C; rl(k37a) ¼ �0.06,
P ¼ 0.60 for monkey Z).

The changes in sensory-driven LIP responses with training also did
not appear to reflect changes in other motor (Fig. 5, middle) or moti-
vational parameters (Fig. 5, right) known to modulate LIP activity21,22.
Some of these parameters changed with training, but none were consis-
tently correlated with the changes in LIP responsiveness over the course
of training for both monkeys (Fig. 5 and Supplementary Table 1).
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Comparison of behavioral, MT and LIP data during training

In trained monkeys, MT and LIP are thought to have different, but
complementary, roles in forming the direction decision; MT (possibly
in tandem with other motion-sensitive areas such as the middle
superior temporal area) provides sensory evidence used to form the
decision, whereas LIP (possibly in tandem with other sensory-
oculomotor areas such as the FEF and superior colliculus) accumulates
and interprets the sensory evidence to form the categorical judgment
that instructs behavior23. Our results suggest that the improvements in
behavioral sensitivity result from changes not in the sensory represen-
tation, but rather in its interpretation.

To test this idea and to more directly compare the MT, LIP and
behavioral data, we used a sequence of three nested models. The first
model describes the coherence-dependent sensory evidence and was fit
to the MT data. The second model builds on the first, describing the
accumulation over time of the sensory evidence into a decision
variable, and was fit to the LIP data. The third model builds on the
second, describing the monkey’s decisions in terms of the value of the
LIP decision variable, and was fit to the behavioral data29,32 (Fig. 6a).
The advantage of this scheme is that the MT, LIP and behavioral data
can be fit separately, but then compared directly via a term, common to
the three models, describing how the sensory evidence used to form the
decision scales with motion coherence (aMT, aLIP and abe in Fig. 6a).
For both monkeys, the value of this motion-sensitive term grew as a
function of training session in a similar manner for data from behavior
and LIP, but not from MT (monkey C: correlation coefficient between
MT and behavior, r ¼ 0.03, H0: r ¼ 0 using Fisher’s Z transformation,
P ¼ 0.79; LIP and behavior, r ¼ 0.59, P o 10�12; monkey Z: MT and
behavior, r ¼ –0.14, P ¼ 0.29; LIP and behavior, r ¼ 0.60, P o 10�9;
Fig. 6b,c). A straightforward interpretation of this result is that training

does not affect the representation of sensory
evidence in MT directly, but effectively scales
its output, providing increasingly sensitive
evidence to the decision variable in LIP used
to guide behavior.

Specificity of learning

Perceptual learning is typically specific to the
stimulus attributes used during training,

including motion direction in a direction-discrimination task33. This
phenomenon helps to distinguish perceptual learning from cognitive or
motor changes and has been used to argue that the underlying changes
occur at early stages of sensory processing2. For our task, the stimulus
configuration used in a given session depended on the characteristics of
the MT and/or LIP neuron(s) being recorded, and thus varied slightly
from session to session (a factor that can in itself affect the specificity of
learning34). We tested for the specificity of learning by analyzing
performance relative to the similarity of the current stimulus config-
uration to configurations used in previous sessions.

For both monkeys, discrimination performance depended on the
familiarity of the axis of motion (Fig. 7). For each session, we calculated
the difference between the motion sensitivity computed from beha-
vioral data (a in equation (4)) and its 21-session running average. This
quantity provides an estimate of discrimination performance relative to
its current trend; a positive value implies that the performance was
better than average, a negative value implies worse-than-average
performance. For both monkeys, the value of this quantity was
negatively correlated with the absolute z score of motion direction
(monkey C: correlation coefficients, r ¼ –0.39, H0: r ¼ 0 using Fisher’s
Z transformation, P o 10�7; monkey Z: r ¼ –0.49, P o 10�9),
indicating that performance tended to degrade when an unfamiliar
stimulus was used. This specificity for the axis of motion was mirrored
in neural activity in LIP (monkey C: r ¼ –0.37, P o 10–3; monkey Z:
r ¼ –0.29, P ¼ 0.02; Fig. 7b), but not in MT (monkey C: r ¼ 0.09,
P ¼ 0.54; monkey Z: r ¼ 0.22, P ¼ 0.21; Fig. 7b), which is consistent
with the idea that perceptual learning can be specific by virtue of
what is learned (in this case, the LIP decision variable) and need
not involve changes in the sensory representation (direction-selective
responses in area MT)3.
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DISCUSSION

Our results show that for monkeys trained to discriminate the direction
of motion of noisy visual stimuli, improvements in discrimination
threshold (that is, higher sensitivity to weak motion) corresponded to
changes in sensory-driven responses in area LIP, but not in MT. In MT,
individual neurons responded similarly to motion stimuli before and
throughout training, with, on average, a sensitivity that was similar to
that of trained monkeys. However, responses of the most sensitive MT
neurons became increasingly predictive of the monkeys’ choices with
training. In LIP, neurons tuned for saccadic direction were insensitive
to visual motion at the beginning of training, but developed responses
that grew in an increasingly strong manner with motion strength and
viewing time as performance on the task improved. The results suggest
that the perceptual improvements corresponded to an increasingly
selective readout of highly sensitive MT neurons by a decision process,
represented in LIP, that instructed the behavioral response.

Because the motion sensitivity of MT neurons probably arises from
their direct and indirect input from V1 (ref. 35), our results appear to
rule out learning-induced changes in V1. This finding is consistent with
electrophysiological studies in monkeys that found little or no changes
in V1 with perceptual learning7–9 (although larger effects have been

found in V1 of human subjects using functional magnetic resonance
imaging36) and provides additional evidence that the stimulus speci-
ficity of perceptual learning does not necessarily imply changes in
primary sensory cortex3,4. Our results also further distinguish early
visual cortical areas from primary somatosensory and auditory cor-
tices, which in both monkeys and humans can show marked changes
with perceptual learning5,6,37–39. We cannot rule out the possibility that
changes occurred in other parts of extrastriate visual cortex that carried
appropriate motion signals, such as the middle superior temporal
area40. Nevertheless, it is notable that we found no changes in MT
sensitivity over the course of training, despite the established role of
MT in task performance16–19, the increase in MT choice probabilities
with training (indicating an increasingly strong correspondence with
behavior) and the fact that our recording and analysis methods could
resolve within-session changes in MT sensitivity30 that were smaller in
magnitude than the longer-term changes that we would expect on the
basis of behavior.

The changes that we report for LIP complement and extend previous
findings. Learned sensory-motor associations have been shown to
correspond to changes in LIP, but not MT41,42. Consistent with those
findings, we found that motion-driven LIP responses appeared when
the monkeys learned the association between motion direction and
saccadic response. However, unlike previous studies, we showed that
both behavior and LIP responses continued to evolve well after the
visuomotor association was established, together reflecting improved
sensitivity to weak motion. These results support the possibility that
associative and perceptual learning might share common mechan-
isms4,43. Learning a stimulus-response association establishes func-
tional connectivity between neurons that represent the sensory
stimulus and neurons that control the motor response. Improvements
in perceptual sensitivity might then involve refinement of this con-
nectivity to provide a more selective readout of the most sensitive
sensory signals associated with that response. Our results are consistent
with such a refinement of direct or indirect ascending projections from
MT to LIP44, an idea that merits further testing.

We do not know the exact role that LIP has in task performance
throughout training. In trained monkeys, multiple brain areas includ-
ing LIP, the superior colliculus and parts of the prefrontal cortex,
including the FEF, show similar sensory-motor responses during the
performance of the discrimination task24,25,27,28. We do not know what,
if any, differences exist between the contributions of these brain areas to
task performance either during or after training. Moreover, LIP has a
multitude of cognitive and sensory-motor roles that could, in principle,
change during training and account for the changes in LIP responses
during motion viewing20–22. However, we found no evidence for such
modulation by numerous oculomotor and motivational parameters.
Instead, the sensory-driven LIP responses changed in a manner that
was consistent with a decision process that used increasingly sensitive
motion evidence to determine the saccadic choice. These decision
computations represented in LIP appear to be critical for the perfor-
mance of trained monkeys, an idea that is supported by a close
relationship between LIP responses and reaction times25 and the ability
to bias performance using electrical microstimulation of LIP26.
Additional work is needed to establish similarly strong links between
LIP activity, decision-making and behavior throughout training.

The results also further support a close relationship between learning
and attention12. Of the learning-induced changes that have been found
previously in V1, attentional modulation appears to have a primary
role8. Attentional modulation might likewise account for the slight
overall improvement in MT sensitivity in our data when comparing
sessions before and during training or, as in several other studies,
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within training sessions30,45. The changes in choice probabilities
in MT and motion-driven responses in LIP might also be thought of
in terms of improved attention to appropriate features of the motion
representation used to form the decision. This idea is parsimonious
with the widely reported role of LIP in spatial and feature-based
attention20,46 and the relationship between attention and perceptual
learning in other tasks12. It remains to be seen how general a role
this kind of mechanism has in different forms of perceptual learning,
which can have much different time courses47, attentional demands12

and magnitudes48.

METHODS
Behavioral task. The motion stimulus was a random-dot kinematogram that

has been described previously16,29. Motion direction, coherence and duration

(a random time between 0.1–1.4 s from an exponential distribution) were

varied randomly from trial to trial. Correct responses and half of the 0%

coherence trials elicited a juice reward of a variable amount (1–4 drops).

Incorrect responses were followed by a ‘time out’ period lasting 1–5 s. Task

difficulty was held relatively constant by adjusting the distributions of

coherences and viewing times to give a correct response rate of B70–80%

per session. This design kept the total reward per session roughly constant and

helped to keep the monkeys motivated throughout training. Eye position was

monitored using a video-based system (ASL) sampled at 240 Hz to enforce

fixation during motion viewing and register the saccadic response.

Electrophysiology. Monkeys were prepared for the experiments by surgical

implantation of a head-holding device and recording cylinders. Areas MT and

LIP were targeted using stereotaxic information and magnetic resonance

imaging (Fig. 1b). Neural activity was recorded using quartz-coated

platinum-tungsten microelectrodes that were advanced using two Mini Matrix

systems (Thomas Recording), one per recording cylinder. Spike waveforms

were stored and sorted offline (Plexon). All training, surgical and experimental

procedures were in accordance with the US National Institutes of Health Guide

for the Care and Use of Laboratory Animals and were approved by the

University of Pennsylvania Institutional Animal Care and Use Committee.

We searched for MT neurons with consistent spatial, direction and speed

tuning, measured using a 99.9% coherence stimulus (Supplementary Figs. 1

and 3). We searched for LIP neurons using a delayed-saccade task and selected

neurons with spatially tuned delay-period activity25 and response fields in

consistent locations (Supplementary Figs. 1 and 5).

Analysis of behavioral data. We fit behavioral data to a time-dependent

cumulative Weibull function in which the discrimination threshold is a power

function of time:

PðC;TÞ ¼ 0:5 + ð0:5 � lÞ � ð1 � e�
C

aTnð Þb Þ ð1Þ

where P is the discrimination performance at motion strength C (in percent

coherence) and viewing time T (in seconds), l is the fraction of errors

measured for stimuli of 99% coherence and viewing times 40.4 s, and with

fitted parameters a (threshold coherence at 1 s), n (time exponent) and b
(shape parameter).

Analysis of MTand LIP data. To quantify the effects of motion coherence and

viewing time on the responses of MT and LIP, we first normalized the responses

of each neuron:

r̂ðC;TÞ ¼ rðC;TÞ � rBL

r97:5 � rBL
ð2Þ

where r(C,T) is the difference between responses (in spikes s–1) at coherence C

and viewing time T to motion toward and away from the neuron’s preferred

direction (for MT) or preferred choice (for LIP), rBL is the average baseline

response (–0.2–0 s) before motion onset and r97.5 is the 97.5 percentile response

at 99.9% coherence preferred motion.

This normalized response (MT, from 0.1–1.0 s; LIP, from the beginning to

the end of the ramp activity, which were estimated by fitting a piecewise-linear

function, equation (6), to the neuron’s responses to 99.9% coherent motion)

was then fit to a simple linear model:

r̂ðC;TÞ ¼ k0 + k1C + k2T + k3CT ð3Þ

with parameters that describe the effect of coherence (k1), viewing time (k2)

and the coherence � time interaction (k3) on the neuron’s response.

In addition, we also computed the sensitivity (neurometric discrimination

threshold)16 and choice probability17 of each MT neuron. Sensitivity was

computed using a receiver-operating-characteristic analysis of distributions of

MT responses separated by motion direction, computed separately for each

motion strength and cumulative bins of viewing time from 0–1 s in 0.05-s

steps, and fit to equation (1). Choice probability was computed from the

distributions of MT responses to 0% coherence stimuli, separated by the

monkey’s choices.

Model of the decision variable. We modeled the decision variable as the

accumulated difference in activity between noisy pools of motion sensors tuned

to the correct (Sc) and incorrect (Si) directions of motion29:

hSci ¼ ðR0 + aCmÞTn

hSii ¼ R0T
n ð4Þ

where C is fraction coherence, T is viewing time (s), R0 is the response (in

spikes s–1) of MT neurons for 0% coherence, /SS denotes expectation, and a,

m and n are fitted parameters. We assume that Sc and Si are normally

distributed with variances that scale with their mean f ¼ VarðScÞ
hSci ¼ VarðSiÞ

hSii . A

correct response results when Sc 4 Si. If Sc and Si are independent and

normally distributed, then the probability of a correct response, P, is:

PðC;TÞ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2ps2

p
Z1

0

e
�ðx�mÞ2

2s2 dx ð5Þ

where m is the expected value of the accumulated difference, hSc � Sii ¼ hSci �
hSii and s2 is the sum of the variances of Sc and Si.

We used different versions of the model to estimate the coherence-

dependence of the decision variable (the parameter a in equation (4))

separately for the behavioral, MT and LIP data. For behavior, we fit equation

(5) to performance. For the MT data, we estimated the linear dependence of

preferred-null direction responses averaged over the full viewing duration,

consistent with the difference between the time-independent portions of hSci
and hSii. For LIP data, we fit

FðC;TÞ ¼
g ; if Tot
g + ðb0 + b1CÞðT � tÞ ; if T � t
b2 ; if FðC;TÞ4b2

8<
: ð6Þ

to the difference in activity between the neuron’s preferred and null choices,

letting b0, b1, b2, t and g be free parameters and reporting b1 as the coherence-

dependent parameter (equivalent to a in the behavioral model). These

estimates are expected to be offset from each other by an overall scale factor

because of different pooling assumptions; we fit data from individual MT

neurons, from individual LIP neurons that were assumed to pool from an

unknown number of MT neurons and from behavioral data assumed to reflect

both MT and LIP contributions (note the different axes in Fig. 6 for behavioral

and neural data). Nevertheless, these fits are useful for comparing how each

estimate changes with training.

Note: Supplementary information is available on the Nature Neuroscience website.
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