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Neural Data-Driven Musculoskeletal Modeling for
Personalized Neurorehabilitation Technologies
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Abstract—Objectives: The development of neurorehabilitation
technologies requires the profound understanding of the mecha-
nisms underlying an individual’s motor ability and impairment. A
major factor limiting this understanding is the difficulty of bridging
between events taking place at the neurophysiologic level (i.e., mo-
tor neuron firings) with those emerging at the musculoskeletal level
(i.e. joint actuation), in vivo in the intact moving human. This re-
view presents emerging model-based methodologies for filling this
gap that are promising for developing clinically viable technologies.
Methods: We provide a design overview of musculoskeletal mod-
eling formulations driven by recordings of neuromuscular activity
with a critical comparison to alternative model-free approaches
in the context of neurorehabilitation technologies. We present ad-
vanced electromyography-based techniques for interfacing with
the human nervous system and model-based techniques for trans-
lating the extracted neural information into estimates of motor
function. Results: We introduce representative application areas
where modeling is relevant for accessing neuromuscular variables
that could not be measured experimentally. We then show how
these variables are used for designing personalized rehabilitation
interventions, biologically inspired limbs, and human-machine
interfaces. Conclusion: The ability of using electrophysiological
recordings to inform biomechanical models enables accessing a
broader range of neuromechanical variables than analyzing elec-
trophysiological data or movement data individually. This enables
understanding the neuromechanical interplay underlying in vivo
movement function, pathology, and robot-assisted motor recovery.
Significance: Filling the gap between our understandings of move-
ment neural and mechanical functions is central for addressing
one of the major challenges in neurorehabilitation: personalizing
current technologies and interventions to an individual’s anatomy
and impairment.

Index Terms—Electromyography (EMG), musculoskeletal mod-
eling, neural recordings, neurorehabilitation technologies, wear-

able robots.

UMAN movement underlies interaction and coordination
H across the nervous, the muscular, and the skeletal systems
[1]-[3] (see Fig. 1). Neural structures such as spinal motor neu-
rons are ultimately recruited to produce mechanical forces [4],
[5]. Our understanding of human movement is still challenged
by the difficulty of studying in vivo neural activity together with
the resulting mechanical function elicited at the musculoskeletal
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Fig. 1. Synaptic inputs ultimately converge to pools of spinal motor neurons,
whose spike trains trigger the innervated muscles. Spatiotemporally superposed
muscle fiber action potentials result in EMGs with mechanical force produced
after the electromechanical delay (EMD). Modeling formulations that recon-
struct the subject-specific neuromusculoskeletal pathway can enhance our un-
derstanding of human movement and open up to novel HMIs. The short and
stable muscle EMD compared to the larger and unstable corticomuscular delays
make muscle electrophysiological recordings ideal for HMIs (see Section III-
A). The EMD is sufficiently large (10 — 80 ms) to enable models to predict the
intended movement from EMGs and sufficiently consistent to be considered as
a hard real-time deadline for the assistive device control. Meeting this deadline
within an HMI would ensure the assistive device to be actuated synchronously
with the user’s muscle mechanical function.

level. Filling the gap between movement neural and mechani-
cal functions is crucial for unraveling the subject-specific motor
strategies that allow the composite neuromusculoskeletal sys-
tem to operate across conditions such as motor tasks, training
levels, impairments or pathologies. Understanding the mecha-
nisms underlying an individual’s neuromusculoskeletal function
is central for addressing one of the major challenges in the field
of neurorehabilitation technologies: personalizing the design of
the assistive device, the human—-machine interface (HMI), and
the rehabilitation intervention to a specific patient’s anatomy
and impairment.

The neural processing underlying movement encompasses
a number of stages at various levels of the nervous system,
i.e., cortical and spinal. The resultant synaptic inputs ultimately
converge to pools of spinal motor neurons, which perform the
final neural processing step: transmitting the cumulative neural
drive to the muscular level [3]. The combination of a motor
neuron and its innervated muscle fibers form a functional unit,
called “the motor unit.” This unit is the interface between the
neural and the muscular levels and contributes to transduce
neural inputs into mechanical outputs, i.e., motor neuron action
potentials directly result in muscle fiber action potentials and,
therefore, in mechanical force (see Fig. 1) [3].

The neural drive to muscles—the ensemble of action poten-
tials of all active motor neurons—ultimately controls multiple
musculotendon units (MTUs)—ensembles of muscle fibers and

. For more information, see http://creativecommons.org/licenses/by/3.0/
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series elastic tendons. MTUs operate under neurophysiological
constraints and transfer mechanical force to skeletal structures
and degrees of freedom (DOFs) [6]-[9]. The transformations
involved are highly nonlinear (see Fig. 1). For the same neural
command to a muscle, the force and moments transferred to
the skeletal system can differ as a function of the muscle state,
including fiber length, contraction velocity, or fatigue [2], [10].
In this context, solving for the forces produced in the muscu-
loskeletal system is an undetermined problem. There are more
muscles than joint DOFs, so that an individual can use a vari-
ety of muscle recruitment strategies to produce the same joint
moment and angle [2].

Establishing relationships between movement neural and me-
chanical functions is a complex long-standing problem. This
challenge has been addressed using model-free machine learn-
ing approaches where all the transformations between given ex-
perimental variables, such as muscle electromyograms (EMG)
and joint angles, are absorbed into a single transfer function
or nonlinear mapping [11]. An alternative approach is that of
neuromusculoskeletal modeling, which characterizes each in-
termediate transformation by simulating the dynamic interplay
between the nervous, the muscular, and the skeletal systems
[61-[8].

Neurorehabilitation interventions require clinically viable in-
terfaces with the patient’s nervous system and patient-specific
mappings to the intended movement for effectively replacing
or restoring the lost motor capacity. Muscle EMGs currently
represent the only clinically viable solution for indirectly inter-
facing with the nervous system in patients, at least in the short to
midterm. Invasive recording techniques from nerves and brain
areas are currently limited mainly to academic scenarios [12]-
[14]. Due to the strong synaptic connection between a motor
neuron and the innervated fibers, muscle fibers action potentials
(mixed in the EMG signal) represent the biologically amplified
version of motor neuron action potentials. Therefore, muscles
can be seen as biological amplifiers of the synaptic input con-
verging to the motor neuron pools (see Fig. 1). Surgical proce-
dures such as targeted muscle reinnervation (TMR) [15] have
further highlighted this concept. TMR is applied to individuals
with proximal amputations (i.e., glenohumeral or transhumeral
levels), where residual nerves that used to control distal mus-
cles and DOFs are rerouted to residual proximal muscles, i.e.,
pectoral and dorsal muscles. In this scenario, the muscle is no
longer used because of its mechanical function but solely for
its ability of amplifying nerve signals associated to the function
of the amputee’s phantom limb. The amplified nerve signals are
viably recorded via the reinnervated muscle EMGs [16], [17].

This paper aims to discuss clinically viable methods for ex-
tracting neural information from electrophysiological record-
ings and the development of subject-specific musculoskeletal
modeling formulations that can be driven by such recordings.
We will refer to this specific modeling class as to “neural
data-driven musculoskeletal modeling.” The review discusses
how this modeling approach can be used for understanding the
function of the human neuromusculoskeletal system in vivo in
the intact moving human with emphasis on the applications
that this can have in the context of neurorehabilitation and
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Fig. 2.  Model-free approach first necessitates a learning step (A-1) where a
mapping function is established between two given variables using for instance
regression analysis. Only after the mapping is created (A-1), prediction of one
variable as a function of the other (A-2) can be done. In the model-based ap-
proach, the analytical model can inherently predict “variable 2” as a function
of “variable 1” (B-1). Prediction may be further improved by adjusting internal
parameters as part of the parameter identification step (see B-2, Section 1V).
This is a closed-loop formulation where the model predictions (B-1) are con-
tinuously refined (or controlled) by model’s internal parameters adjustments
(B-2). The model-free approach does not rely on this closed-loop formulation,
i.e., regression (A-1) and prediction (A-2) are two distinct and sequential steps.

augmentation technologies. Despite the advances in the field,
important challenges exist for translating EMG and model-based
approaches to pathological populations and to the development
of personalized and intuitive HMIs. Section II presents and com-
pares model-free and model-based methodologies for linking
between movement neural and mechanical function. Section III
outlines how surface EMG can be recorded, processed, and used
for interfacing with the human nervous system. Furthermore, it
introduces techniques for recording and processing movement
data and for establishing subject-specific musculoskeletal mod-
els. Section IV focuses on modeling techniques that use neural
information extracted from EMG data to drive musculoskeletal
plants. Section V describes how model-based methods can be
employed to access internal neuromuscular variables that could
not be viably measured experimentally (i.e., muscle force, joint
moment, bone-to-bone compressive force, or joint stiffness) and
use them for designing personalized assistive devices and HMIs.
Sections VI and VII provide discussion and concluding remarks,
respectively.

II. PREDICTING FUNCTION FROM NEURAL SIGNALS

Human movement is typically explored via experimental
recordings reflecting neuromuscular and mechanical variables,
e.g., electroencephalograms, EMGs, foot-ground reaction
forces (GRFs), segmental body kinematics, or muscle ultra-
sound images [2], [3]. However, the sole observation and
analysis of experimental data does not allow establishing a di-
rect cause-effect relationships across movement variables [18].
Relations between observed variables can be generally identi-
fied using two approaches: the model-free and the model-based
approach. Both approaches undergo learning and prediction
steps, whose structure and differences are depicted in Fig. 2.

A. Model-Free Approach

Given experimental observations of the variables of interest,
the model-free approach uses machine learning for approximat-



SARTORI et al.: NEURAL DATA-DRIVEN MUSCULOSKELETAL MODELING FOR PERSONALIZED NEUROREHABILITATION 881

ing a numerical function that maps between these variables [see
Fig. 2(A)], i.e., from EMGs to joint angles. The mapping func-
tion can be approximated by combination of basis functions
that can range from linear to polynomial and from exponential
to Gaussian. Alternatively, artificial neural networks (ANNs)
can be used for identifying mapping functions with no need for
a specific basis of functions.

ANNSs have been successfully used to approximate a vari-
ety of functional relationships underlying animal and human
movement, i.e., from EMG to tendon forces in the cat soleus
and gastrocnemious muscles [19], [20], to joint moments and
joint angles, in the human lower extremity during locomotion
[21]. Linear and nonlinear regression has also been used to es-
tablish functional relationships between EMG signals and wrist
joint angles [22]-[24] as well as hand kinematics [24], [25]. In
non-human primates, machine learning techniques have been
frequently used to establish relationships between population of
neurons experimentally recorded in the brain motor, premotor or
parietal cortexes, and the final hand grasping action [26]-[28].

In the model-free approaches, functional relationships are
established without explicit equations modeling the underlying
neuromechanical processes. Therefore, the model-free approach
is essentially a black box where all intermediate functional rela-
tionships between the observed experimental variables are not
explicitly modeled but rather included into a macroscopic trans-
fer function [see Fig. 2(A)]. This also represents the main lim-
itation of this approach. Functional relationships learned in a
specific condition, or regime, may not generalize to novel con-
ditions, as shown previously [11], [20], [29], [30]. This may be
related to the fact that a single macroscopic nonlinear transfer
function may not be sufficient for capturing the complexity of
the several intermediate nonlinear components existing between
the observed variables. In this context, the more complex the re-
gression map, the more it will overfit the data with resulting lack
of generalization (i.e., classic overfitting problem).

Model-free methods do not enable direct understanding of the
mechanisms underlying the observed variables. For instance, if
EMGs are mapped into joint angles, a model-free approach
does not reveal how limb movement emerges from individual’s
muscle coordination and function. Joint actuation from each
spanning MTU can come from the series-elastic tendon or from
the active muscle fibers [10]. The mechanism of load sharing
between muscles and how this results into joint kinematics is
not revealed by the model-free approach.

B. Model-Based Approach

The model-based approach analytically defines each constitu-
tive unit and functional relationships between the observed vari-
ables [see Figs. 1 and 2(B)]. In the context of human movement,
constitutive units can refer to neurophysiological and muscu-
loskeletal components such as motor neurons, muscle fibers,
series-elastic tendons, articular joints, or anatomical limbs. On
the other hand, functional relationships define the way in which
each constitutive unit converts input variables into output vari-
ables (see Fig. 1). Transformations, such as those from muscle
force to joint acceleration, are described by analytical formu-
lations with unknown parameters, i.e., the moment arm matrix

(i.e., from muscle force to joint moment) or moment of inertia
(i.e., from joint moment to joint acceleration).

Models of the composite neuromusculoskeletal system have
been proposed in which the contribution of individual MTUs to
joint actuation is resolved by using optimization. In these mod-
els, muscles are recruited according to the predefined optimiza-
tion criteria such as minimizing the sum of squared muscle acti-
vations, so that the emerging muscle-actuated movement tracks
experimental joint mechanics [31]-[33], or shows agreement
with joint mechanics normative values [34], with additional con-
trol objectives such as minimal metabolic cost of transport [35].
Alternative methods have been proposed in which the contribu-
tion of individual MTUs to joint actuation and whole-body loco-
motion is resolved by solely modeling muscle and spinal reflexes
[9], [36] and by optimizing muscle—tendon control parameters to
minimize the metabolic cost at different locomotion conditions
[37]. Models based on networks of spiking motor, sensory, and
interneurons have been recently used for the control of simple
single-joint musculoskeletal models during postural tasks [38],
[39]. Models of the animal and insect nervous system have been
proposed that simulate the role of spinal central pattern gener-
ating networks in the control of muscle recruitment rhythm and
in the coordination of left-right movements [40]-[42]. Compre-
hensive modeling formulations have been proposed that simu-
late the interaction between central pattern generating networks
in the nervous systems with local feedback from sensory neu-
rons encoding kinematic and dynamic information generated at
the musculoskeletal level [43]-[45].

These are fully predictive modeling formulations that sim-
ulate how neural structures interact with the musculoskeletal
plant and enable predicting emerging motor behaviors in
unknown/unmeasured scenarios. Although current neuro-
musculoskeletal models provide a valuable position for the
computational investigation of neuromuscular strategies [46],
[47], an individual’s neuromusculoskeletal function (i.e., neu-
ronal interaction, motor unit recruitment, musculoskeletal force
production) is highly variable across motor tasks [48]-[50],
pathology [51]-[53], or training [54], [55]. Differences in
neuromusculoskeletal function occur across individuals [56]
but even within the same person [49], [50]. This limits current
models’ ability of producing valid and realistic neurome-
chanical predictions that can account for conditions including
neuromuscular deficits, orthopedic impairment or an individ-
ual’s neuromusculoskeletal response to neurorehabilitation
interventions or external assistive devices [57], [58].

Muscle electrophysiological recordings (i.e., EMG) in con-
junction with advanced processing techniques can be used to
gain experimental access to the neural information underlying
an individual’s movement (see Section III-A) [1]. This enables
deriving experimental estimates of subject-specific and context-
dependent neuromuscular strategies with no direct need for cre-
ating numerical models of these. In this scenario, EMG estimates
of neuromuscular excitations have been used to drive neuromus-
culoskeletal models during a variety of dynamic motor tasks as
well as neuromuscular [59], [60] and orthopedic conditions [51],
[61]-[63] and predict a range of neuromuscular variables in-
cluding: muscle forces [51], [64], [65], joint moments [6], [S1],
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Fig. 3.  Movement data are collected from the moving subject (see A, Sec-
tion III). Retroreflective markers are placed on the human segments and their
3-D positions are tracked using optical motion capture cameras with sampling
rates typically between 50 and 250 Hz depending on the dynamic of the mo-
tor task [2]. GRFs are recorded (2 KHz) using in-ground force plates. Marker
trajectories and GRFs data are low-pass filtered with the same zero-phase filter
and cut off frequency in order to preserve dynamic consistency across data. Raw
EMG signals are processed (B) to extract neural excitation estimates including:
linear envelopes (blue curves in B), lower-dimensional synergy modules (green
Gaussian primitives and weighting coefficient in B), or the EMG constituent
motor unit discharge events (red impulses in B). Reflective marker trajectories
during static poses are used to scale a musculoskeletal template (C). The scaled
model is used to extract joint angles (D) and moments (E) using IK and ID or
direct sensor recordings. Joint angles and neural excitation estimates are used to
drive the neural data-driven model (F). The model’s parameters are calibrated
to an individual (G) using identification methods (see Section IV). Validation
is done (G) on the model’s ability of blindly predicting experimental data (i.e.,
joint moments, compressive forces, angles, etc.) during novel trials.

[65]-[67], joint compressive forces [68]-[70], joint stiffness
[71]-[73], joint angles [74], and metabolic energy consumption
[75]. In the reminder of this review, we will put emphasis on this
specific class of modeling formulations, referred to as “neural
data-driven musculoskeletal modeling” (see Section I).

In general, the model-based approach is directly limited by
uncertainties arising from the fact that we cannot always mea-
sure internal physiological parameters or rely on the existence of
“proven laws” that accurately describe the dynamics of the con-
stitutive units and functional transformations involved. Often,
such units and transformations are built upon hypotheses, rather
than laws. In this context, model estimation-detection theory is
used to identify the unknown model parameters [see Section IV,
Fig. 2(B)] [11].

III. DATA COLLECTION

Subject-specific neural data-driven musculoskeletal models
can be established from experimental data that typically include
EMG, joint kinematics, and joint dynamics [see Fig. 3(A)] [76].

A. Extracting Neural Information From the Surface EMG

Surface EMGs contain information on the ensemble of spike
trains discharged by motor units (see Fig. 1). Direct or indirect
estimates of this information will be termed in the reminder of
this paper as “neural excitation” [see Fig. 3(B)]. This section
covers methods for extracting neural excitations from multi-
muscle EMGs, from low-dimensional approximations of these,
and from the EMG constituent motor unit action potentials.
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Estimates of neural excitations are conventionally derived
from the intensity (i.e., amplitude) of surface EMG [77]. Raw
EMG signals need to be demodulated to recover amplitude infor-
mation proportionally to the neural drive to the muscle [78]. For
this purpose, raw EMGs are sampled (typically at 1000 Hz) and
high-pass filtered to remove low-frequency noise. The cutting
frequencies can largely vary between 10 and 250 Hz with higher
cut off frequencies being suggested to better represent the con-
tribution of distant motor units to the EMG amplitude [79]. The
resulting signal is full-wave rectified and low-pass filtered (2 —
6 Hz) [7], [79], [80]. Low-pass filtering is performed because
muscle force operates with lower dynamics (i.e., it has a smaller
bandwidth) than the high-pass filtered and rectified EMG sig-
nal. This is a common feature of mechanical motors and in
biological actuators, such as muscles, it reflects the dynamics
of electrochemical transformations including calcium dynamic,
limits in the propagation velocity of fiber action potentials, and
muscle—tendon viscoelasticity [2], [3], [8]. Therefore, low-pass
filtering enables better correlating the resulting EMG-linear en-
velope to muscle force. This aspect was further confirmed at the
level of motor units showing that the low-frequency oscillations
in the motor output from the spinal cord best correlates with
the overall force produced by the muscle [81]. EMG-linear en-
velopes are then normalized with respect to the peak-processed
values obtained from maximal voluntary contractions or across
entire sets of recorded dynamic trials [see Fig. 3(B)]. Obtaining
true EMG maxima from maximal voluntary efforts is a critical
step and a source of uncertainties [3].

An alternative to classic filtering for EMG amplitude esti-
mation is the Bayesian filtering, such as Kalman filtering [82],
particle filtering [83] or Gaussian process regression models
[84]. Recursive Bayesian filters can be used to estimate in real
time the state of a dynamic system, i.e., surface EMG ampli-
tude (state) in a specific muscle (system) [85]. These filters
are based on probabilistic prediction and observation models
and are learned from a set of training data. In the learning
step, the probability distribution used to solve for the Bayes
theorem is identified and used to subsequently estimate the
EMG amplitude. The advantage of these filters is that the cut
off frequency does not need to be explicitly defined a priori,
but is dynamically determined based on the models learned
on the training data. This enables a tradeoff between smooth-
ness of estimates and the ability of predicting rapid amplitude
changes in the extracted envelope [84], [85]. EMG amplitude
estimation via classic or Bayesian filtering is the most com-
mon approach for extracting neural excitation estimates and for
generating control commands for subsequent modeling stages
(see Section IV, Fig. 3). These methods assume that the es-
timated EMG amplitude is linearly proportional to the actual
motor unit firings. This assumption is, however, not fully met
because of several sources of uncertainty including electrode
placement, detection volume, and motor unit action potential
superimposition.

Recently, other approaches have emerged that enable extract-
ing EMG features that better reflect the muscle neural excita-
tion, either at the macroscale (i.e., muscle synergies) or at the
microscale (i.e., motor units). In this scenario, unsupervised
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learning techniques are used to extract linear [86]-[89] or non-
linear [90], [91] approximations of the structure and statistical
distribution underlying the patterns of multimuscle EMGs [see
Fig.3(B)]. Linear approximations of low dimensionality give the
possibility of capturing the elementary modules (or synergies)
of multimuscle coexcitation that are descriptive of a specific
regime or motor condition. Increasing experimental evidence is
supporting the hypotheses that EMG-extracted synergies well
represent the neural coordinative structures, explicitly encoded
in the human nervous system, that are used to reduce the compu-
tational burden in the neuromuscular control of complex motor
tasks [92]-[94]. Synergies can be extracted using methods such
as principal component analysis [95], independent component
analysis [96], or non-negative factorization [86], [97]. The ex-
tracted synergies can well describe the statistical distribution
of muscle excitations and account for their variability. Impor-
tantly, they can be used to synthetize the process of muscle
recruitment under specific regimes and enable driving muscu-
loskeletal models with a small number, or without, experimental
EMG data [see Fig. 5(B)] [98]-[100].

Nonlinear transformations of EMG signals give the possibil-
ity of identifying the underlying processes responsible for the
generation of the surface EMG. These methods include blind-
source separation [90], [101] and Bayesian decomposition [91]
of high-density multichannel EMG signals. Blind-source sepa-
ration is now an established powerful approach for decomposing
the EMG signal into the constituent motor unit activity and for
resolving the inherent problem of motor unit action potential su-
perposition [see Fig. 3(B)] [101]. This relies on a mathematical
convolution model with additive noise that describes the mix-
ing process of motor unit action potentials and spike trains in
the generation of the interference EMG signal [102]. Once the
mixing model is established, the inverse model can be applied
to experimentally recorded EMGs, thus enabling mapping from
experimental (mixed) EMG data to (unmixed) motor unit spike
trains [see Fig. 5(B)] and action potentials. In this scenario, the
possibility of recording high-density EMG signals, typically us-
ing two-dimensional (2-D) grids of densely located electrodes,
substantially increases the number of detectable motor units
with respect to recordings based on nondense electrodes [101],
[103], [104].

High-density EMG and decomposition provide experimental
access to motor unit spiking events, which corresponds to those
produced by spinal motor neurons [1]. This is central for inves-
tigating motor control strategies and motor unit morphological
and functional properties, as well as their adaptation to condi-
tions such as pathology, fatigue, pain or exercise. Importantly,
this directly addresses uncertainties in current EMG amplitude
estimation techniques with profound implications for realizing
myoelectric HMIs.

The signal processing methods presented in this section pro-
vide experimental access to neural information in vivo in the
intact moving human. This approach is particularly powerful
when combined with musculoskeletal modeling formulations
(i.e., neural data-driven modeling, Section IV), thus enabling
personalized neurorehabilitation treatments and HMIs (see
Section V).

B. Kinematics and Kinetics of the Human Skeletal System

Stereophotogrammetry in conjunction with models of the hu-
man skeletal mechanics [HSM, Fig. 3(D), (E)] represent the
gold-standard solution for deriving the mechanics of anatom-
ical joints and limbs [2]. Retroreflective markers and GRFs
are recorded and processed as described in Fig. 3. The HSM
model numerically represents anatomical segments (i.e., limbs)
interconnected by joints, influenced by forces (i.e., GRFs), and
subject to constraints (i.e., joint range of motion) [105]. Compu-
tationally efficient implementations treat anatomical segments
as rigid bodies that do not undergo deformation when force
is exerted on them [106]-[108]. Subject-specific HSM mod-
els are created from medical imaging data of bone and muscle
surfaces, such as magnetic resonance imaging (MRI) or com-
puted tomography [109]. Freely available software packages
such as the Musculoskeletal Atlas Project Client! [110] and
NMS Builder? [111] enable rapidly generating detailed 3-D
models using image fusion, segmentation, and mesh generation
methods.

However, subject-specific HSM models are most commonly
created using HSM templates further scaled to match the in-
dividual’s anthropometry [see Fig. 3(C). These templates are
obtained from data averaged across a large number of cadav-
eric specimens. They have the disadvantage of not accounting
for subject-specific bone and muscle geometry, which might
be particularly important to capture features of pathological
populations. However, they have the advantage of enabling the
application of musculoskeletal modeling to any subject whether
or not medical imaging data are available to begin with. This
is important in the context of neurorehabilitation technologies.
Scaling the HSM template to an individual’s anthropometry is
done based on the marker trajectories recorded during a sub-
ject’s static standing pose [see Fig. 3(C)] [112]. In this process,
the mass properties of the subject are also proportionally ad-
justed in order to match the subject’s total measured mass. The
scaled HSM model is then used to reconstruct the 3-D joint
angles and moments based on the marker trajectories and GRFs
recorded during dynamic motor tasks by solving inverse kine-
matics [IK, Fig. 3(D)] and inverse dynamics [ID, Fig. 3(E)], re-
spectively. The steps described in this section can be performed
using the modeling software package OpenSim® [112]. Addi-
tional software packages include AnyBody* and Biomechanics
of Bodies.’

The methods so far presented rely on nonportable in-ground
force plates and multicamera systems. These are not easily
applicable in the context of neurorehabilitation or augmentation
technologies, which often require fully wearable solutions. In
this context, the mechanics of human skeletal joints can be mea-
sured using wearable angle and force sensors located in the cor-
respondence of a specific joint center of rotation [see Fig. 3(A)].
However, human joints do not have, in general, fixed centers of

Uhttps://map-client.readthedocs.org/.
Zhttps://simtk.org/home/subspecmodeling.
3http://opensim.stanford.edu/.
“http://www.anybodytech.com/.
Shttp://www.prosim.co.uk/BoB/.
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rotation nor orthogonal axes [2], [113], [114]. Furthermore, the
morphology of human segments largely varies across individ-
uals [2], [115]. These factors limit the ability of current tech-
nology to directly measure accurate joint dynamics [116]. The
combination of wearable sensors such as inertial measurement
units and insole pressure sensors with model-based IK and
ID techniques may provide fully portable solutions capable of
extracting accurate joint dynamics estimates with no substan-
tial loss of accuracy with respect to gold-standard methods
[117]-[119].

C. Kinematics of the Human Muscular System

From the imaging data used to create skeletal bone and joint
representations (see Section III-C), the origin and insertion
points of selected MTUs can also be segmented [109]. The
shortest line segment connecting the MTU origin and insertion
points via muscle-to-bone wrapping points is typically used to
represent the geometry of fibers in series with tendons as a
unidimensional wire-like path [109]. This has been shown to
accurately represent the kinematics (i.e., length, velocity, and
moment arms) of MTUs, both in the upper [120] and lower
[121] extremities. Alternatively, finite element modeling can
be used to create 3-D volumetric muscle representation from
muscle imaging data [122]-[124]. However, these methods are
typically associated with large computational costs that increase
with the volumetric surface to be represented.

The MTU kinematics derived from 3-D musculoskele-
tal models can then be synthetized into simpler surrogate
models using computationally inexpensive structures such
as multidimensional cubic B-splines [125], or polynomials
[126] that operate as a function of joint angles. Spline-based
estimates of MTU kinematics were recently used to simulate
musculoskeletal kinematics in real time on embedded systems
with limited computing capacities with no need for simulating
complex 3-D skeletal and muscular geometries [64], [127].

IV. NEURAL DATA-DRIVEN MUSCULOSKELETAL MODELING

Current sensing and modeling technologies provide solutions
for recording muscle EMGs (see Section III-A), joint kinemat-
ics and kinetics (see Section III-B), and MTU kinematics (see
Section III-C). These sensing and modeling steps can now be
performed in real time using fully wearable technology, which is
an important prerequisite for neurorehabilitation technologies.
However, in order to determine the force produced by the mus-
culoskeletal system, it is necessary to account for how muscles
are neurally recruited and how they transfer force around mul-
tiple joints. To address this problem, EMG estimates of neural
information [see Section III-A, Fig. 3(B)] and joint kinematics
can be used within a computational framework that includes
models of muscle neural activation, kinematics, contraction dy-
namics, and joint mechanics (see Fig. 4). Open-source toolboxes
such as CEINMS® [128] or EMG-FE’ [129] are currently avail-

Shttps://simtk.org/home/ceinms.
http://www.peb.ufrj.br/docentes/Luciano/EMG-FE.htm.
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Fig. 4. Schematic structure of the open-loop neural data-driven modeling
formulation. Estimates of neural excitations are derived from raw EMG data
typically as linear envelopes, low-dimensional synergy modules, or motor unit
spike trains [see Section III-A, Fig. 3(B)]. The neural activation component
(A) converts input neural excitations into neural activation using a second order
muscle twitch model and a nonlinear transfer function [65], [98]. The MTU kine-
matics component (B) synthetizes the MTU paths defined in the subject-specific
geometry model (see Section ITI-C) into a set of MTU-specific multidimensional
cubic B-splines. Each B-spline computes MTU length and moment arms as a
function of input joint angles [125]. The MTU dynamics component (C) solves
for the dynamic equilibrium between muscle fibers and series elastic tendons in
the production of MTU force [7], [176]. It employs a Hill-type muscle model
informed by MTU length and neural activations from the previous two compo-
nents. The joint dynamics component (D) transfers MTU forces to the skeletal
joint level using MTU moment arms. In the offline calibration component (E)
initial nominal parameters are repeatedly refined, as part of a least-squares op-
timization procedure, so that the mismatch between model’s predicted joint
function and the experimentally recorded joint function is minimized [7], [8],
[65].

able that may boost the adoption and development of these
techniques.

A. Structure

Neural data-driven musculoskeletal models typically com-
prise five main components as depicted and described in
Fig. 4 [6]-[8], [64], [65], [72], [98], [125]. Experimental EMG
recordings are processed to extract estimates of neural excita-
tion typically including: EMG-linear envelopes, neuromuscular
synergies or motor neuron spike trains (see Section III-A,
Fig. 3). The model [see Fig. 4(A) — (D)] is initially calibrated
[see Fig. 4(E)] to identify internal parameters that vary nonlin-
early across subjects because of anatomical, physiological, or
pathological differences. These typically include: muscle twitch
activation/deactivation time constants, excitation-to-activation
nonlinearity factor, muscle optimal fiber length, tendon slack
length, and muscle maximal isometric force. The calibrated
model takes experimental joint angles and neural excitation
estimates as input and computes all transformations that lead
to muscle and joint function. In this way, MTU forces can be
translated into joint moments [65], joint contact forces [68],
[70], [130], joint ligament forces [131], isometric short-range
stiffness [71], [132], and recently into dynamic joint stiffness
[see Fig. 5(C)] [72].

Human models have been validated at the level of joint kine-
matics from IK [74] or fluoroscopy [61], [123], joint moments
from ID [see Fig. 5(C)] [7], [8], [65], in vivo joint contact forces
from individuals with force-measuring joint replacements [see
Fig. 5(C)] [68], [130], [133], joint stiffness from joint pertur-
bation and system-identification techniques [71], [72], [132],
in vitro knee joint ligament loadings [61], and muscle fascicle
and tendon kinematics from ultrasound [134].
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Fig. 5. (A) Experimental linear envelopes (exp. EMG) and those minimally

adjusted (adj. EMG) using the closed-loop formulation (see Section IV-B) [6],
for representative muscles including biceps femoris (bicfemlh), semitendinosus
(semiten), soleus (sol), gastrocnemius lateralis (gaslat), vastus medialis/lateralis
(vasmed/vaslat), iliacus, and psoas. Note the closed-loop formulation ability of
synthetizing iliacus and psoas excitations for which no EMG data was available
[6]. (B) Cumulative spike train decomposed from the soleus high-density-EMG
during 60% maximal voluntary contraction (left, red vertical bars), reconstructed
muscle activation (left) and nonlinear force transfer on the tendon (right).
(C) Knee moments estimated during locomotion using exp. EMG, adj. EMG,
and muscle primitives (see Section III-A, left) [6], [65], [98] with reference
values from IDs. In vivo and predicted tibiofemoral contact forces using an
EMG-driven open-loop formulation (see Section IV-B) based on three different
offline calibrations (calibl — 3, center) [68]. Values are expressed in body weight
multiples (xBW). Knee joint dynamic stiffness estimated using an open-loop
formulation (see right, Section IV-B) [72].

B. Open-Loop and Closed-Loop Formulations

The calibrated model can be operated as a part of an open-
loop formulation (see Fig. 4) [7], [65], [98]. This is a “pre-
dictive formulation,” where neural excitation estimates directly
drive MTUs to compute the resulting joint mechanical func-
tion blindly, i.e., with no tracking mechanism that accounts for
prediction errors [see Fig. 5(C)]. This calibrated open-loop for-
mulation can be generalized into a closed-loop formulation, also
regarded as a “tracking formulation” [6]. This was recently pro-
posed to account for uncertainties in neural excitation estimated
as EMGe-linear envelopes including cross-talk, processing arti-
facts, and the inability of recording surface EMG from deep
muscles. These are factors that may limit the open-loop model
ability of matching experimental multijoint moments precisely
[see Fig. 5(C)] [6]. To account for them, the calibrated open-
loop modeling formulation (see Fig. 4) is coupled with a static
optimization block [31]. The resulting model allows extracting
neural excitations by balancing information from experimental
EMG-linear envelopes and those derived from static optimiza-
tion solutions.

It was recently shown that a minimal adjustment of exper-
imental EMGe-linear envelopes (i.e., root-mean-squared error
< 5%), in conjunction with the static optimization solution for
the hip flexing iliopsoas MTU, was sufficient to precisely track
experimental multi-DOF joint moments during walking and run-
ning, with substantial improvement with respect to open-loop
formulations. Importantly, this also allowed characterizing the
dynamics of joints such as the hip for which the major flexors
(i.e.,iliacus and psoas MTU) are deeply located and inaccessible
via surface EMG [see Fig. 5(A)] [6]. This provided for the first

time simulations that were consistent with muscle electrophysi-
ological activity [see Fig. 5(A)] and with movement mechanics
[see Fig. 5(O)].

C. Establishing Neuromechanical Functional Relationships

Once the subject-specific neural data-driven model has been
built, it allows establishing functional relationships between
movement neuromuscular and musculoskeletal function. Mod-
els of the human musculoskeletal system have been driven by
experimental [7], [8], [65], [66], [135] and minimally adjusted
[6] EMG-linear envelopes [see Fig. 5(A)], synergistic modules
of muscle coactivation [see Fig. 3(B)] [98], [136], as well as
using motor unit spike trains [see Fig. 5(B)] [38], [39]. This
enables estimating how neurally recruited muscles contribute
to generate mechanical forces [see Fig. 5(B)] and how these
project to the joint [see Fig. 5(C)]. This provides direct cause-
effect relationships and enables what-if analyses between neural
input and mechanical output (see Fig. 5), i.e., investigating how
in vivo joint stiffness varies with in vivo muscle coactivation for
instance [see Fig. 5(C)].

V. APPLICATIONS TO NEUROREHABILITATION TECHNOLOGIES

In the reminder of this section, we will present examples of ap-
plication areas where neuromusculoskeletal modeling is highly
relevant for establishing HMIs and for characterizing the dy-
namics of human—machine interaction. This section will present
applications of neural data-driven modeling formulations where
neural excitations are estimated as EMG-linear envelopes. This
special case will be referred to as “EMG-driven modeling” [7],
[8], [65].

A. Orthoses

Orthoses are used to restore or augment musculoskeletal
function in impaired or healthy individuals. The main limita-
tion in commercial ambulatory powered systems (e.g., ReWalk
Robotics, Ltd., Israel) is that the available HMIs permit little or
no user’s active participation in the device control, thus limit-
ing neuromuscular plasticity and the subsequent motor function
recovery. Furthermore, there is currently no commercially avail-
able orthosis that can preserve or decrease the metabolic cost of
locomotion in healthy subjects. This suggests that current so-
lutions may trigger abnormal and suboptimal musculoskeletal
function [137].

A number of model-based solutions have been proposed to ad-
dress these limitations. The works in [138] and [139] presented
powered orthoses for upper and lower limbs that modulate the
support to the user based on the user’s predicted strength, i.e.,
the ability of producing joint moment. This is estimated in real
time directly from EMG-linear envelopes and wearable joint
sensors using an open-loop EMG-driven modeling formulation
(see Section IV-B, Fig. 4). This allows establishing controllers
that actuate the orthosis proportionally to the EMG-predicted
user’s joint moment capacity. The predicted moments can be
augmented by a support ratio to define the desired level of joint
support that the orthosis will provide to the user (see Fig. 6)
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variable-stiffness prostheses. (Orthoses) The user’s joint moment generating
capacity is estimated from the affected leg EMGs, with the powered orthosis
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the “support ratio” coefficient [138]. (Prostheses) Physiological joint stiffness
profiles are estimated off-line from healthy subject populations or on-line from
unaffected leg EMG recordings. The prosthesis is then controlled to reproduce
stiffness templates [155] (see Section V).

[138]. A simplified modeling formulation was used in [140] to
predict in real time the user’s knee joint stiffness as a function of
EMGs and modulate the impedance of a compliant knee joint or-
thosis accordingly. These examples based on EMG-driven mod-
eling allow establishing a symbiotic HMI, where the powered or-
thoses dynamically adapt to the user’s motor ability (see Fig. 6).
In this scenario, generating the device control command within
the muscle electrophysiological delay would enable the worn
device to naturally respond to the user’s neuromuscular func-
tion (see Fig. 1). This delay can range from shorter intervals (i.e.,
~10 — 30 ms) typically in lower limb muscles [141] to larger
ones (i.e., ~ 80— 100 ms) typically in upper limb muscles [142].
An unpowered ankle joint orthosis with a spring mechanism
acting in parallel to the calf muscles was presented in [143] that
reduced for the first time the metabolic cost of human walking
by ~ 7%, something remarkable given the optimality of human
locomotion. Interestingly, metabolic energy savings could be
achieved only for specific intermediate orthosis spring stiffness,
i.e., too stiff or too compliant springs did not provide substan-
tial benefit. In [144], musculoskeletal modeling was used to
directly link musculoskeletal mechanics and energy consump-
tion when hopping with a similar orthosis. Results showed that
suboptimal spring stiffness levels in the elastic ankle orthosis
caused unfavorable soleus muscle—tendon mechanics, i.e., in-
creased soleus contraction velocity around unfavorable ranges
of fiber length. The suboptimal soleus mechanics determined
the increased metabolic cost of motion [143], [145]. Further
studies [37], [146] used musculoskeletal modeling to show that
metabolic efficiency in locomotion is tightly related to plantar-
flexor muscles operating with minimal contraction velocity. Al-
though not used for establishing an HMI, modeling was used in
these studies to understand musculoskeletal function underlying
efficient locomotion and efficient human—machine interaction.
The ability of modeling and simulating the interaction of
humans with devices connected in parallel with their limb is
central for deploying wearable technologies that can effectively
enhance an individual’s mobility. Fig. 7(A) shows an exam-
ple where musculoskeletal modeling was employed to study
human—-machine interaction in a subject with severe quadriceps
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Fig. 7.  (Left) (A) Musculoskeletal model of a subject with severe quadriceps
tendon tear and with parallel passive knee orthosis. The subject’s quadriceps
force was set to zero in the model. The orthosis was modeled using knee joint
force constraints acting in parallel to residual muscle force. This characterized
the orthosis joint stiffness response to joint bending and enabled keeping the
subject’s knee joint extended during the gait stance phase. (Right) (A) Mea-
sured and predicted joint load carried by the orthosis during locomotion (see
Section V-A). (Left) (B) Musculoskeletal model of a transfemoral amputee with
series prosthesis. Tibiofemoral compressive forces from the intact contralateral
knee were estimated using OpenSim joint reaction analysis tool [112]. (Right)
(B) Compressive force expressed as body weight multiples (xBW) predicted
for the amputee (see Section V-B) and from one healthy control individual as
well as in vivo measurements from 10 individuals with force-measuring knee
implants (reference). In both A and B, OpenSim was used to build a muscu-
loskeletal model that accounted for the subject’s anthropometry as well as that
of the worn device [112]. A closed-loop EMG-informed modeling formulation
(see Section III-B) [6], [46] was used to realize a muscle-driven simulation that
tracked experimental data including experimental EMG, joint moments and
joint angles. Simulations are provided here as representative applicative exam-
ples rather than complete validation results. Movement data were recorded and
kindly made available to the authors by the OttoBock Health Care Biomechanics
Laboratory (Gottingen, Germany).

tendon tear. The subject walked wearing a passive knee—ankle—
foot orthosis (OttoBock, Germany) that locks the knee joint dur-
ing the stance phase, preventing the subject’s knee to collapse.
The orthosis-assisted locomotion was simulated using Open-
Sim [112] and a closed-loop EMG-informed modeling formu-
lation (see Section IV-B) [6]. Fig. 7(A) shows how this modeling
framework enables us to accurately predict the interaction forces
between the orthosis and the subject’s leg, i.e., the load carried by
the passive orthosis knee joint. Experimental interaction forces
were measured by a wearable force-measuring sensor (Otto-
Bock, Germany) mounted on the orthosis knee joint. In [147], an
optimization framework was developed using OpenSim [112]
to explore the optimal design of simulated wearable robotic
devices that maximally enhanced long jump performance.

B. Prostheses

Prostheses are used to replace anatomically or functionally
missing biological limbs. The main limit in current prosthetic
systems is the control scheme. Current control schemes for
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commercial myoelectric upper limb prosthesis are still unin-
tuitive and provide limited regain of lost functionality [148].
This is the main reason for the high abandonment rate of current
commercial solutions [149]. While model-based approaches to
the myoelectric control of upper limb prostheses are yet to be
proposed, a number of model-free solutions (see Section II-A)
has been presented in the past decades based on classification
and regression (see Section II-A) [148]. Although these methods
enable more natural (i.e., proportional and simultaneous) con-
trol of multiple joint DOFs than current commercial solutions,
they support limited arm and hand functions and are validated
in specific laboratory settings [14].

Lower limb prosthesis technology has made major advances
in the past decades substantially improving amputees’ mobility
and fall risk prevention. Latest commercial solutions (i.e., Otto-
bock Genium and Ossur Rheo Knee) employ microprocessor-
controller joint dampers that improve gait performance over
purely passive prostheses [150]. However, current prostheses
are still inferior to their biological counterparts in that they nei-
ther generate positive net work over the gait cycle, nor modulate
joint torques and viscoelastic forces as naturally as humans do
[151]. As a consequence, lower limb amputees who reply on
prostheses suffer from increased energy consumption during
gait and are challenged when locomoting across different ter-
rains or transitioning across motor tasks or locomotion speeds.
Furthermore, the functional discrepancy between the artificial
and the biological leg results in asymmetric gait with abnormal
loads on the healthy leg, which may trigger degenerative bone
disorders such as osteoarthritis (OA) [152]-[154]. Model-based
solutions for lower limb prostheses have been recently proposed
that are addressing current open challenges.

In [71], a simplified open-loop EMG-driven formulation (see
Section IV-B) was used to extract values of muscle short-range
stiffness and how it projects onto the knee joint across loco-
motion tasks performed by healthy intact individuals. These
were subsequently used in [155] to generate knee joint stiffness
template values for designing a biomimetic variable stiffness
transfemoral prosthesis (see Fig. 6). The resulting prosthesis
displayed task-adaptive behavior, i.e., it was capable of modulat-
ing joint stiffness (derived from muscles short-range stiffness),
moment, and velocity across different motor tasks. In [156] and
[157], a transtibial ankle prosthesis controller was developed
based on a reflex-based neuromuscular model of the ankle joint
muscles. The model simulates local reflex loops (i.e., muscle
stretch reflex) on the basis of the prosthesis joint kinematics
and interaction with the environment. The simulated reflexes
recruit the virtual muscles and the resulting simulated muscle
forces are used to control the prosthesis joint in a human-like
manner. Results showed that the prosthesis displayed speed-
adaptive behavior, i.e., it could modulate net joint work across
a range of locomotion speeds. A similar reflex-based neuro-
muscular modeling approach was used in [158] to control a
transfemoral knee—ankle-powered prosthesis with improved
functionality for recovering balance from unexpected exter-
nal disturbances. Preliminary results in simulation and from
healthy individuals showed the model-based prosthesis control
allowed for walking on rougher terrains and for recovering from

larger trip disturbances than conventional impedance controlled
prostheses.

Likewise for the orthosis scenario (see Section V-A), under-
standing how the amputee’s musculoskeletal system responds
to an artificial leg connected in series with their residual limbs
is crucial to deploy prostheses that can come closer to biolog-
ical limb performances. Fig. 7(B) shows an example where
musculoskeletal modeling was used to understand human—
machine interaction in the context of an amputee walking us-
ing acommercially available transfemoral prosthesis (Ottobock,
Germany). This was simulated using OpenSim [112] and a
closed-loop EMG-informed modeling formulation (see Section
IV-B) [6]. Fig. 7(B) directly compares the tibiofemoral forces
extracted from the amputee with those measured in vivo from
ten subjects that were implanted with a force-measuring knee
replacement [133]. The in vivo force data were taken from the
OrthoLoad database.® Simulations suggest how amputees’ con-
tralateral knees may carry larger loads than healthy individu-
als’ knees, throughout each gait cycle. In this example, muscu-
loskeletal modeling provides the ability of predicting internal
variables, which are difficult to measure experimentally (i.e.,
tibiofemoral forces), as well as an estimate of how the human
musculoskeletal system may interact with and respond to artifi-
cial limbs. Although further validation is required, this approach
offers invaluable opportunities for designing future prostheses
that can effectively restore contralateral limb function.

C. Gait Retraining

Gait retraining is a noninvasive treatment strategy for altering
and controlling target gait variables associated with the pro-
gression of orthopedic or neurological conditions [159], [160].
It has recently received attention, especially in the treatment
of orthopedic conditions, such as OA. In this application, it is
proving to be an effective treatment for correcting gait alter-
ations that often persist after surgical interventions [161] or as
an alternative to such interventions, i.e., total joint replacement
[160]. Current gait retraining methods for knee OA rely on the
use of simple biomechanical models for calculating the external
knee adduction moment (KAM) as a target variable to control
during the gait retraining interventions [160]. Decreasing the
early stance peak KAM has been reported to also decrease pain,
disease progression, and disease severity in OA patients [154],
[162], [163]. Recent studies have explored real-time visual and
vibrotactile feedback to enable subjects to relearn their gait
with reductions in KAM that ranged from 7% to 48% [160],
[162], [164]. Similar procedures are currently being developed
and tested for treating hip OA [165].

Gaitretraining has been also prescribed to patients with force-
measuring knee implants, where the target variable to alter (i.e.,
to minimize) was the in vivo tibiofemoral contact force [166].
Retrained gaits with minimal in vivo tibiofemoral contact forces
may be more effective than gaits with minimal KAM peaks to
the treatment of OA condition [68] because OA progression
is directly related to tibiofemoral contact forces and only

Shttp://www.orthoload.com.
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indirectly to KAM peaks [68]. The availability of EMG-driven
models that can predict accurate estimates of tibiofemoral
forces [68] in real time [64], [167] will offer in the immediate
future the possibility of performing joint contact force-based
gait retraining to any subject, even in those who are not fitted
with force-measuring implants. This is also expected to enable
broader injury prevention applications where estimates of in-
ternal neuromuscular variables (i.e., muscle—tendon strain) are
continuously monitored and controlled to stay within safe limits.

VI. DISCUSSION

We have presented an overview of clinically viable methods
for interfacing with the human nervous system in vivo and for
modeling the resulting function of the musculoskeletal system.
In the context of neurorehabilitation technologies, the challenge
is to build neuromusculoskeletal models that are both computa-
tionally efficient (i.e., for real-time HMIs) and physiologically
correct (i.e., for characterizing the subject).

We first introduced the concept of muscles as biological am-
plifiers of the spinal cord neural output (see Section I). In this
context, we presented methods for extracting movement neu-
ral information from muscle EMGs (see Section III-A, Fig. 3).
Although implanted nerve or cortical electrodes provide a rich
source of neural information, these recording modalities are
mainly limited to research scenarios [14], [168] and can be ex-
cluded for interventions of limited duration, such as robot-aided
rehabilitation. The surface (or intramuscular [13], [169]) EMG
currently represents the only viable solution that can be directly
applied to existing clinical settings [14]. This motivated this
review’s focus on techniques for extracting neural information
from surface EMG data.

We then showed how neural features extracted from muscle
EMGs can be further processed using neural data-driven model-
free or model-based approaches for the purpose of decoding an
individual’s motor intention (see Section II and Fig. 2). In the
context of neurorehabilitation, these paradigms offer the unique
opportunity of interfacing with the patient’s nervous system
in vivo and predicting the intended movement for best replac-
ing/restoring the impaired motor ability. The model-free ap-
proach has the advantage of not requiring explicit mathematical
models that mimic the nature of the intermediate transforma-
tions, i.e., from muscle EMG to limb movement. However, it
does not allow understanding the mechanisms underlying the
learned relationship as well as how they vary with pathology
or changing muscle properties. Moreover, functional relation-
ships learned in a specific condition, may not easily generalize
to novel conditions [11]. This limits the ability of understanding
movement and, therefore, delivering personalized neurorehabil-
itation treatments and technologies.

Neural data-driven model-based approaches overcome this
limitation through explicit analytical formulations that link elec-
trical (neuromuscular) signals into muscular and articular me-
chanical forces (see Figs. 1 and 5). The main advantage of
combining electrophysiological muscle recordings with com-
prehensive biomechanical models is that it enables accessing
a larger spectrum of neuromechanical variables than analyzing
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electrophysiological data or movement data individually. That
is because it enables establishing functional relationships in
human movement such as assigning a direct “mechanical mean-
ing” to the recorded electrophysiological data (see Section II
and Figs. 1 and 5). Furthermore, it allows predicting the muscu-
loskeletal response to any recordable neuromuscular behaviors
with no direct need for creating numerical models of these.
This is central for understanding and diagnosing neuromuscular
deficits as well as for developing personalized neurorehabilita-
tion treatments and intuitive HMIs.

Alternatively, fully predictive modeling formulations that do
not rely on electrophysiological recordings offer the opportunity
to perform broader “what-if”” analyses by changing the simu-
lated neural commands and by observing the emerging motor
behavior [58]. Challenges to this approach include the devel-
opment and validation of fully predictive models of the human
nervous system that can adapt over short-time scales (i.e., by
triggering neuromuscular reflexes to external stimuli) or over
long-time scales (i.e., for learning new motor programs by re-
organizing spinal and brain structures) so that they can be used
to predict valid responses to truly unknown and unmeasured
scenarios (i.e., neuromuscular deficits) [58], [170].

Both neural data-driven and fully predictive modeling for-
mulations have been exploited in the context of neurorehabili-
tation technologies (see Section V) for establishing myoelectric
HMIs (see Fig. 6), for synthetizing biological limb function
(i.e., joint stiffness modulation) into artificial limbs, or for char-
acterizing human—machine interaction (i.e., Fig. 7). Section V
outlined representative examples of myoelectric HMIs that em-
ployed EMG-driven modeling for controlling powered orthoses
and prostheses (see Section V, Fig. 6). For this purpose, we
have previously presented EMG-driven modeling formulations
that can operate within physiological electromechanical delays
(EMDs) [141] by employing computationally efficient models
of the musculotendon kinematics [125] and dynamics [64] di-
rectly on embedded systems. Especially for powered orthoses,
HMISs that actuate the wearable device solely on the basis of
the detection of externally measurable forces (i.e., external joint
moments or limb-orthosis interaction force) could not provide
support until the user has produced detectable interaction force
or movement [171]. On the other hand, the ability of predicting
internal musculoskeletal forces from EMG data enables predict-
ing the user’s movement intention before the movement actually
takes place, thus enabling support even in individuals with re-
duced motor abilities but with detectable electrophysiological
activity.

Another important aspect to consider for myoelectric model-
based HMIs is that of reducing the number of needed EMG
electrodes. The accurate model-based prediction of forces in
the lower extremity joints would require ~ 15 EMG channels
per leg [65]. A wearable device driven by a large number of elec-
trodes would become susceptible to sensor noise and artifacts,
especially if used during dynamic limb motion. This may be the
case for the myoelectric control of ambulatory powered orthoses
and may be less of a problem in the control of upper limb pros-
theses where residual muscles operate under quasi-isometric
conditions due to the amputation. A number of solutions exist
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for reducing sensitivity to sensory noise. Muscle coordination
can be synthetized by employing the theory of muscle syner-
gies [87]. Muscle synergies-based models have been recently
proposed for predicting muscle excitation [99] and the resulting
musculoskeletal forces [98] [see Fig. 5(C)] during large reper-
toires of locomotion tasks with no loss of accuracy with respect
to using experimental EMGs. This enables predicting muscle
coordination as a function of joint kinematics and estimates of
the gait cycle percentage, by assuming that muscles are recruited
according to the predefined synergistic schemes [98]. Alterna-
tively, models of local neuromuscular reflex loops can be used
to generate synthetic activation signals for the major lower limb
muscles [172]. Less computationally efficient solutions can rely
on closed-loop EMG-informed simulations [see Section IV-B,
Fig. 5(A)], where static optimization is solved on a frame-by-
frame basis for deriving force estimates for muscles with no
EMG data available [6]. This can be done in real time if non-
embedded processing units are used. These approaches could
be used to completely replace the need for EMG recordings or
for decreasing the number of EMG sensors.

This review also showed the use of neuromusculoskele-
tal modeling for understanding cause-effect relationships in
human-machine interaction (see Section V, Fig. 7). In this sce-
nario, modeling and simulation are especially valuable for find-
ing optimal device design that is personalized to an individual,
i.e., finding the prosthetic limb properties that result in mini-
mal contralateral knee joint loads [see Fig. 7(B)] or the orthosis
minimal sizing properties for carrying the required load during
stance [see Fig. 7(A)]. This allows addressing the limitations
of the traditional trial-and-error approach, where orthopedic de-
vices are designed irrespectively of the user’s musculoskeletal
properties and optimized based on limited experimental data.

As discussed in Section II-B, the model-based approach is
limited by the impossibility of measuring (and thus modeling)
internal physiological parameters and variables, such as mus-
cle optimal fiber, physiological cross-sectional areas or tendon
slack length. This limit is addressed by using model-estimation
theory as outlined in Section IV (see Fig. 4). In the context of
patients, the uncertainties to account for may increase due to fac-
tors related to the orthopedic or neurological condition, which
pose additional modeling challenges. In these scenarios, high-
fidelity patient-specific models describing pathological muscles
and bone structures may be first created based on MRI imaging
data and finite element modeling (see Section III.C-D) [173].
These models could then be synthetized into simpler surrogate
models that describe the complex musculoskeletal dynamics
using computationally efficient structures such as multidimen-
sional splines [125], polynomials [126] or ANNs [174] (see
Section III.D). In this scenario, the ability of merging the model-
free and model-based approaches together will prove valuable,
especially to compensate for patient’s features that cannot be
explicitly modeled.

It is important to critically assess the modeling complexity
that is truly needed to address a specific problem. The examples
of this review (see Section V, Fig. 7) showed how relatively
simple models could be used to characterize patients with am-
putations or muscle weakness wearing assistive devices such as

orthoses and prostheses. Furthermore, EMG-driven modeling
formulations based on simple musculoskeletal geometries were
successfully used in the past to characterize the neuromuscular
mechanisms underlying individuals affected by orthopedic of
neuromuscular conditions including anterior cruciate ligament
rupture [61], patellofemoral pain [51], OA [62], [63], and stroke
[59], [60].

Moreover, the availability of “big data” of human movement
will help to further address the modeling limits. In a world
where wearable technology (i.e., textile sensors, smart phones
and watches, and orthotic devices) and cloud data are becom-
ing increasingly pervasive, the availability of human movement
data will reach larger scales than ever [175]. Frameworks that
can integrate modeling paradigms to process a variety of data
types (i.e., high-fidelity data from laboratories or low-fidelity
data from wearable embedded sensors) will prove critical to
characterize movement function and pathology with statistical
inference power and enhanced predictive capacity. This will
enable making increasingly accurate predictions in scenarios
where data are unavailable, i.e., predicting the progression of
neuromuscular or orthopedic diseases, the response to a surgery
or to physical training. This approach is especially promising for
understanding and forecasting history-dependent and context-
dependent neuromusculoskeletal function (i.e., fatigue, training,
and impairment).

VII. CONCLUSION

The development of personalized neurorehabilitation and
augmentation technologies implies the profound understand-
ing of the mechanisms underlying an individual’s motor ability
and impairment. The development of 1) clinically viable tech-
niques for interfacing with the human nervous system in vivo and
2) real-time subject-specific neural data-driven musculoskeletal
models, are key factors for achieving this understanding. The
reliable determination of musculoskeletal forces as a function
of an individual’s neural drive to muscles will provide the foun-
dation to understand the neuromechanical interplay underlying
in vivo movement function, pathology, and recovery. This will
facilitate the design of personalized surgical and neurorehabil-
itation interventions, will inform the design of biologically in-
spired limbs, and will enable establishing neuromuscular HMIs
for replacing or extending an individual’s neuromusculoskeletal
function.
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