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A real-time neural network model is developed to explain data about the aequisition and ex­
tinetion of eonditioned exeitors and inhibitors. Systematie computer simulations are described 
of a READ eireuit, whieh joins together a meehanism of assoeiative learning with an opponent­
processing cireuit, ealled a recurrent gated dipole. READ eireuit properties clarify how positive 
and negative reinforeers are learned and extinguished during primary and secondary eondition­
ing. Habituating ehemieal transmitters within agated dipole determine an affeetive adaptation 
level, or eontext, against whieh later events are evaluated. Neutral eonditioned stimuli ean be­
eome reinforeers by being associated either with direet aetivations or with antagonistie rebounds 
within a previously habituated dipole. Neural meehanisms are eharaeterized whereby eondition­
ing ean be aetively extinguished, and associative saturation prevented, by a process ealled OpfKr 

nent extinction, even if no passive memory deeay oeeurs. Opponent extinetion exploits a fune­
tional dissociation between read-in and read-out of assoeiative memory, whieh may be aehieved 
by locating the associative meehanism at dendritie spines. READ eireuit mechanisms are joined 
to eognitive-emotional mechanisms for assoeiative learning of eonditioned reinforeers and of in­
eentive motivation, and to eognitive-in partieular, adaptive resonanee theory-meehanisms for 
activating and storing internal representations of sensory eues in a limited-eapaeity short-term 
memory (STM); for learning, matching, and mismatehing sensory expectaneies, leading to the 
enhaneement or updating of STM; and for shifting the focus of attention toward sensory represen­
tations whose reinforeement history is eonsistent with momentary appetitive requirements. This 
total neural arehiteeture is used to explain eonditioning and extinetion of a eonditioned exeitor; 
eonditioning and nonextinetion of a eonditioned inhibitor; and properties of eonditioned inhibi­
tion as a "slave" proeess and as a "eomparator" process, including effeets of pretest deflation 
or inflation of the eonditioning eontext, of familiar or novel training or test eontexts, of weak 
or strong shoeks, and of preeonditioning uneonditioned-stimulus-alone exposures. The same 
mechanisms have elsewhere been used to explain phenomena such as blocking, unblocking, over­
shadowing, latent inhibition, supereonditioning, inverted U in eonditioning as a function of inter­
stimulus interval, antieipatory eonditioned responses, partial reinforeement aequisition effeet, 
learned helplessness, and vieious-eircle behavior. The theory clarifies why alternative models 
have been unable to explain an equally large data base. 

1. Introduction: The Analysis of 
Distributed Neural Architectures 

A key problem in biological theories of intelligence con­

cerns the manner in which external events interact with 

internal organismic requirements to focus attention upon 

motivationally desired goals. The present work further 

develops a theory that involves sensory-cognitive and 
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cognitive-reinforcement circuits. The theory is applied to 

the explanation of data about the acquisition and extinc­
tion of classically conditioned excitors and inhibitors. 

The neural architectures that are engaged during clas­

sical conditioning are distributed across several brain 

regions. Even the relatively simple architecture that con­

trols the rabbit's nictitating membrane response includes 

such widely separated regions as the cerebellum (McCor­

mick & Thompson, 1984) and hippocampus (Berger & 
Thompson, 1978). In order to understand the workings 

of such a distributed neural architecture, one must simul­

taneously analyze both the whole and its parts, both the 

macroscopic and the microscopic description of the archi­

tecture. On the macroscopic level, one needs to under­

stand the functional and computational relationships that 
clarify how the architecture controls a particular class of 
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behaviors, and why it is composed of particular types of 

circuits. On the microscopic level, one needs to attain a 

detailed analytic understanding of how each circuit is 

designed, of how it works, and of what types of mechanis­

tic variations can be expected to occur as evolutionary 

variations across species. These macroscopic functional 

analyses and microscopic mechanistic analyses are, more­

over, not independent, because the behavioral properties 

controlled by a neural architecture are typically emergent 

properties that arise from interactions among its compo­
nent circuits. 

A thoroughly characterized neural architecture provides 

an explicit real-time description of how behaviorally ob­

servable stimuli influence the internal neural transforma­

tions that regulate behaviorally observable responses. 

Although a number of extremely useful phenomenologi­

cal and formal conditioning models have been described 

during the past two decades, most ofthese models do not 

provide an explicit description of the real-time mecha­

nisms that would be required to instantiate their concepts 

and equations. In particular, although the classical Res­

corla and Wagner (1972) model is formulated in terms 

of difference equations whose variables change through 

time, these equations do not provide an explicit charac­

terization of real-time mechanisms that might be able to 

instantiate the model's properties. Such an attempt at ex­

plication shows, moreover, that the Rescorla-Wagner 

model cannot be consistently embedded into an explicit 

real-time model (Grossberg, 1982a). 

The demand for areal-time processing description has 

been shown to impose important design constraints upon 

the formulation of conditioning processes. The advantage 

of areal-time theory can be appreciated through exam­
pIes of how such a theory has articulated the coordinated 

neural events that are triggered by unexpected changes 

in external environmental contingencies, notably by the 

unexpected nonoccurrence of a primary or conditioned 

reinforcer, or by unexpected changes in contingent or non­

contingent probabilities of a conditioned stimulus (CS) or 

unconditioned stimulus (US) in a given experimental 

context. 

At least two types of neural network macrocircuits are 

needed to provide a real-time explanation of a broad range 

of data about the acquisition and extinction of conditioned 

excitors and inhibitors. 

Sensory-cognitive circuit.. Sensory-cognitive inter­

actions in the theory are carried out by an adaptive reso­

nance theory (ART) circuit (Carpenter & Grossberg, 

1985, 1987; Grossberg, 1976b, 1987a). Tbe ART archi­

tecture suggests how intemal representations of sensory 

events, including CSs and USs, can be leamed in stable 
fashion (Figure 1). Among the mechanisms used for sta­

ble self-organization of sensory recognition codes are the 

top-down expectations that are matched against bottom­

up sensory signals. When amismatch occurs, an orient­

ing arousal burst acts to reset the sensoiy representation 

of all cues that are currently being stored in short-term 
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Figure 1. Anatomy of an adaptive resonance theory (ART) cir­
cuit. (a) Interactions between the attentional and orienting sub­

systems: Code learning takes place at the long-term memory (L TM) 

traces within the bottom-up and toJHIown pathways between levels 
FI and F2. The toJHlown pathways can read out leamed expecta­

tions, or templates, that are matched against bottom-up input pat­
terns at F 1. Mismatcbes activate the orienting subsystem A, thereby 
resetting short-term memory (STM) at F2 and initiating search for 

another recognition code. Subsystem A can also activate an orient­

ing response. Sensitivity to mismatch at F I is moduIated by vigiIance 

signals from drive representations. (b) Trainable pathways exist be­
tween level F2 and the drive representations. Leaming from F2 to 
a drive representation endows a recognition category with condi­
tioned reinforcer properties. Leaming from a drive representation 

to F 2 associates the drive representation with a set of motivation­

aIly compatible categories. (From "Neural Dynamics of Category 

Leaming and Recognition: Structural Invarlants, Reinforcement, 

and Evoked Potentials," by G. A. Carpenter and S. Grossberg, in 

press, Quantitative Analyses 01 Behavior, VoI. 8. Printed by per­
mission.) 

memory (STM). In particular, representations with high 

STM activation tend to become less active, representa­

tions with low STM activation tend to become more ac­

tive, and the novel event that caused the mismatch tends 

to be more actively stored than it would have been had 

it been expected. 
Cognitive-reinforcement circuit. Cognitive-reinforcer 

interactions in the theory are carried out in the circuit 

described in Figure 2. In this circuit, there exist cell popu­

lations that are separate from sensory representations and 
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Figure 2. Schematic conditioning circuit. Conditioned stimuli activate seIL'iOry represen­
tations (Ses,), which compete among tbemselves for limited-capacity short-term 

memory activation and storage. The activated Scs, elicit conditionable signals to drive 

representations and motor command representations. Learning from an Scs, to a drive 

representation, D, is called conditioned reinjorcer leaming. Learning from D to an Ses, 
is called incentive motivationalleaming. Signals from D to Ses, are elicited when tbe 

combination of externat sensory inputs plus internat drive inputs is sufficiendy large. 

In the simulations reported herein, the drive level is assumed to be large and constant. 

related to particular drives and motivational variables 

(Grossberg, 1972a, 1987a). Repeated pairing of a es sen­

sory representation, Ses, with activation of a drive 

representation, D, by a reinforcer causes the modifiable 

synapses connecting Ses with D to become strengthened. 
Incentive motivation pathways from the drive represen­

tations to the sensory representations are also assumed 
to be conditionable. These conditioned S -+ D -+ S feed­
back pathways shift the attentional focus to the set of previ­

ously reinforced, motivationally compatible cues 

(Figure 2). This shift of attention occurs because the sen­

sory representations, which emit conditioned reinforcer 

signals and receive conditioned incentive motivation sig­

nals, compete among themselves for a limited-capacity 

STM via on-center off-surround interactions. When in­

centive motivational feedback signals are received at the 

sensory representational field, these signals can bias the 

competition for STM activity toward motivationaily salient 

cues. 

In order to explain the moment-by-moment dynamics 
of conditioning, an additional microcircuit must be embed­

ded in the drive representations of the macrocircuit de­

picted in Figure 2. This microcircuit, called agated di­
pole (Grossberg, 1972a, 1972b), instantiates a neuro­

physiological theory of opponent processing. The need 

for a certain type of opponent processing for condition­
ing circuits can be seen from the following considera­
tions. 

The gated-dipole opponent process. In the cognitive­

reinforcement circuit, ess are conditioned to either the 

onset or the offset of a reinforcer. For example, a es that 

is conditioned to the onset of a shock can become a source 

of conditioned fear (excitor). A es that is conditioned to 
the offset of a shock can become a source of conditioned 

relief (inhibitor). A gated-dipole opponent process ex­

plains how the offset of a reinforcer can generate an off­
response, or antagonistic rebound, to which a simulta­
neous es can be conditioned. Agated dipole is a minimal 

neural-network opponent process that is capable of gener­

ating a sustained, but habituative, on-response (e.g., a fear 

reaction) to onset of a cue (e.g., a shock), as well as a 

transient off-response (e.g., arelief reaction), or an­

tagonistic rebound, to offset of the cue. 
The READ circuit: A synthesis of opponent process­

ing and associative learning mechanisms. A specialized 

gated-dipole circuit is needed to explain phenomena such 

as secondary inhibitory conditioning. Secondary inhibi­

tory conditioning consists of two phases. In Phase 1, eS I 

becomes an excitatory conditioned reinforcer (e.g., a 

source of conditioned fear) by being paired with a US 

(e.g., a shock). In Phase 2, the offset ofeSI can gener­

ate an off-response that can condition a subsequent eS1 

to become an inhibitory conditioned reinforcer (e.g., a 

source of conditioned relief). In order to explain secon­
dary inhibitory conditioning, a gated-dipole circuit must 

also contain internal feedback pathways; that is, it should 
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be reeurrent. In addition, such a reeuerent gated dipole 

must be joined to a meehanism of associative leaming, 

whereby CSs may become conditioned excitors or inhi­

bitors. A circuit design that realizes aß these properties 

is caßed a READ circuit, as a mnemonie for REeuerent 

Associative gated Dipole (Figure 3). 

The design of the READ circuit clarifies many proper­

ties of conditioning data; for example, how the extinc­

tion of conditioned excitors and the nonextinction of con­

ditioned inhibitors may be explained by a single neural 

circuit (Part II). Our analysis links these data properties 

to the functional property that opponent interactions ac­

tively cause extinction even in cases in which passive ex­

tinction does not occur. In the absence of passive extinc­

tion, an associative memory could easily saturate. 

Opponent extinction shows how saturation is prevented 

and active extinction obtained even if no passive memory 

deeay occurs. These functional properties of opponent ex­

tinction can be achieved using a meehanistic property that 

dissociates the read-in and read-out of associative 

memory. Such a meehanistic property can, in turn, be 

realized by locating associative synapses on dendritic 

spines. 

Thus, the present article describes two related types of 

results. Part I provides a quantitative computational anal­

ysis of several variants of a READ circuit design that 

forms part of the total neural architecture for the control 

of classically and operantly conditionable behaviors that 

is schematized in Figures 1-3. Based upon the mathemati­

cal theory of classical conditioning and associative learn­

ing that was provided in Grossberg (1969a, 1969c, 1970), 

the development of this architecture began in Grossberg 
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Figure 3. A READ I circuit. This circuit joins together a recur­

rent gated dipole with an associative leaming D1echanism. Learn­
ing is driven by signals, s.., from sensory representations, Sk, which 

activate long-term memory (LTM) traces Zk7 and Zu, which sam­

pIe activation levels at the on-channel and off-channel, respectively, 

01 the pted dipole. See text for details. 

(1971). Since that time, the component circuits ofthe ar­

chitecture have been progressively elaborated in aseries 

of articles aimed at explaining and predicting an ever­

larger behavioral, psychophysiological, neurophysiologi­

cal, anatomical, and neuropharmacological data base 

about conditioning and its control mechanisms. Keyac­

complishments of this theory during its first decade of ex­

istence are reviewed and further development provided 

in Grossberg (1982a, 1982b, 1984b). These recent arti­

cles are gathered together in Grossberg (1987a). 

The READ circuit design analyzed in Part I is one of 

several specialized gated-dipole circuits that have been 

identified through the parametric analysis of behavioral 

and brain data. Specialized gated-dipole circuits have also 

played a key role in helping to explain and predict a wide 

variety of other data bases. l Thus, a gated-dipole circuit 

may at this time be said with some confidence to instanti­

ate a basic principle of neural design. 

Involvement of a gated-dipole circuit can be inferred 

from behavioral data through its characteristic constella­

tion, or bundle, of emergent properties. These include 

mutually dependent properties of habituation, antagonis­

tic rebound, adaptation-level processing, and an in­

verted U in sensitivity. The habituative, antagonistic­

rebound, and adaptation-level properties play an impor­

tant role in the applications described herein. Antagonistic­

rebound properties are particularly important for under­

standing how areal-time theory can fill the conceptual 

gaps left by a merely formal theory. This is because 

antagonistic-rebound reactions often occur subsequent to 

the offset of an external cue or subsequent to the non­

occurrence of an expected cue. Such antagonistic rebounds 

thus occur during time intervals when no experimentally 

controlled external cues are active. Only in areal-time 
theory can such reactioos be explaioed without iovoking 

ad hoc hypotheses. Indeed, the very existence, 00 less 

than the size, of an antagonistic rebound can depend upon 

a host of contextual and leaming-dependent factors, whose 

properties can be conveniently analyzed in areal-time the­

ory but not in a merely formal theory. Since such rebounds 

influence key observable properties of behavioral condi­

tioning and extinction, formal theories are fundamentally 

limited in their ability to explain data in which the spatio­

temporal organization of CSs and USs mixes together 

learnable direct reactions and antagonistic rebounds to 

these cues. 
Part TI joins the results of Part I to the other real-time 

circuits of the neural architecture schematized in Figures 

I and 2 to explain conditioning data. These include mecha­

nisms for activating and storing internal representations 

of sensory cues in a limited-capacity working memory, 

or STM; mechanisms for learning, matching, and mis­
matching of seosory expectancies, leading to the enhance­

ment or updating of STM processing; and mechanisms 

for shifting the focus of attention toward seosory represen­

tations whose reinforcement history is consisteot with 

momentary appetitive requirements. This total architec­

ture is then used to qualitatively explain the important data 



concerning acquisition and extinction of conditioned exci­
tation and inhibition obtained by Lysle and Fowler (1985) 
and Miller and Schachtman (1985), as weil as the results 
of many other related studies. Along the way, the qualita­
tive explanatory concepts of these authors are explicated, 
refined, and generalized, and related data about such 
phenomena as blocking are also analyzed in a unified 
fashion. 

PART I 

2. Simulating the Mechanism of 
Conditioned Reinforcement 

In Part I, computer simulations are used to character­
ize the behavior of a circuit in which agated dipole is 
joined to a mechanism of Pavlovian conditioning. Multi­
ple neural circuits are conditioned during a typical con­
ditioning experiment. The conditioning events described 
in Part I constitute the type of learning whereby a CS be­
comes a conditioned reinforcer by being paired with aUS. 
Both primary conditioning and secondary conditioning, 
as weH as excitatory conditioning and inhibitory condi­
tioning, are demonstrated. 

In the simulations of primary excitatory conditioning, 
a conditioned stimulus (CS.) precedes the onset of aUS, 
as in Figure 4a. As a result of conditioning, the es. be­
comes a conditioned reinforcer with the same motivational 
sign as the USo In the simulations of secondary condi­
tioning, another conditioned stimulus (CS2) precedes a 
conditioned reinforcer (the CS. of a primary condition­
ing experiment), as in Figure 4b. As a result of condi­
tioning, the CS1 also becomes a conditioned reinforcer 
with the same motivational sign as the CS •. In primary 
inhibitory conditioning, a CS! occurs subsequent to the 
offset of aUS, as in Figure 4c. As a result of condition­
ing, the CS. becomes a conditioned reinforcer whose 
motivational sign is the opposite of that of the USo In 
secondary inhibitory conditioning, a CS1 occurs subse­
quent to the offset of a conditioned reinforcer (CS.), as 
in Figure 4d. As a result of conditioning, the CS2 becomes 
a conditioned reinforcer whose motivational sign is the 
opposite of that of the CS •. In addition, we investigate 
how these several types of conditioned reinforcer leam­
ing can extinguish if the CSs are presented without rein­
forcement on subsequent trials. 

Many variations of the temporal sequencing of the 
events CS .. CS2 , and US can be better understood through 
an analysis of these four types of conditioning events. Sec­
tions 3-5 describe qualitatively the mechanisms that com­
pose a gated-dipole opponent process and contrast them 
with the opponent-process model of Solomon and Corbit 
(1974). Sections 6-16 mathematically describe the neu­
ral circuits we have developed to carry out conditioned 
reinforcer leaming. Sections 17 and 18 display real-time 
computer simulations of the several types of conditioned 
reinforcer learning. Sections 19-31, in Part 11, use these 
quantitative results as a basis for providing qualitative ex­
planations of conditioning experiments in which condi­
tioned reinforcer leaming plays apart. The gated-dipole 
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Figure 4. Some simulated cOOlbinatioDS of conditioned stimulus 
(CS) and unconditioned stimulus (US) on individual trials: 
(a) primary excitatory conditioning; (b) secondary excitatory con­
ditioning; (c) primary inhibitory conditioning; (d) seconclary inhibi­
tory condiÜoning. Because a READ circuit does not, in itself, cause 
blocking of simultaneously presented CSS, CS onset times in (b) were 
chosen to be synchronous. When blocking mechanisms are added, 
as in Part 11, staggered CS. -CS2 onset times are necessary. 

mechanisms described herein characterize only one of 
several types of model circuits that compose the total neu­
ral architecture we use to explain these data about condi­
tioning. Mechanisms of attention, expectation, orienting, 
sensory and cognitive chunking, motor learning, and 
sensory-motor planning are no less irnportant than gated­
dipole mechanisms. Mathematical analyses and extensive 
computer simulations of these other types of mechanisms 
have been reported elsewhere (Bullock & Grossberg, in 
press; Carpenter & Grossberg, 1987, in press a, in 
press b; Cohen & Grossberg, 1986, 1987; Grossberg, 
1987a; Grossberg & Kuperstein, 1986; Grossberg & Le­
vine, in press). 

3. The READ Circuit: A Synthesis of 
Opponent Processing and Associative 
Learning Mechanisms 

A gated-dipole opponent process is a minimal neural 
network that is capable of generating a sustained but 
habituative on-response to onset of a cue, as well as a tran­
sient off-response, or antagonistic rebound, to offset of 
the cue (Figure 5). Properties ofthe on-response are used 
to explain excitatory conditioning, whereas properties of 
the off-response are used to explain inhibitory condi­
tioning. 
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Figure S. Example of a feedforward gated dipole. A sustained 
habituating on-response (top left) and a transient off-rebound (top 
right) are elicited in response to onset and offset, respectively, of 
a pbasic input, J (bottom left), wben tonic arousal, I (bottom center), 
and opponent proeessing (diagonal pathways) supplement the slow 
gating actions (square synapses). See text for details. 

In order to explain secondary conditioning, a gated­
dipole drcuit must also contain internal feedback path­

ways (Grossberg, 1972b, 1982a). Then a single CS, can 

engage in two types of events: The CS, ean learn to be­
come an excitatory conditioned reinforcer by being paired 
with a subsequent USo After conditioning occurs, offset 
of CS, can generate an antagonistic rebound that can con­

dition a subsequent CSz to become an inhibitory secon­
dary reinforcer. When a neural network contains inter­

nal feedback pathways, it is said to be recurrent. 

In order to explain these several types of eonditioned 
reinforcer leaming, such a reeurrent gated dipole must 
be joined to a mechanism of associative leaming. Thus 
the total circuit analyzed here is called a recurrent associa­

tive gated dipole (READ) dreuit. 

A number of design constraints must be satisfied simul­

taneously by a READ drcuit. Tbe opponent processing 

laws and the associative leaming laws must fit together 

in such a way that all the desired properties of conditioned 

reinforcer leaming obtain with a single choice of 

parameters. Moreover, the range of parameters for which 

this is true must be robust. A READ circuit contains 

processes that fluctuate on three different time scales-a 
fast activation time scale, a slower habituation time scale, 
and a yet slower conditioning time scale. As noted above, 

these processes are linked together by nonlinear feedback 

interactions, due to the recurrent anatomy of the circuit. 

The design of nonlinear feedback circuits that possess 
three distinct time scales is a difficult task in any seien-

tific discipline. That a READ circuit forms only one of 

the several circuits that are engaged during conditioning, 
and that all of these circuits interact via nonlinear feed­
back signals, highlights the difficulty of building a 

rigorous real-time conditioning theory. On the other band, 
many additional design constraints become evident when 

one actually attempts to build such a theory. The simul­
taneous satisfaction of these several stringent design re­
quirements has led us to some neurophysiologically test­

able predictions about how assodative learning is 
regulated by gated-dipole opponent processing. 

4. Qualitative Properties of aGated Dipole 

Four main ingredients go into the design of agated di­
pole: slowly habituating and recovering chemical trans­

mitters; opponent, or competitive, interactions between 
an on-channel and an off-channel; phasic inputs, such as 

a CS or US, that perturb the on-channel or the off-channel 
through time; and a sustained, or tonic, arousal input that 

equally perturbs both channels, thereby setting the sensi­
tivity of dipole outputs to phasic input fluctuations and 

providing the energy to generate an antagonistic rebound 
in response to offset of an input. 

Figure 5 describes the simplest type of feedforward, 
or nomecurrent, gated dipole. Figure 5 also schematizes 

how agated dipole can generate a sustained, but habitua­
tive, on-response to input onset, and a transient off­

response, or antagonistic rebound, to input offset. These 

reactions can be qualitatively explained as follows. (See 
Grossberg, 1972b, 1984b, 1987a, for quantitative mathe­
matical analyses.) 

A. Transmitter gating. Signals in both the on-channel 
and the off-channel are multiplied, or gated, by a chemi­
cal transmitter (square synapses) before the gated signals 
are further transformed by opponent processing. Each 
transmitter y(t) multiplies its input signal S(t) to form such 
agated output signal T(t); that is, 

T = Sy. (1) 

B. Slow transmitter habituation and recovery. Tbe 
transmitter y habituates and recovers according to the law 
(Grossberg, 1968, 1972b): 

d 
dt y = B(l-y) - CSy, (2) 

where B and C are positive constants. In Equation 2, the 

notation 9tY denotes the net rate of change of y. Term 
B(l-y) says that transmitter y recovers at a rate B until 

it reaches the target level 1. Term -CSy says that trans­

mitter y habituates at a rate proportional to its gating ac­

tion in Equation 1. 

Many refinements of the laws given by Equations 1 and 

2 have been described, including equations for transmit­

ter mobilization, post-tetanic potentiation, enzymatic ac­
tivation, and autoreceptive competition (Carpenter & 
Grossberg, 1981; Grossberg, 1969b, 1987a, 1987b). 

These refinements, albeit important for some purposes, 



do not play a major role in explaining qualitative proper­

ties of conditioned reinforcer learning. 

C. Overshoot and undershoot. A critical property for 
explaining conditioned reinforcer data is that the input sig­

nal S can fluctuate more quicldy than the transmitter y 

can react. This property leads to an overshoot in the out­

put T in response to onset of the input Sand an under­
shoot in T in response to offset of S (Figure 6). To see 

how this happens, note that in response to a constant in­
put of size S, Equation 2 implies that the transmitter y 
approaches the equilibrium value 

B 
y = B+CS . (3) 

In other words, larger signals S cause more transmitter 

habituation. On the other hand, the output signal that is 

generated by an input S does not equal y. The output sig­

nal is equal to T=Sy, due to Equation 1. 

Figure 6 describes how the output T reacts to changes 

in the size of the input S. A rapid increase in S from So 

to SI elicits a slow decrease in y, due to Equation 3. Mul­

tiplication ofthe graphs of S(t) and y(t) shows that a rapid 

increase in S generates a rapid increase in T, followed 

by a slow decrease, or habituation, of T to an intermedi­

ate level. In a similar way, a rapid decrease in S from 

SI to So generates a rapid decrease in T, followed by a 
slow increase, or habituation, to an intermediate level. 
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(FAST·SLOW) 
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I So I G 
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Figure 6. Reaction of output signal T and transmitter gate y to 
changes in input S. The output T is the product of a fast process, 
S, and a slow process, y. Overshoots and undershoots in T are caused 
by y's slow habituation to fast changes in S. 
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In all, rapid increases and decreases in the input S gener­

ate overshoots and undershoots in the output T due to the 
slow rate of reaction, or habituation, of the transmitter. 

These habituative reactions are fundamental to many basic 
properties of gated dipoles and, by extension, of condi­

tioned reinforcer learning. 

D. TonicaUy aroused transmitter gates in opponent 

processes. We can now explain the properties depicted 

in Figure 5. In such an opponent process, a phasic input 

(J) can elicit a sustained on-response, whereas offset of 

the input can elicit a transient off-rebound, or temporal 

contrast effect. These properties are explained as follows. 

The left-hand series of stages in Figure 5 represents the 

on-channel, and the right-hand series of stages represents 

the off-channel. Both channels receive an equal arousal 

input, denoted by I, that is constant through time. The 

arousal input provides the tonic internal activity that trig­

gers the antagonistic rebound that occurs after the on-input 

shuts off. The on-input, denoted by J, is delivered only 

to the on-channel. Input J is switched from zero to a posi­

tive level and held at that levellong enough for transmit­

ter habituation to occur. Then J is shut off. 

Inputs land J are added by the activity (or potential) 

Xl (t). Activity Xl (t) responds quicldy to input fluctuations, 

relative to the reaction rate ofthe network's slow transmit­

ter gates. The graph of Xl (t) has the same form as the top 

graph in Figure 6: a rapid switch from a lower positive 

activity to a higher positive activity, followed by a rapid 

return to the lower level. The activity Xl (t) generates an 
output signal g(XI (t» in its pathway that again has the form 

of a double switch between two positive values. The output 

signal g(x I (t» is gated by a slow transmitter YI (t) that ac­

cumulates and habituates within the square synapse in the 

on-channel. Figure 6 describes the effect of this slow gate 

on the input to the next stage. Consequently, activity Xl(t) 

follows an overshoot -habituation-undershoot -habituation 

sequence through time. Then Xl(t) relays an output sig­

nal of the same form to Xs (t). Activity Xs (t) also receives 
an inhibitory signal from X4(t). To determine what hap­
pens next, we consider the dynamics of the off-channel. 

The off-channel receives only the constant tonic input 

I. Hence x2(t) and the slow gate Y2(t) in the off-channel 
square synapses are constant through time. The activity 

X4(t) is therefore also constant through time. For definite­

ness, we make the simplest assumption that correspond­
ing stages in the on-channel and the off-channel possess 

the same parameters. Since the arousal input I to both 

channels is also equal, the size of X4 equals the baseline 

activity level of Xl(t). This is not always true, but its vio­

lation is easy to analyze after the symmetric case is under­

stood (Grossberg, 1984b). 

We can now determine the reactions of activity xs(t) 

through time. Since the signals from xl(t) and X4(t) sub­

tract before perturbing xs(t), and their baseline activities 

are the same, the baseline activity of xs(t) equals zero. 

Activity xs(t) thus overshoots and undershoots a zero base­
line when the input J is turned on and off. By contrast, 

activity X6(t) responds in an opposite way from xs(t) be-
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cause X3 excites X5 and inhibits X6, whereas X4 inhibits X5 

and excites X6. 

The final assumption is that the output signals caused 

by activities X5 (t) and x6(/) are rectified: outputs are gener­

ated only if these activities exceed a nonnegative thresh­

old. As a result, the on-channel generates a sustained out­

put signal while the input J is on. This output signal 

habituates as the gate YI (I) slowly equilibrates to the in­

put. By contrast, the off-channel generates a transient off­

response, or antagonistic rebound, after the input J shuts 
off. 

5. Comparison With the Solomon and Corbit 
Opponent-Process Model 

The antagonistic rebound in the off-channel of agated 

dipole is energized by an undershoot of the dipole's on­

activity functionx3 (Figure 5). In agated dipole, such an 

undershoot is due to habituation of the transmitter gate 

within the on-channel. Overshoots and undershoots have 

also been hypothesized to exist in alternative models of 

opponent processing, but the properties have not been 

traced to the action of a slowly habituating transmitter 

gate. For example, Solomon and Corbit (1974) and Solo­

mon (1980, 1982) described a model of opponent process­

ing in which overshoots and undershoots occur. These 

authors ascribed the overshoots and undershoots to the 

subtraction of two opponent processes that both evolve 

according to similar time scales (Figure 7). Neither 

process, in itself, undergoes an overshoot or an under­

shoot. Instead, overshoots and undershoots are derived 

from the assumption that the off-process begins to build 

up only after the on-process is initiated. Tbc model as­

sumes, in addition, that "the second component, the b 

process, is aroused via the arousal of a" (Solomon & Cor­

bit, 1974, p. 126). Neither assumption is made in a gated­

dipole opponent process, wherein the slow habituation of 

the transmitter gate within the on-channel generates an 

overshoot and an undershoot within that channel. Conse­

quently, in agated dipole, opponent processing per se be­

tween the on-channel and the off-channel generatcs the 

antagonistic rebound within the off-channel without neces­

sitating the hypothesis that on-channel activation triggers 

a delayed off-channel activation. 

Solomon and Corbit's (1974) opponent process is not 

defined by a dynarnic model such as the gated-dipole ar­

chitecture. Thus their model does not explain why the 

maximum size of the a process should sometimes, but not 

always, exceed the maximum size of the b process, or 

why the b process is delayed in time relative to the a 

process by just the right amount to produce an overshoot 

and an undershoot. The hypothesis that slowly habituat­

ing, tonically aroused transmitter gates exist in an oppo­

nent anatomy provides simple answers to all of these ques­

tions, and implies other properties that enable the gated­

dipole model to explain data about conditioned reinforcer 

learning. 

a 

---, / 

, b / 
'--_....-

a+b 

Figure 7. In the opponent-process model 01 Solomon (1982), over­
shoots and undershoots are caused by an excitatory process (a) and 
an inhibitory process (b), which both change at a similar rate such 
that (b) lags behind (a) and neither (a) nor (b) separately exhibits 

overshoots or undershoots. 

6. Laws for a READ Circuit 
Dynarnic equations for a READ circuit are described 

and explained in this section. Our analysis has revealed 

that several variations on the same basic network design 

have the properties that we desire. Whicb variation may 

exist in particular species is testable by neurophysiologi­

cal and anatomical techniques. Tbe simplest network vari­

ation is depicted in Figure 3. Tbis circuit will be defined 

first. Then the functional significance of its equations will 

be explained. After that, the equations corresponding to 

tbe other circuits will be explained. 

As in the nonrecurrent gated dipole described in Sec­

tion 4, the variables Xi describe cell potentials, or activa­

tions, and the variables Yi describe slowly habituating 

transmitter gates. In addition, the variables Zkl describe 

long-term memory (LTM) traces, or associative weights, 

that exist at the ends of the pathways from the sensory 

representations of CS and US cues to the on-channel and 

tbe off-cbannel ofthe gated dipole. The equations for the 

READ I circuit are as follows: 

READ I EQUATIONS 

ArousaI + US + Feedback On-Activation 

d 
dt Xl = -Axl + I + J + !(X7) (4) 



Arousal + Feedback OtT-Activation 

d 
dt X2 = -Ax2 + I + !(xs) 

On-Transmitter 

d 
dt YI = B(1-YI) - Cg(xl)YI 

Off-Transmitter 

d 
dt Y2 = B(I-Y2) - Cg(X2)Y2 

Gated On-Activation 

d 
dt X3 = -Ax3 + Dg(xdYI 

Gated Off-Activation 
d 
dt X4 = -Ax4 + Dg(X2)Y2 

Normalized Opponent On-Activation 

d 
dt Xs = -Axs + (E - XS)X3 - (xs + F)X4 

Normalized Opponent Off-Activation 

d 
dt X6 = -Ax6 + (E-X6)x4 - (x6+F)x3 

On-Activation by CS Inputs 

d 
-d X7 = -Ax7 + G[xsY + LE SkZk7, 

t k 

where [w]+ = max(w,O). 

Off-Activation by CS Inputs 

d 
-d Xs = -Axs + G[X6]+ + HE SkZkS 

t k 

On-Conditioned Reinforcer Leaming 

d 
dt Zk7 = Sk( -Kzk7 + L[xsY) 

Off-Conditioned Reinforcer Leaming 

d 
dt ZkS = Sk( -KzkS + L[X6n 

On-Output Signal 

0 1 = [xsJ+ 

Off-Output Signal 

O2 = [X6J+ 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 
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7. Tonic Arousal, Phasic US Input, 
and Feedback Signaling 

In Equations 4 and 5, term I denotes the tonically ac­

tive arousal level that sets the baseline sensitivity of the 

READ circuit and energizes its antagonistic rebounds. 

Term J in Equation 4 denotes the US input. This US in­

put corresponds to a primary US, not to a conditioned 

reinforcer that acquires US properties through condi­

tioning. 

Term!(x7 ) in Equation 4 describes the nonnegative sig­

nal that converts the on-channel into a positive feedback 

loop. In a similar fashion, term !(xs) in Equation 5 
describes the nonnegative signal that converts the off­

channel into a positive feedback loop. Terms -Ax l and 

-Ax2 in Equations 4 and 5, respectively, describe the pas­

sive decay terms whereby the potentials XI and X2 return 

to the equilibrium value O. The equations goveming aU 
the potentials XI contain such passive decay terms -Axl • 

For simplicity, the same parameter A was chosen in aU 
of these equations. 

8. Gating Fast Signals with Slowly 
Habituating Transmitters 

Equations 6 and 7 describe the dynarnics of the habitu­

ating transmitters YI and Y2 in the on-channel and the off­

channel, respectively. These equations are the same as 

Equation 2. In Equation 6, the nonnegative input signal 

S=g(xd, whereas in Equation 7, the nonnegative input 

signal S=g(X2)' 
Equation 8 describes the effect of the gated on-channel 

signal Dg(xl)YI on the next on-potential Xl. Potential Xl 

averages these gated signals through time at rate -A. In 

a similar fashion, Equation 9 describes the effect of the 

gated off-channel signal Dg(X2)Y2 on the next off-potential 

X4' 

9. Normalized Opponent Interactions 
Equations 10 and 11 describe the effects of opponent, 

or competitive, signals from Xl and X4 on the next on­

potential Xs and off-potential X6. Equation 10 is a mem­

brane, or shunting, equation of the form 

dV 
C dt = (V"- V)gP + (V+- V)g+ + (V-- V)g-, (18) 

where C is a capacitance (scaled to equal 1 for con­

venience); V", V+, and V- are saturation potentials; gP, 

g+, and g- are conductances; and V is a variable poten­

tial. See Grossberg (1982c, 1987a, 1987b) and Grossberg 

and Kuperstein (1986) for many applications ofthis equa­

tion. The additive equations 4,5, 7, and 8 may be inter­

preted as approximations to Equation 18 whose inputs are 

not large enough to drive their potentials elose to their 

saturation potentials y+ and V-. 

The crucial properties of a shunting equation can be ap­

preciated by studying its equilibrium values. At equili­

brium, 1;xs=o. Then Equation 10 implies 
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(E+F)(X3+X4) [X3 F J 
Xs = -- - -- (19) 

A+X3+X4 X3+X4 E+F 

(Grossberg, 1970, 1976b, 1983). In Equation 19, if 

X3+X4>A, then tenn (E+F)(X3+X4)(A+X3+X4t1 is ap­

proximately constant. Then Equation 19 implies that Xs 
is sensitive to the ratio X3(X3+X4t1 relative to the adap­
tation level F(E+F)-l. Thus Equation 10 automatically 

regulates the overall operating range of the circuit. In ad­

dition, xs>O in Equation 19 only if 

X3 F 
--- > --
X3+X4 E+F' 

(20) 

Since the output signal due toxs is [xsJ+ in Equations 12, 

14, and 16, all subsequent processing by the on-channel 

is controIled by whether or not the relative size of X3 to 

X4 enables ratio X3(X3 + X4t1 to exceed the constant adap­

tation level F(E + Ft1. Thus Equation 10 evaluates 
whether the total balance of all factors influencing the net­

work favors the on-channel over the off-channel enough 

to cause the inequality given in Equation 20 to hold. 

In the circuit depicted in Figure 3, we chose E=F in 

Equation 10. Then Equation 19 may be more simply writ­

ten as 

Xs = 
E(X3-X4) 

A+X3+X4 
(21) 

In this special case, Xs > 0 only if X3 > X4. Thus 

[xsJ+ > 0 only if the balance of all network factors favors 

the on-channel over the off-channel. In addition, the 

denominator A + X3 + X4 in Equation 21 ensures that xs, and 

likewise X6, computes a ratio scale, in addition to an op­

ponent scale, from X3 and X4' 
Equation 11 for X6 is the same as Equation 10 for Xs 

with the opponent input terms X3 and X4 reversed. Thus 

at equilibrium, when E=F in Equation 11, 

E(X4-X3) 
X6 A+X3+X4 

(22) 

By Equations 21 and 22, 

sgn(xs) = -sgn(x6) (23) 

where 

l
+lifW>O 

sgn(w) = 0 if.w = 0 

-1 if w < O. 

(24) 

In summary, if E=F, then Xs and X6 compute a normal­

ized opponent process. 

10. Positive and Negative Conditioned Reinforcer 
Inputs: Total Context Versos Individual Cue 

Equation 12 registers the nonnalized opponent signal 

[xsr from the on-channel, as weIl as a sum LEle SleZle7 of 

signals due to all CSs and conditioned USs. Tenn Sie is 

the output signal from the kth sensory representation. This 

signal is multiplied, or gated, by the LTM trace Zk7 at the 

end of the pathway from the kth sensory representation 

to the on-channel ofthe READ circuit. The sumLEle SleZle7 

is called the total positive contiittoned reinforcer signal. 
In a similar fashion, Equation 13 registers the nonnal­

ized opponent signal [X6]+ from the off-channel, as weIl 

as the total negative contiitioned reinforcer signal 
LEIeSIeZkS' Thus the output signal Sie from the kth sensory 

representation is gated by an L TM trace Zu abutting the 

READ on-channel anti an LTM trace ZIeS abutting the 

READ off-channel. Due to the opponent organization of 

the READ circuit, the kth sensory representation is a posi­

tive conditioned reinforcer if 

Zle7 > ZIeS (25) 

and a negative conditioned reinforcer if 

ZIc7 < ZkS. (26) 

These inequalities determine the conditioned reinforcer 

properties of a single sensory event. In general, many ac­

tive sensory events may simultaneously input to the READ 

circuit. Then the total behavioral environment behaves 

like a positive conditioned reinforcer context if 

E SleZle7 > E SIeZkS (27) 
k k 

and like a negative conditioned reinforcer context if 

E SleZk7 < E SkZkS (28) 
k k 

(Grossberg, 1972a, 1972b). Clearly, a positive condi­

tioned reinforcer context can obtain even if it contains ac­

tive negative reinforcers, and vice versa. 

11. Context-Dependent Adaptation Level 
and Associative Averaging 

The total positive and negative conditioned reinforcer 

signals interact within a gated-dipole circuit to cause 
context-dependent, and hence learning-dependent, shifts 

in the circuit's adaptation level (Grossberg, 1972b, 

1987a). The adaptation level is the baseline level oftonic 

activation that is maintained across both the on-channel 

and the off-channel of the circuit during a time interval 

that is long enough to modulate the circuit's habituation, 

rebound, or conditioning properties. Changes in the total 

configuration of conditioned reinforcing cues, including 

contextual cues, can dramatically alter the dynamics of 

a READ circuit by changing its adaptation level. This fact 

will be critical in explaining the data summarized in 

Part n. The main factors that control the circuit's adap­

tation level are now summarized. 

In the absence of any inputs to the gated dipole, both 
the on-channel and the off-channel become equally ac­

tive; thUSXl =Xl, Yl =Yl, X3=X4, XS=X6, andx7=XS' In the 
READ I circuit, the choice E=Fimplies, in addition, that 

XS=X6=0 by Equations 21 and 22, and thus thatx7=xs=0, 
by Equations 12 and 13. Consequently, in the no-input 

case, the adaptation level equals the tonic arousallevel I 

that is defined by Equations 4 and 5. 



In contrast, when conditioned reinforcers are active, 

the terrns!(x7) in Equation 4 and!(xs) in Equation 5 can 
cause an increase in the adaptation level. To understand 
this property more precisely, consider the following facts. 

The potentials X7 and Xs react quicldy to their input sig­

nals. Hence during a time interval when the conditioned 

reinforcer signals Sk are maintained, X7 and Xs can achieve 

an approximate equilibrium with respect to these signals. 

Then !X7==0 and !xs==O in Equations 12 and 13, 
respectively, whence 

G L 
X7 == A [xsr + A E SkZk7 (29) 

k 

and 

G L 
Xs == A [X6r + A E SkZkS. (30) 

k 

In Equations 4 and 5, we chOse!(X7} = Mx7 and!(xs) = 
Mxs in our computer simulations. Hence by Equations 29 

and 30, 

d MG ML 
dt Xt == -Axt + 1+ J + A [xsJ+ + A '7 SkZk7 (31) 

and 

d MG ML 
dt Xl == -Axt + 1+ A [X6]+ + A ;; SkZkS. (32) 

Guided by Equatiops 31 and 32, we define the circuit's 

adaptation level I by the minimum of I + J + 
~Lr,kSkZk7 in Equation 31 and of I + Mj"EkSkZU in 

Equation 32; that is, 

- ML ML 
I = min [I + J + A E SkZk7, I + A E SkZkS] (33) 

k k 

(Figure 8). In other words, i describes the tonic baseline 

due to the totality of intemally generated tonic arousal 
signals and extemally generated primary and secondary 
reinforcer signals. Variables X t and Xl in Equations 4 and 

5 activate XJ and X., which compete to generate Xs and 
X6 before these net activations regulate the READ circuit's 
antagonistic rebounds and conditioning signals. Thus the 

net input signal that determines whether rebounds or con­

ditioning will occur is the difference 

ML 
.1 = J + A ESk(Zk7-ZkS) 

k 

(34) 

of the total arousal and reinforcing signals I + J + 
Mj" r,kSkZk7 and I + Mj" r,kSKZU that define the adaptation 
level. If all primary reinforcers and conditioned rein­

forcers balance out so that .1=0, then their only effect 

on the gated dipole is to cause a shift in adaptation level. 

No new conditioning occurs under these circumstances 

because equal total inputs tOXt andxl causexS =x6=0 af­
ter the transmitter:gates Yt and Yl habituate to these equal 

total inputs. If I is very large but .1 is very small 
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Figure 8. (a) H tbe total input to tbe on-channel of tbe READ cir­
cuit is \arge, wbereas tbe tota1 input to tbe ofl-channel is smaIl, tben 
i is smaU and A is large and positive. (b) H tbe total inputs to both 
channels are large, then i is \arge and A Is smaIl. 

(Figure 8b), then any conditioning that does occur is 

weak, because Xs and X6 in Equations 21 and 22 would 

both be close to zero due to the nonnalization property. 

If .1 > 0, then conditioning of positive conditioned rein­

forcers occurs, due to Equations 21 and 14. If .1<0, then 

conditioning of negative conditioned reinforcers occurs, 

due to Equations 22 and 15. Thus a contextual cue that 
is a potent positive reinforcer can interfere with condi­

tioning of a discrete CS as a negative reinforcer, and vice 

versa. 
An important constraint on the terms j and .1 (see Part n 

for details) follows from the property that the total STM 

activation that reads out the signals Sk also tends to be 

nonnalized, or conserved, at each time (Grossberg, 
1972a, 1975, 1982c). This nonnalization property expli­

cates the concept of a limited-capacity STM, or working 
memory, that is operative during Pavlovian conditioning. 

In its simplest fonn, the nonnalization property may be 
realized by the constraint that 

E Sk = S = constant. 
k 

(35) 

It then follows from Equations 33 and 34 that both i and 

.1 are determined by a type of associative averaging, 

rather than by summation. In particular, tenn 

ESk(Zk7-ZkS) 
k 

(36) 

in Equation 34 is a weighted average, with weights equal 

to the net L TM strengths Zk7 - ZkS of the signals Sk. By 

Equation 36, any mechanism that increases a signal Sk that 

generates a net positive conditioned reinforcer input 
(Zk7 > zu) to the gated dipole a fortiori weakens the to­

tal net negative conditioned reinforcer input to the gated 
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dipole. On the other hand, such an increase may or may 
not increase the total net positive conditioned reinforcer 

input to the dipole, because the increase in one positive 

input may be balanced by a decrease in a different posi­

tive net input. Thus there exists an asymmetry in the net 
effect that an attention shift among the sensory represen­

tations may cause on the overall performance of a READ 
circuit. 

12. Associative Learning: Learned L TM 

Increases or Decreases Gated by es Read-Out 
Equation 14 describes the associative learning law 

whereby the positive conditioned reinforcer L TM trace 

is trained. This associative learning law was introduced 

into the associative learning literature by Grossberg 
(l969a) and has played a central role in the development 
of neural architectures in a variety of applications (Car­

penter & Grossberg, 1987, in press a; Cohen & Gross­

berg, 1987; Grossberg, 1982c, 1987a, 1987b; Grossberg 
& Levine, in press; Grossberg & Stone, 1986b). Recendy, 

direct neurophysiological evidence for this associative 

learning law has been reported (Levy, 1985; Levy, Bras­
seI, & Moore, 1983; Levy & Desmond, 1985; 

Rauschecker & Singer, 1979; Singer, 1983). In Equa­

tion 14, the signal S" from the kth sensory representation 

turns learning of the LTM trace Z"7 on and off. When 
S,,=O, learning turns off because f,Z"7=0. When 
S" > 0, leaming tums on. Thus activation of a sensory 

representation both reads out a conditioned reinforcer sig­
nal, via term SkZ"7 in Equation 12, and reads in new 

learned information, via Equation 14. When S" > 0, the 

LTM trace performs a time-average, at rate -KS1" ofthe 
learning signal LS,,[xs]+. As a result, the LTM trace Z"7 

attempts to track the normalized opponent signal [xsJ+ 
through time. In particular, during a time interval to~t~t, 
when S,,(t) equals a positive constant S", Equation 14 may 
be integrated to yield 

Z"7(t) = Zk7(to)e-KS,,(I-lo) + L r [xs(v)]+e-KS,,(,-v)dv. 
10 

(38) 

In other words, Z"7 performs a time-average of [xs]+ at 

a rate proportional to S". Due to this property, Z"7 can 
either decrease (when [xsJ+ becomes small for a time) or 

increase (when [xsJ+ becomes large for a time). This leam­

ing property is critical in our work. 

13. Dissociation of LTM Read-In and Read-Out: 

A Possible Role for Dendritic Spines 

A key property of the READ circuit may be understood 

by comparing Equations 12, 14, and 16. This property 

is the basis for the opponent extinction property (Sec­
tion 24) that is used to explain extinction of a conditioned 

excitor (Section 27) and nonextinction of a conditioned 

inhibitor (Section 28). 
By Equation 12, prior conditioned reinforcer learning 

is read out via term LE"S"Z"7 to activate the potential X7. 
In contrast, X7 does not appear in the leaming equation 14. 

~7 
X7 

.=~ 
~ 

tX
5 

Figure 9. A possible microarchitecture for dissociation ollong­
term memory (LTM) read-in and read-out. Individual LTM-gated 
sensory siguals, SkZk7, are read out into Iocal potentials tbat are 
summed by tbe total cell-body potential, X7, witbout significantly 
influencing each other's leamed read-in. In contrast, the input sig­

nal, xs, triggers a massive global cell activation that drives leamed 
read-in at all active L TM traces abutting tbe cell surface. Signal 
Xs also activates the cell-body potential x 7. 

Instead, [xs]+ appears in Equation 14. Thus LTM read­

out and LTM read-in are dissociated in Equations 12 and 
14. In addition, the term [xs]+' which is read into LTM 
by Equation 14, is the on-channel output signal, as in 
Equation 16. Thus the READ circuit embodies the intui­
tion that the signals that drive learning and elicit outputs 
to other circuits are the resultant of all the decision-making 
processes that take place within the circuit. In particular, 
[xsJ+ is a normalized opponent signal, whereas X7 is not. 

How can such a dissociation between LTM read-in and 

LTM read-out be physiologically implemented? The 

scheme we apply was introduced by Grossberg (1975; 

reprinted in Grossberg, 1982c) for this purpose. Figure 9 

schematizes this mechanism. Grossberg (1975) interpreted 

this formal mechanism in terms of the dynamics of large 

pyramidal cells which, in his application, were interpreted 
to occur in the hippocampus. These cells possess a large 

and complex dendritic tree whose activations and inhibi­

tions generate local potentials that flow into, and are aver­

aged by, the cell body. Due to the geometry and electri­
cal properties of such a dendritic tree, an input that 

activates a particular dendritic branch may not be in­
fluenced by inputs that activate different dendritic 

branches. In order to maximize the functional indepen­
dence of each conditionable input channel, it was assumed 

that the conditionable 



signals reach dendritic spines. Here they produce local 
potentials that propagate to the cell body where they in­
fluence axonal firing. We assume that the resistance in 

spines are such that it is much harder for a signal to pass 
between spines than from a spine to the cell body. . .. By 
contrast, ... feedback ... causes a spike potential, or similar 

global potential change, throughout the dendritic colurnn. 

This spike invades all the spines in its path and is suffi­
ciently strong to induce transmitter level changes in active 

S -+ A [conditionable] channels. Thus a mechanism using 

dendritic spines and dendritic spike generators (or some 
formally analogous mechanism) can allow S -+ A signals 

to occur without major changes in S -+ A synaptic trans­

mitter levels unless feedback invades the entire dendritic 

apparatus. (Grossberg, 1975, Section 21, p. 320) 

In Figure 9, the feedback signal that invades the entire 

dendritic apparatus equals [xs]+. Potential X1 computes the 

cell body activation that averages G[xs]+ with the total 

positive conditioned reinforcer input L Ek S.zk1 that is deli­

vered at spines distributed across the entire dendritic ap­

paratus. 
The same mechanism is used to interpret Equation 13. 

Here term G[X6]+ is the off-channel feedback signal and 

term LE.S.Z.8 is the total negative conditioned reinforcer 

input. 
Recent experiments have supported the hypothesis that 

synaptic plasticity may occur at the dendritic spines of 

hippocampal pyramidal cells (Lynch, 1986). In addition, 

the same functional properties that recommended dissoci­

ation of LTM read-in and LTM read-out during hippocam­

palleaming also recommended its use during associative 

leaming in mammalian neocortex (Grossberg, 1982b, 

1987a). Recent computer simulations of the unitization, 

or chunking, of cognitive recognition codes have argued 

for the functional importance of this concept in other cor­

tical systems (Cohen & Grossberg, 1987), but direct ex­

perimental evidence relevant to this prediction seems as 

yet to be lacking. 

14. Decoupling the Normalization and 
Opponent-Processing Stages 

The READ 11 circuit depicted in Figure 10 is mathe­

matically equivalent to the READ I circuit in Figure 3. 
The READ 11 circuit is included to point out that the nor­

malization and opponent-processing transformations, 

which are carried out in a single step by Equations 10 

and 11, may in principle be carried out separately in two 

successive steps. Such a dissociation may be necessary 

in vivo because the inhibitory saturation point -F in 

Equations 10 and 11 is often much smaller in absolute 

value than the excitatory saturation point E; that is, E~ F. 
In fact, cells are known to exist in which F is approxi­

mately zero (e.g., the bipolar cells of the retina; Gross­

berg, 1987b; Werblin, 1971). The equations for the 

READ 11 circuit are as follows. 
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Figure 10. A READ n cin:uit. This circuit Is mathematicaUy 
equivalent to tbe READ I dmdt deplcted In FIgure 3. In • READ n 
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log are separated Into two successive InbIbitory stages ratber tban 
belog lumped into ODe stage, as in tbe READ I circuit. See tellt for 

details. 

READ 11 EQUATIONS 

Equations 4-9 are the same as in the READ I circuit. 

The next equation performs a pure normalization, without 

opponent processing, due to the choice F==O of its inhibi­

tory saturation point. 

Normalized On-Activation 

d 
dt Xs == -Axs + (E - XS)X3 - XsX4 (39) 

Normalized Off-Activation 

d 
dt X6 == - Ax6 + (E-X6)X4-X~3. (40) 

These normalized activations compete at the next pro­

cessing stage to generate normalized opponent activations. 
Thus the variables Xs - X6 and X6 - Xs play the same role 

in the READ 11 circuit as do variables Xs and x 6, respec­

tively, in the READ I circuit. For notational simplicity, 

we do not represent the cells at which the opponent inter­

actions occur as a separate stage, although this is implicit 

in the equations. The remaining equations of the READ 11 

circuit are as follows. 

On-Activation by es Inputs 

d
d X1 == -Ax1 + G[XS-X6r + Lr:,SkZk7 (41) 
t k 
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Off-Activation by CS Inputs 

d 
-d Xs = -Axs + G[x6 -xs]+ + LESkZkS (42) 

t k 

On-Conditioned Reinforcer Learning 

d 
dt Zu = Sk( -Kzk7 + L[XS-X6]+) (43) 

Off-Conditioned Reinforcer Learning 

d 
dt ZkS = Sk(-KzkS + L[X6-XSr) (44) 

On-Output Signal 

O. = [XS-X6r 

Off-Output Signal 

O2 = [X6-XSr 

15. Comparison With Alternative 
Conditioning Models 

(45) 

(46) 

Although the READ 11 circuit is mathematically equiva­
lent to the READ I circuit, its equations make it easier 

to understand one of the circuit's key properties. In the 
associative equations 43 and 44, conditioned reinforcer 
learning is driven by the terms [xs - X6r and [X6 - xs]+. 

Thus learning occurs only if the net balance of all inputs 

to the gated dipole favors the on-channel or the off­

channel. Expressed in another way, LTM changes occur 

only if an increment occurs above a baseline of activation. 
A number of models have been formulated to express 

this type of intuition. Whereas the Rescorla and Wagner 
(1972) and the Sutton and Barto (1981) models have at­

tempted to represent all the factors that control the con­
ditioning process by using a single equation for learning 
by individual LTM traces, the Pearce and Hall (1980) 
model uses several equations: one for computing the at­

tentional parameters, one for excitatory associations, and 
one for inhibitory associations. Grossberg (1982a) 

itemized a number of basic experiments that these models 
cannot explain because they lump too many processes 

together. 
The READ 11 equations demonstrate in a real-time set­

ting that all of these models have attempted to express 

an important processing insight. The READ 11 equations 

also emphasize, however, that qualitatively different types 

of processes, such as gated-dipole opponent processes and 

CS-gated associative learning processes, interact with one 

another to generate these properties as an emergent 

property of the entire circuit, rather than as a direct 

property of a single synapse. This conclusion was also 
explicit in the READ circuit equations that were origi­
nally introduced in Grossberg (1972b) and further devel­

oped in Grossberg (1975). These circuits have stood the 

test of time and of subsequent data. Their further develop­

ment in this article through systematic computer simula­
tions demonstrates their robust ability to generate real-

time conditioning proftles that other conditioning models 
have not yet been able to explain. 

16. Presynaptic Gating Versos 
Postsynaptic-to-Presynaptic Feedback 

The READ m circuit depicted in Figure 11 is both 
physically and mathematically distinct from the READ I 

and READ 11 circuits, but its functional properties in com­
puter simulations are remarkably similar, both qualita­

tively and quantitatively, to those of the READ land 11 

circuits. In the READ I and 11 circuits, associative learn­
ing is controlled by a correlation between presynaptic and 
postsynaptic influences, such as Sk and [xs]+, respectively, 

in Equation 14. In contrast, within the READ m circuit, 
all of the learned changes in the LTM trace are mediated 

presynaptically. After describing the nature of these 
presynaptic influences, we also note that, in the absence 

of a specialized anatomical organization, their realization 
in vivo would be inconvenient at best. 

The possibility that associative influences may be medi­
ated presynaptically in some neural systems is consistent 

with some invertebrate data (Hawkins, Abrams, Carew, 
& Kandel, 1983). On the other hand, both invertebrate 

and vertebrate associative learning data also support the 
existence of postsynaptic influences (Alkon, 1979, 1984a, 
1984b; Levy, 1985; Levy et al., 1983; Levy & Desmond, 

1985; Rauschecker & Singer, 1979; Singer, 1983), and 

some associative properties, by their very definition, re­

quire a postsynaptic influence (Grossberg & Levine, in 
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Figure 11. A READ m circuit. Unlike tbe READ I and 11 cir­
cuits, learning in a READ m circuit is driven by tbe correlation 
or two presynaptic signals, ratber tban by tbe correlation or a 
presynaptic signal with a postsynaptic signal. Computer simulations 

or botb types or circuits generate similar results. 



press). Thus we present the READ m circuit to demon­

strate that the simulated conditioning properties we report 

do not, in themselves, rule out a purely presynaptic site 

for conditioning. 

READ m EQUATIONS 

Equations 4-9, 39-40, and 43-46 are the same as in 

the READ 11 circuit. The READ 11 and m circuits differ 

only in their equations for activation by es inputs. In both 

the READ land READ 11 circuits, the potentials X7 and 

Xs are influenced by normalized opponent signals from 

the prior processing stage of the gated dipole. In the 

READ m circuit, potentials X7 and Xs are influenced by 

normalized, but not opponent, signals from the prior 

processing stage. 

On-Activation by CS Inputs 

d 
-d X7 = -Ax7 + G[xsr + LESkZk7 (47) 

t k 

OtT-Activation by CS Inputs 

d 
-d X8 = -Axs + G[x6r + LESkZkS (48) 

t k 

The normalization stage, defined by Equations 39 and 

40, ensures that the potentials Xs and X6 compute ratios 

that are passed along the gated-dipole on-channel and off­

channel via Equations 47 and 48. In addition, these non­

negative output signals activate an opponent-processing 

stage to generate the output signals given in Equations 

45 and 46. As in Figure 11, these output signals are re­

layed along a bifurcating pathway. One branch of the path­

way carries outputs to other circuits. The other branch 

has a presynaptic modulatory effect on the L TM trace of 

its channel, as in Equations 43 and 44. 

In this circuit, a single output signal, say O. in the on­

channel, must presynaptically modulate the LTM traces 

Zk7 of all the sensory representations whose signals Sk can 

sampie the on-channel. In order to meet this requirement, 

either there exists a very large number of specific path­

ways branching from each READ m output pathway to 

the synaptic terminals of all eS-activated pathways, or 

all these synaptic terminals are grouped together function­

ally so that a single modulatory signal generated by each 

output pathway can spread to all the synaptic terminals 

that abut on its channel. Other things being equal, it seems 
far simpler, as in the READ land 11 circuits, to allow 

postsynaptic-to-presynaptic signals to influence each abut­

ting synaptic terminal via a direct local feedback process. 

17. Computer Simulations With the 
Read I Circuit: No Passive Extinction 

In each series of computer simulations, numerical 

parameters of the circuit were held fixed and several 

different experiments, characterized by different pairings 

of es and US inputs, were simulated. Then individual 
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parameters were altered and another complete series of 

simulations was undertaken. In this way, an understand­

ing of how each parameter influences network dynarnics 

was achieved. This and the next section summarize illus­

trative sets of computer simulations. Although the simu­

lation sets demonstrate the formal competence of READ 

circuits, they are not presumed to embody the fuH neural 

machinery engaged during conditioning. The results are, 

we suggest, necessary but not sufficient to explain con­

ditioning in vivo. These simulation results are used in 

Part 11, along with other modeling results, to suggest 

qualitative explanations of some difficult conditioning 

data. In particular, in Part 11 (Section 24) we show how 

the process of opponent extinction can extinguish LTM 

traces actively even if parameters are set, as in this sec­

tion, to prevent the LTM traces from extinguishing pas­

sively. 

The simulation series reported below tested the response 

of a READ circuit to the five experimental combinations 

of es and US inputs described in Figure 12. Figure 12a 

summarizes the es and US inputs used to study primary 

excitatory conditioning and extinction. In these simula­

tions, es. onset preceded US onset for 10 acquisition 

trials. Then the es. was presented alone for 10 extinc­

tion trials. In such a READ circuit, one mechanism of 

extinction is passive decay of conditioned reinforcer L TM 

strength when the es is active. We show that such decay 

may occur in some parameter ranges, but that essentially 

perfect conditioned reinforcer memory obtains in other 

parameter ranges wherein the full range of desirable cir­

cuit properties, notably large antagonistic rebounds, pre­

vails. Thus eS-contingent passive extinction may occur 

in some neural systems or species, but not others, due 

to evolutionary selection of a different choice of param­

eters. In circuits wherein passive extinction does not oc­

cur, an active extinction process may be controlled by aux­

iliary circuits (Grossberg, 1982c, 1987a). These auxiliary 

circuits match a learned expectation against the sensory 

events that actually occur. Amismatch may trigger a 

novelty reaction, which causes a burst of nonspecific 

arousal that can elicit an antagonistic rebound within the 

READ circuit. eonditioned reinforcer learning of an an­

tagonistic rebound within an off-channel can competitively 

inhibit prior conditioned reinforcer learning to the cor­

responding on-channel due to the opponent processing that 

occurs between channels before the circuit elicits an out­

put signal. This type of expectancy-mediated extinction 

mechanism is used to explain conditioning data in Part 11. 
Figure 12b summarizes the es and US inputs used to 

study primary inhibitory conditioning and extinction. In 

these simulations, US offset preceded es. onset for 10 

acquisition trials. Then the es. was presented alone for 

10 extinction trials. 

Figure 12c summarizes the es and US inputs used to 

study secondary excitatory conditioning. In these simu­

lations, the es. preceded the US for 10 acquisition trials. 
Then the eS1 and the eSl occurred together for 10 second-
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Figure 12. Input series in real time that were used in computer simulatiom: (a) primary excitatory conditioning and extinc­

tion; (b) primary inhibitory cOliditioning and extinction; (c) secondary excitatory conditioning; (d) secondary inhibitory condi­
tioning; (e) partial reinforcement. 

ary conditioning trials, thereby conditioning the es1 . 

Since an isolated READ circuit does not include the 
limited-capacity attentional mechanisms that regulate 
blocking and overshadowing (Grossberg, 1982c, 1987a; 

Grossberg & Levine, in press), the esz is not blocked 
by the es. when they are simultaneously presented. 
Simultaneous presentation of es. and esz has much the 
same effect on READ circuit secondary conditioning as 
would onset of a sustained es. before onset of the es1 . 

Simultaneous presentation is therefore reported here for 
simplicity . 

Figure 12d summarizes the es and US inputs used in 
secondary inhibitory conditioning. Here, the es. was 

paired with the US for 10 acquisition trials. Then es. off­
set preceded eS1 onset for 10 secondary conditioning 
trials. 

Figure 12e describes the es and US inputs used in ex­
citatory partial reinforcement. In these simulations, es. 



and US pairing altemated with presentation of the eSi 
alone for 20 trials. As noted above, the conditioning that 
occurs within an isolated READ circuit, whether due to 
continuous reinforcement or partial reinforcement, is not 
modulated by expectation mechanisms. Such modulation 

can yield higher asymptotic response levels under partial 
reward than under continuous reward (Grossberg, 1975; 

reprinted in Grossberg, 1982c), as also occurs in many 
experimental paradigms (Boren, 1961; Brogden, 1939; 
Felton & Lyon, 1966; Gibbon, Farrell, Locurto, Dun­
can, & Terrace, 1980; Gibbs, Latham, & Gormezano, 

1978; Gonzalez, 1973, 1974; Perkins et al., 1975; 
Schwartz & Williams, 1972; Wasserman, 1974; Wasser­
man, Hunter, Gutowski, & Bader, 1975). This type of 
enhancement effect does not occur in an isolated READ 

circuit. The discussion in Part n describes how the inter­

action of expectation mechanisms with READ circuit 
mechanisms can yield higher asymptotes and more resis­

tant extinction during partial reward than during continu­

ous reward. 
Figures 13-17 depict aseries of simulations using a 

fixed set of numerical parameters. Each curve depicts the 
real-time behavior of an activation (STM trace) or adap­

tive weight (LTM trace) of the READ I circuit. Due to 
the fact that each variable fluctuates over a different range 
of numerical values, each curve has been normalized to 

fit within an interval of fixed height. We call particular 
attention to the following features of these conditioning 

curves. 
eonsider Figure 13 for defmiteness. This figure depicts 

a simulation of excitatory primary conditioning using the 
inputs in Figure 12a. Because the US is presented to the 

on-channel, the on-transmitter Yi in Figure 13 undergoes 
aseries of habituation-accumulation cycles on successive 
learning trials, as schematized in Figure 6. Due to these 
reactions, the on-activations throughout the circuit un­
dergo overshoot -habituation-undershoot -habituation cy­
cles through time, also schematized in Figure 6. The vari­
ables Xs and X6 in Figure 13 illustrate these properties. 

The variable eScON describes conditioning of the 
LTM trace within the pathway from the sensory represen­

tation of the eSi to the on-channel of the READ circuit. 
Notice that after the 10 acquisition trials terminate, fu­
ture presentations of the eSi alone on extinction trials do 
not cause delay of the eScON LTM trace. For this choice 
of parameters, memory is essentially perfect. Forgetting 

is due to active relearning, notably counter-conditioning 

of eScOFF, as in the interference theory of forgetting 

(Adams, 1967; Grossberg, 1972b). 

Another important feature of circuit dynamics is seen 

in the output functions [xs]+ and [X6J+ of the on-channel 
and off-channel, respectively. Because the output signals 

are rectified, they generate sustained but habituative on­

reactions and transient off-reactions, as schematized in 

Figure 5. 

Figure 14 summarizes a simulation of inhibitory pri­
mary conditioning obtained through a backward condi­
tioning procedure, using the inputs depicted in Fig-
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ure 12b. In this simulation, the LTM trace eSi-OFF is 
the one that leams. This is the LTM trace in the pathway 

from the sensory representation of the eSi to the off­
channel of the READ circuit. eonditioning of the off­
channel is due to the antagonistic rebounds that occur af­

ter the US to the on-channel is terminated. These an­
tagonistic rebounds, in turn, are caused by the habitua­

tion of the transmitter gate Yi in the on-channel. Note that 
these rebounds also cause habituation of the transmitter 

gate Yl in the off-channel, but that Yl habituates during 
time intervals when Yi is recovering. 

An important point of comparison between Figures 13 
and 14 concems the maximum sizes achieved by the con­

ditioned LTM traces es i-ON and eSi-OFF, respectively. 
These maximum sizes (35.8 and 55, respectively) are 
commensurate. The existence of relatively large values 

of off-LTM traces tended to covary in our simulations 
with the persistence of memory during extinction trials. 
Large off-LTM traces and good memory went band in 
hand. It is still too soon to say whether this is a general 

property of READ circuits, and thus a property upon 

which an experimental prediction can securely be based. 

On the other hand, it is an interesting correlation that 
deserves further study. 

In order to study the covariation of extinction with large 
off-rebounds, we did parametric studies, varying the feed­
back coefficient M in Equations 31 and 32 from .01 to 

.07. In Figures 13-17, we chose M=.05. For this 
parameter choice, the off-LTM trace slowly decays to ap­

proximately 70% of its maximal value during successive 
presentation of the es alone. A similar decay occurs given 

choices of M between .01 and .05. 
Figure 15 depicts a simulation of excitatory secondary 

conditioning using the inputs summarized in Figure 12c. 

The LTM trace es i-ON grows during the first 10 trials 
and is then used to induce growth of the LTM trace es1 -

ON during the next 10 trials, without undermining its own 
LTM strength. The size (37.7) of eSi-ON after 10 ac­
quisition trials is larger than the size (33.3) of eS1-ON 
after 10 acquisition trials. Thus, secondary conditioning 
generates significant LTM strength in this READ circuit, 
but not LTM strength as great as that generated due to 
primary conditioning. 

Figure 16 depicts a simulation of inhibitory secondary 
conditioning using the inputs summarized in Figure 12d. 
These simulations fuHy exploit the fact that the READ 
circuits contain positive feedback loops. Grossberg 

(1972b, 1975) was the first to note that in order for a eSi 
to be conditionable either directly to the on-channel or 

to an antagonistic rebound in the off-channel, its LTM 

traces must contact the gated dipole at a stage subsequent 

to the habituative transmitter gates. In order for offset of 

a eSi to cause an antagonistic rebound, its LTM traces 

must contact the gated dipole at a stage prior to the habitu­

ative transmitter gates. In order for the same stage of L TM 

contact with the gated dipole to occur both subsequent to 
and prior to the habituative transmitter gates, the gated 

dipole must contain positive feedback pathways. In Fig-
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Figure 13. Computer simulation of primary excitatory conditioning and extinction witb slow habituation 
and )arge feedback in a READ I circuit. The conditioned stimulus (CS,) is paired with the UDconditioned 
stimulus (US) during tbe ru-st 10 simulated triaIs, and CS, is presented in tbe absence of tbe US in the next 
10 simulated trials. The numbers ahove eacb plot are the maximum and minimum values of tbe plot. 
Parameters areA=l, B=.005, C=.00125, D=20, E=20, F=20, G=.5, H=.005, K=.025, L=20, M=.05. 
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Figure 14. Computer simulation of primary inbibitory conditioning and extinction witb s10w habituation 
and large feedback in a READ I circuit. The conditioned stimulus (CSl ) is presented after tbe off set of tbe 
unconditioned stimulus (US) during the first 10 simulated trials, and CSl is presented in tbe absence of tbe 
US in the next 10 simulated trials. The parameters are tbose given in Figure 13. 
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Figure 15. Computer simulation of secondary excitatory conditioning witb 510w habituation and large feed­

back in a READ I circuit. The first conditioned stimulus (CSl ) is presented with the nnconditioned stimulus 
(US) during the rJl'St 10 simulated triaJs, and CS l is presented with CSz in the absence of the US in the 
next 10 simulated trials. The parameters are those given in Figure 13. 
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Figure 16. Computer simulation of secondary inhibitory conditioning with slow habituation and large feed­
back in a READ I circuit. The fU"St conditioned stimulus (CS l ) is presented with the unconditioned stimulus 
(US) during the first 10 simulated trials, and CS2 is presented after CSl offset in the absence of the US in the 
next 10 simulated trials. The parameters are those given in Figure 13. 
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ure 16, CScON grows on the first 10 trials, due to pair­
ing with the US, whereas CS2-OFF grows on the next 10 

trials, due to pairing with the antagonistic rebound caused 
by the offset of CSI. The maximum size (42.4) of CSc 

ON during the first 10 trials is smaller than the maximum 
size (52.3) of CS2-OFF during the next 10 trials. 

Figure 17 describes a simulation using the partial­
reward schedule described in Figure 12e. The rate of ac­

quisition is less than that in the continuous-reward case 
of Figure 13. Because memory is essentially perfect dur­
ing passive extinction trials, the asymptotic associative 

strength can grow to dose to that achieved using continu­
ous reward. Because this READ circuit is not linked to 

expectation mechanisms, the nonoccurrence of an ex­
pected US, or the occurrence of an unexpected US, on 

later conditioning trials has no influence on the course 
of conditioning when the CS is presented alone. 

Key properties of these computer simulations tend to 

be supported by experimental data. These simulations do 

not incorporate a number of the model' s attentional and 

expectancy mechanisms used to analyze data in Part n, 
but their properties are consistent with data wherein such 
mechanisms do not play a rate-limiting role. 

In the case of excitatory conditioning (Figure 13), simu­

lations show conditioned responses (CRs) of increasing 
amplitude over trials, as has often been described in das­

sical conditioning (see, e.g., Gormezano, Kehoe, & Mar­

shall, 1983). 
Rescorla and LoLordo (1965) and Siegel and Domjan 

(1971) found that backward conditioning procedures, as 
described in Figure 14, yield inhibitory conditioning. 
Zimmer-Hart and Rescorla (1974) found that inhibitory 
conditioning does not extinguish after presentations of the 
CS alone. in agreement with Zimmer-Hart and Rescorla 
(1974), there exists a parameter range for the READ cir­
cuit such that complete extinction of the CS-OFF associ­
ation does not occur due to presentation of the CS alone. 

In the READ circuit, extinction of the CSI-ON associ­

ation does not affect the CS2-ON association. This result 
agrees with data obtained by Rizley and Rescorla (1972), 

who used rats as subjects in an aversive conditioning 
paradigm, and by Holland and Rescorla (1975), who also 

used rats as subjects, but in an appetitive paradigm. On 

the other hand, there exist several experimental paradigms 
(Leyland, 1977; Lysle & FowIer, 1985; Miller & Schacht­

man, 1985; Rashotte, Griffin, & Sisk, 1977) in which ex­

tinction of a given stimulus cansignificantly influence the 

behavioral efficacy of other conditioned stimuli. In Part n, 
we append READ circuit mechanisms to cognitive modu­

latory circuits to illustrate how such an augmented cir­

cuit can be used to analyze such data. 

18. Computer Simulations in Other Parameter 
Ranges: Responses to Stimulus Transients and 
Passive Extinction 

The simulations depicted in Figures 18-21 show how 
speeding up the habituation and accumulation rates of the 

transmitter gates influences circuit dynamics. In Figures 

18 and 19, the rates chosen are twice as fast as those in 

Figures 13-17. In Figures 20 and 21, the rates chosen 

are four times as fast as those in Figures 13-17. In Figures 
18 and 20, the simulations are of excitatory secondary 
conditioning. In Figures 19 and 21, the simulations are 

of inhibitory secondary conditioning. These simulations 
illustrate the robustness of READ circuit properties within 
a physically plausible parameter range. The faster habitu­

ation rate causes a more rapidly falling overshoot in cir­
cuit activations, and thus an accentuation of transient, 
rather than sustained, responses to the CS and USo Other­
wise, the qualitative properties of conditioning are 

preserved across these parameter changes. 

Figures 22-26 depict a compiete set of simulations in 
a parameter range wherein passive extinction occurs when 
the CS is not followed by aUS. The READ circuit in 

which passive extinction occurs has the same parameters 
as the READ circuit depicted in Figures 20 and 21, with 

one exception: In Figures 22-26, the parameter that con­

trols the strength of the positive feedback signals from 

X7 ..... Xl and X8 -> X2 was chosen to be smaller. 
Several functional properties of the READ circuit 

changed as a result of this single change in parameters. 

As already mentioned, passive extinction occurs in all of 
Figures 22-26. In addition, antagonistic rebounds are 
smaller, so inhibitory conditioning is weaker (Figures 21 

and 25) relative to the corresponding level of excitatory 
conditioning (Figures 22 and 24). Finally, due to the pas­

sive extinction that can occur on nonrewarded trials, both 

the rate and the asymptote of leaming are less in the 
partial-reward case (Figure 26) than in the continuous­
reward case (Figure 22), unlike the partial-reward case 
in which no passive extinction occurs (Figure 17). Despite 

these quantitative changes, the READ circuit continues 
to exhibit the main qualitative conditioning properties that 
are exhibited in its other displayed parameter ranges. 

These results show that the circuit's emergent properties 
are robust over at least four- to fivefold changes in the 

size of key parameters. 

PARTll 

19. The Relationship Between Conditioned 
Inhibition and Blocking Paradigms 

When a conditioned stimulus, CS!, is appropriately 

paired with a shock US in a conditioned-suppression 

paradigm, it can become a conditioned excitor, as mea­

sured by a decreased suppression ratio, an increased 

response latency, or other indices of conditioned fear 

(Lysle & Fowler, 1985; Miller & Schachtman, 1985). If 

simultaneous pairing of the CSI with another conditioned 
stimulus, CS2 , is followed by a no-shock interval, the CS1 

can become a conditioned inhibitor, as tested by an in­

creased suppression ratio, a decreased response latency, 
and so on. Conditioned inhibitors elicit a number of para­

doxical behavioral properties, which have attracted intense 

experimental interest. 
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Figure 17. Computer simulation of partial reinforcement with slow habituation and large feedback In a READ I 
circuit. Tbe conditioned stimulus (CS\) is alternately presented with the unconditioned stimulus (US) and without 
the US during 20 simulated trials. Tbe parameters are those given in Figure 13. 
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FiguR 18. CCHIlputer simulation of secondary excitatory coDditioDiDg wilb iDtennediate habituation and large 

feedback in a READ I circuit. The fU"St conditioned stimulus (CSl ) is presented witb tbe UDconditioned stimu­

lus (US) during tbe fll"St 10 sinluIated trials, and CSz is presented witb CS, in tbe absence of tbe US in tbe 

next 10 simulated trials. The parameters are tbose given in Figure 13, except tbat B = .010 and C = .0025. 
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Figure 19. Computer simulation of secondary inhibitory conditioning witb intennediate habituation and large 
feedback in a READ I circuit. The first conditioned stimulus (CSI) is presented with the unconditioned stimu­
lus (US) during the first 10 simulated trials, and CS2 is presented after CS1 orrset in tbe absence of the US 

in the next 10 simulated trials. The parameters are those given in Figure 18. 
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Figure 20. Computer simulation of secondary excitatory conditioning with fast habituation and large feed­
back in a READ I circuit. The rarst conditioned stimulus (CS!) is presented with the unconditioned stimulus 
(US) during the first 10 simulated trials, and CS! is presented with CSz in the absence of the US in the next 

10 simulated trials. The parameters are those given in Figure 13, except that B=.020 and C=.OOS. 
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Figure 21. Computer simulation 01 secondary inhibitory conditioning with fast habituation and large feedback 

in a READ I circuit. The rll'St conditioned stimulus (CS) is presented witb the unconditioned stimulus (US) during 

the rll'St 10 simulated trials, and CSz is presented after CS) offset in the absence of the US in the nen 10 simulated 

trials. The parameters are those given in Figure 20. 
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FiguR 22. Computer simuIation or primary excitatory conditioning and extinction witb s10w habituation and 
smaIl feedback in a READ I circuit. The conditioned stimulus (CS) is paired witb tbe unconditioned stimulus 
(US) during tbe first 10 simulated triaIs. and CS) is presented in tbe absence oftbe VS in tbe next 10 simulated 
triaIs. The parameters are tbose given in Figure 20, except tbat M=.OI. 
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Figure 23. Computer simulation of primary inhibitory conditioning and extinction with sIow habituation and 

small feedback in a READ I circuit. Tbe conditioned stimulus (CSl) is presented after the off set of the uncondi­

tioned stimulus (OS) during the first 10 simulated triaIs, and CSl is presented in the absence of the US in the 
next 10 simulated triaIs. Tbe parameters are those given in Figure 22. 
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Figure 24. Computer simulation of secondary excitatory conditioning with slow babituation and smaII feed­
back in a READ I circuit. 1be fU'Sl conditioned stimulus (CSl) is presented with the unconditioned stimulus 

(US) during the first 10 simulated triaIs, and CSl is presented with CSz in the absence of the US in the 

next 10 simulated trials. 1be parameters are those given in Figure 22. 
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Figure 25. Computer simulation of secondary inhibitory conditioning with slow habituation and smaII feed­
back in a READ I circuit. Tbe fU"St conditioned stimulus (CS1) is presented with the unconditioned stimulus 
(OS) during the first 10 simulated triaIs, and CSz is presented after CS1 off set in the absence of the US in the 
next 10 simulated triaIs. Tbe parameters are those given in Figure 22. 
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Figure 26. Computer simulation of partial reinforcement with slow habituation and small feedback 

in a READ I circuit. The conditioned stimulus (CS!) is alternately presented with the unconditioned 
stimulus (US) and without tbe US during 10 simulated triaIs. The parameters are those given in Figure 22. 

The experimental paradigm for training a conditioned 

inhibitor is similar to the blocking paradigm (Kamin, 

1968, 1969). In a blocking paradigm, the CS! may be 

paired with a shock USo Then the CS l and CS2 are simul­

taneously presented, but are also followed by a shock USo 

The key question in blocking concerns why the CS2 does 

not become, at least asymptotically, a conditioned exci­

tor. How does prior fear conditioning ofthe CS l "block" 

subsequent fear conditioning of the CS2? 

The blocking paradigm and the conditioned inhibition 

paradigm thus differ primarily in terms of the conse­

quences ofCS l +CS2 presentations. In blocking, the con-



sequence is adefinite US event. In conditioned inhibi­

tion, it is the nonoccurrence of the expected US event. 

There exists a continuum of other experimental possibili­

ties in which the compound stimulus CS, +CS2 may be 

followed by a US that differs from the original US, for 

example, in its intensity. Then conditioning of the CS2 

may undergo unblocking. From this perspective, proper­

ties of conditioned inhibition rnay be interpreted as a limit­

ing case of unblocking properties.
2 

Herein we join the computer simulations of READ cir­

cuit dynamics that are described in Part I to the additional 

cognitive-emotional mechanisms schematized in Figures 

1 and 2 to provide a unified real-time explanation of key 

data about conditioned inhibition. In partieular, this ex­

planation clarifies how, despite their similarity, blocking 

and conditioned inhibition paradigms generate such differ­

ent behavioral properties. 

20. Conditioned Inhibition as a "Slave" Process 
Our analysis takes as its point of departure the serninal 

experiments, modeling concepts, and general data discus­

sions provided by Lysle and Fowler (1985) and Miller 

and Schachtman (1985). Many related experiments will 

be clarified along the way. 

One motivation for Lysle and Fowler's (1985) experi­

ments was the fact that several predictions of the Rescorla 

and Wagner (1972) model failed to be experimentally con­

firmed in later studies. In particular, a conditioned inhi­

bitor CS2 does not extinguish when it is presented alone, 

unlike a conditioned excitor (DeVito, 1980; Owren & 

Kaplan, 1981; Witcher, 1978; Zimmer-Hart & Rescorla, 

1974). In addition, a neutral stimulus presented with a 

conditioned inhibitor CS2 does not acquire excitatory value 

(Baker, 1974). The experiments Lysle and Fowler (1985) 

designed to further probe these properties led them to con­

clude that conditioned inhibition is a "slave" process to 

conditioned excitation. This concept was experimentally 

defined and tested using the following general type of 

paradigm, whose many controls will not be reviewed here. 

First, a CS, was paired with a shock USo Next, a com­

pound stimulus CS, +CS2 was followed by a no-shock in­

terval. Then a number of different manipulations were 

carried out on several different groups of animals. In one 

group of anirnals (denoted by CS,[CS2 ]), the CS, was ex­

tinguished by being followed by a no-shock interval. In 

another group of animals (denoted by X[CS2]), the train­

ing context X was extinguished by being followed by a 

no-shock interval. In a third group of animals (denoted 

by N[CS2]), neither CS, nor X was extinguished. Then 

a retardation test was performed to discover how quickly 

the conditioned inhibitor CS2 could be trained as a condi­

tioned excitor by being randomly paired with shock on 

50% of its trials. The data showed that conditioned sup­

pression developed least rapidly for the N[CS21 group, 

more rapidly for the X[CS21 group, and most rapidly for 

the CS,[CS21 group. Indeed, the CS,[CS21 group devel­

oped suppression almost as rapidly as comparison groups 

that were tested using a novel CS rather than CS2 • In other 
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words, prior extinction of the conditioned excitor CS, 

seemed to deactivate the conditioned inhibitory proper­

ties of CS2 in the subsequent retardation test, as did, to 

a lesser extent, extinction of the context X, whieh had 

also acquired properties of a conditioned excitor. 

To further analyze these properties, Lysle and Fowler 

(1985) tested whether fear of the CS2 or the US was in 

the test context or in the animal. In the latter case, "a 

nonassociative mechanism could be postulated whereby 

inhibition is motivated and thus maintained by an excita­

tory representation of generic form" (Lysle & Fowler, 

1985, p. 83). To this end they performed experiments that 

demonstrated that if, in conjunction with extinction of the 

conditioned excitor CS" 

the anima! receives presentations in a different context of 
the US by itself, for a novel es, or correlated either posi­
tively or negatively with [es,], then the inhibitory property 
of [es.] will be maintained without loss .... Furthermore, 
if, foJlowing extinction in the origina! context, the animaI 

receives US presentations for the same or a different es 
in that context, then the inhibitory propeny of [es.] will 
be restored apparently to fuJl strength. (Lysle & Fowler, 
1985, p. 90) 

The remarkable aspect of these results is that such flexi­

ble relationships between the extinction and retraining of 

conditioned excitatory events and a conditioned inhibitor 

can have such dramatic effects upon how and whether the 

conditioned inhibitory property manifests itself in a test 

context. 

The fact that extinction of the conditioned excitor CS, 

deactivates the conditioned inhibitory properties of CS2 , 

but reconditioning in another context reinstates CS2 as a 

conditioned inhibitor, prompted Lysle and Fowler (1985) 

to propose that conditioned inhibition is a "slave" process 

to conditioned excitation. 

21. Conditioned Inhibition as 
a "Comparator" Process 

According to Rescorla (1968), excitatory conditioning 

is obtained whenever P(US/CS) > P(US/CS), inhibitory 

conditioning when P(US/CS) < P(US/CS), and no con­

ditioning when P(US/CS) = P(US/CS), where CS 

denotes "no CS." 

In a more recent exploration of contingency effects on 

classieal conditioning, Miller and Schachtrnan (1985) fur­

ther analyzed these properties by paying partieular atten­

tion to how the context X may become conditioned to the 

US, and the effects of such associations on conditioned 

inhibition and excitation. They therefore controlled both 

the probability P(US/CS) and the probability P(US/CS). 

They noted that if P(US/CS) = .33 and P(US/CS) = 0, 

then the CS became a conditioned excitor. In contrast, 

if P(US/CS) = .33 but P(US/CS) = .67, then the CS 

became a conditioned inhibitor. Thus, knowing P(US/CS) 

alone is not sufficient to predict the excitatory or inhibi­

tory properties of the CS. The relevance of context-US 

associations was vividly raised by this manipulation, since 

during P(US/CS) trials, no CS occurred. 
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Miller and Schachtman (1985) explored the role of 

eontext-US associations and showed that the "critical fae­

tor was whether or not unsignaled shocks were given in 

the conditioning context" (p. 60). They did this by train­

ing two experimental groups [P(US/CS) = .33, 

P(US/CS) = .67 and P(US/CS) = .33, P(US/CS) = 0] 

in an experimental context A. They then broke up each 

group into two test groups, and tested one group's reac­

tion to the CS in context A and the other group's reac­

tion to the CS in a novel context B. Both groups that were 

trained on P(US/CS) = .33, P(US/CS) = .67 showed 

short-latency responses to the CS, whereas both groups 

trained on P(US/CS) = .33, P(US/CS) = 0 showed long­

latency responses to the CS. Thus, if the CS was trained 

as a conditioned excitor, it preserved this property in either 

the training context or a novel context. The same was true 

if the CS was trained to be a conditioned inhibitor. The 

latter result is of particular interest, since it demonstrated 

that a conditioned inhibitor could maintain its inhibitory 

property in a novel context B in which no exeitatory eon­

ditioning had taken place. In particular, the inhibitory ef­

feet of the CS in this situation could not be due to the 
unmasking in context B of a weaker excitatory effect than 

that wh ich was eonditioned to the training context A. 

After conducting a variation of this paradigm, Miller 

and Schachtrnan (1985) concluded that "the training 10-
cation as opposed to the test location plays the role of the 

associative comparator in determining whether or not a 

CS will be an effective conditioned inhibitor or condi­
tioned excitor" (p. 61). To show this, they again chose 

P(US/CS) = .33 with CS conditioning occurring in con­

text A; this time, however, no unsignaled shocks were 

delivered in context A, and for half the animals the prob­

ability of unsignaled shock in eontext B was .67. Testing 
of the CS in either context A or context B showed that 

it was a source of conditioned excitation, independent of 

the occurrence of signaled shocks in eontext Band, as 

in the past experiment, independent of which context was 

used for testing. 
An interesting finer point in these results was that the 

total conditioned excitatory effect of the CS was not sig­

nificantly increased by testing it in the fearful context B. 

This result is consistent with the property of associative 

averaging, rather than associative summation, of the to­

tal amount of conditioned fear (Section 11). 

Miller and Schachtman (1985) realized that different 

temporal contingencies were imposed by training and test­

ing in the same or different contexts. They particularly 

noted data of Kleiman and Fowler (1984) wherein 

unsignaled shocks delivered in moderately elose temporal 

proximity to a nonreinforced stimulus (but not so elose as 

to produce excitatory conditioning) will increase the effec­

tive inhibitory strength of this stimulus relative to that 

produced by unsignaled shocks delivered in the middle of 

the intervals between presentations of the target stimulus. 

(Miller & Schachtman, 1985, p. 63) 

We will traee this temporal effeet to whether eondition­

ing occurs to a directly aetivated on-channel or to an in-

direetly aetivated antagonistic rebound within an off­
channel. 

Miller and Schachtman (1985) discovered an important 

asymmetry in the proeessing of a conditioned inhibitor 

when they "asked whether the comparator baseline was 

the excitatory value of the conditioning context at the time 

of conditioning or at the time of testing" (p. 64). To test 

this, they inflated or deflated the associative value of the 

context during the retention interval before the test be­

gan. For example, after training on P(US/CS) = .33, 

P(US/CS) = .67, they deflated the context in one group 

by extinguishing it on P(US/CS) = O. Then the CS was 

tested in both the deflated group and a nondeflated group. 

The CS elicited a longer liek latency after eontext defla­

tion than in the absence of context deflation. This is a re­

markable result, because it was accomplished without pre­

senting either the CS or the US in the P(US/CS) = 0 sit­

uation. Miller and Schachtman conc1uded that 

the comparator baseline is the current associative value of 
the conditioning context rather than the associative value 

of the conditioning context at the time of conditioning .... 
The critical comparison does not occur until the time of 

testing. Thus the information retained over the retention 

interval is apparently the independent associative strengths 

of the CS, i.e., P(US/CS), and the conditioning context, 

i.e., P(US/CS), rather than solely the outcome of the com­

parison, i.e., P(CR/CS). (p. 65) 

We will show how a combination of an adaptation level 

shift, associative averaging, and antagonistic rebound 

properties can explain this result, in mueh the same way 

that it can explain the finding ofBottjer (1982) that a novel 

stimulus presented just before the CS can restore the in­

hibitory power of the CS. 
In contrast to their results on contextual deflation, Miller 

and Schachtman (1985) also demonstrated that "no 

amount of contextual inflation will affect the comparator 

role ofthe conditioning context" (p. 66). Both the effeet 

of eontextual deflation and the non-effeet of eontextual 
deflation will be explained using the same mechanisms, 

as will the fact that US-alone presentations do degrade 

CS responding either before (Holman, 1976) or during 

CS eonditioning, but not after (Jenkins & Lambos, 1983). 

The present theory thus has a broader explanatory range 

than does the comparator hypothesis; Miller and Schacht­

man (1985) remarked that they "currently do not have 

any reasonable hypothesis as to why contextual inflation 

[CI] appears to be ineffeetive, whereas contextual defla­

tion does influenee responding ... it remains unc1ear why 

unsignaled US's following eonditioning apparently fail to 

augment CI, whereas US's during conditioning do pro­

vide CI" (p. 67). 
In addition, we suggest explanations of other impor­

tant data that Miller and Schachtman (1985, p. 69) sum­

marized, such as "why a eonditioned inhibitor attenuates 

excitor behavior on a summation test far more than does 

a nove1 stimulus (Pavlov, 1927)" and why, as in the ex­
periments ofCotton, Goodall, and Maekintosh (1982) an 

"A -+ large shocklAX -+ small shock procedure renders 



X effeetively inhibitory as measured in a summation test 
with a previously eonditioned excitor (B) when B had pre­
viously been paired with a large shoek, but not when B 
had been paired with a small shock" (Miller & Schacht­

man, 1985, p. 69). The same mechanisms also clarify 
why, although eonditioned excitation is retarded, eondi­

tioned inhibition is facilitated by preconditioning US-alone 

exposures (Hinson, 1982); why A+/X- trials may pro­
duee some eonditioned inhibition, but only weakly if at 
all; and why pretest extinetion of Arestores responding 
to X in an overshadowing paradigm (Kaufman & Bolles, 

1981). These results also extend beyond the reaeh of the 
eomparator hypothesis, inasmueh as "the eomparator 
hypothesis ... is silent eoneerning how either the nomi­

nal es or eontext aeerue exeitatory associative strength" 
(Miller & Schachtman, 1985, p. 81). 

22. A Theoretical Review: 
The Synchronization and Peristence Problems 
of Pavlovian Conditioning 

Our explanation of these demanding data about eondi­
tioned inhibition is a variant of an explanation of block­

ing in terms of the following types of processes (Gross­

berg, 1975, 1982a; Grossberg & Levine, in press): How 

does the pairing of a es. with a US in the first phase of 
a blocking experiment endow the es. eue with proper­
ties of a eonditioned, or seeondary, reinforcer? How do 
the reinforcing properties of a eue, whether primary (US) 

or secondary (es.), shift the focus of attention toward 
its own proeessing? How does the limited capacity of at­
tentional resourees arise, so that a shift of attention toward 
one set of eues (es. or US) ean prevent other eues from 
being attended (eS2 or es)? How does withdrawal of at­

tention from a eue prevent that eue from entering into new 
eonditioned relationships? 

Mechanisms to instantiate these processes have been de­
rived from solutions of several simple, but basic, neural 

design problems, whieh eame into view through real-time 
analyses of eonditioning data. 

The first design problem, ealled the synchronization 

problem, was posed in Grossberg (1971, pp. 227-237). 
This problem asks how es-us associations ean develop 
in a stable fashion in spite of the variability of the time 
lag between es and USo The synehronization problem 
eame into focus as a result of quantitative results from 
previous work (Grossberg, 196ge, 1970), whieh showed 

that eaeh elementary sensory representation or motor eom­

mand could be represented mathematieally as a spatial pat­

tern of aetivation across a network of cell populations. 

If activity at a population coding a es was followed 

repeatedly by the same US, the LTM traces activated by 

the es population eould cumulatively leam the spatial pat­

tern eorresponding to that USo However, if the es was 

followed at different time intervals by two or more events, 

among whieh only a single US oceurred, the eS-aetivated 
L TM traces would not learn the spatial pattern eor­
responding to the USo Instead, they would learn a mix­
ture of the spatial patterns eorresponding to all the events 
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that oeeurred when the es was aetive, whether meaning­
ful to the organism or not. Such a mixture would typi­
eally encode little useful information about the environ­
ment and would eertainly not resemble the US pattern. 

The synehronization problem hereby brought into fo­

eus two related problems of fundamental importance: How 
does an organism know how to distinguish significant 

events for encoding in L TM among all the irrelevant en­
vironmental fluetuations that never eease to oceur? How 

are eonditioning systems designed to be capable of sta­
bly operating in eontinuous, or real, time, despite the fact 

that meaningful events, such as novel events and USs, 
oceur at irregular and diserete time intervals? 

Grossberg's (1971) analysis of the synehronization 
problem led to the proposal that there exist populations 
of eells, ealled D for drive representations (Figures Ib 
and 2), that are separate from the sensory representations 

of partieular stimuli but are related to partieular drives 
and emotions. Workers such as Bower (1981; Bower, Gil­

ligan, & Monteiro, 1981) have ealled such drive represen­

tations "emotion nodes." A food US, for example, un­
eonditionally aetivates the D population eorresponding to 

the hunger drive if the hunger drive level is sufficiently 

high. Repeated pairing of a es with a food US thus eauses 
pairing of stimulation of the es sensory representation, 

whieh we denote by Ses, with that of the D representa­
tion ofthe hunger drive, which we denote by DH. If the 
Ses -+ DH synapses are assumed to be modifiable aeeord­

ing to an assoeiative rule, such as Equation 14, then the 

pairing Ses -+ DH ean become strengthened, so that even­
tually the es by itself becomes able to aetivate the drive 

representation DH and thereby beeomes a conditioned 

reinforcer for food. Onee a neutral es (eall it es.) has 

been eonditioned, it ean be used as a US to reinforce 
responses to another es (eall it es,) in a later experi­

ment. Onee the Ses, -+ DH synapses have been strength­

ened, repeated presentation of es, followed by es. ean, 
in turn, strengthen the associative Ses, -+ DH synapses, 
as in Figure 15. 

Pathways D -+ S from the drive representations to the 
sensory representations were also derived and shown to 
be eonditionable. eonditioning in the D -+ S pathways was 

related to classical eoneepts about incentive motivation 
and shown to overeome some serious problems involv­

ing heuristic approaehes to the definition of motivation. 
Whereas reinforeement aets directly upon the effieaey of 

S -+ D pathways in this model, the entire conditionable 

pathway S -+ D -+ S regulates motivational support for 

the learning and performance of eonditioned responses 

along stimulus-response (S -+ R) circuits (Figure 2). 

In order to relate S -+ D eonditioning, D -+ S eondi­

tioning, and S -+ R conditioning, and thereby to analyze 
how the S -+ D -+ S feedback loop regulates attention 

toward motivationally salient eues, Grossberg (1975; 

reprinted in Grossberg, 1982c) defined and analyzed the 

persistenee problem of classical eonditioning, also known 
as the turkey-love fiaseo. This problem arose from eon­
sideration of another typical eonditioning situation which 
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seems problematic only when one attempts to build a real­
time model. 

In Figure 27b, the cues CS t and CSz have previousIy 
been conditioned to responses CRt and CRz. Responses 

CR t and CRz are assumed to be motivationally incom­
patible, as are, for example, eating and sex. A catastrophic 

problem could occur in an improperly designed Iearning 

circuit if CS t and CSz were then alternately scanned in 
rapid succession. If only one of the cues had previousIy 
been conditioned to a response, then no difficulty would 

occur (Figure 27a). However, ifboth cues were already 
conditioned and if classical conditioning were merely a 
feedforward process that associatively linked cues with 

simultaneously active responses, then cross-conditioning 
from CS t to CRz and from CSz to CR t could rapidIy oc­

cur (Figure 27b). This example identifies the core issue: 

When many cues are processed in parallel, and some of 
the cues are already conditioned to motivationally incom­

patible responses, then why are these associations not 

quickly degraded by cross-conditioning? How can the 
ubiquity of parallel cue processing be reconciled with the 

persistence of learned meanings? 
The persistence problem was also called the "turkey­

love fiasco" to emphasize its basic nature and the absurd 

world to which it could lead if not actively prevented. Dur­
ing an otherwise uneventful turkey dinner with one' s 
lover, suppose that one alternately looks at lover and tur-

(a) 
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Figure 27. The persistence problem of cIassicai conditioning. (a) A 
conditioned stimulus (CSj ) can be quickly associated with the con­
ditioned response (CR,) of a distinct cs,_ (b) Wben eacb of tbe con­
ditioned stimuli (CSt and CS~ is already conditioned to a distinct 
conditioned response (CR I and CRz, respectively) at the beginning 
of an experiment, alternate scanuing of CS I and CSz does not a1-
ways canse rapid cross conditioning of eSI to CRz and CSz to CR!, 
as is made dear in (c), whicb depicts tbe absurd consequence that 

would arise after dining with one's lover. 

key. Visual cues of one's lover are associated with sex­

ual responses (among others!) and visual cues of turkey 

are associated with eating responses. Why do we not come 
away from dinner with tendencies to eat our lover and 

to have sex with turkeys? The fact that we do not illus­
trates that the persistence of learned meanings can endure 
despite the fact that sensory cues that are processed in 

parallel often control motivationally incompatible re­

sponses. 
At least two types of mechanisms have been proposed 

to deal with this fundamental problem: (1) prewired, or 

innate, connections among preferred sets of internal rep­
resentations, and (2) dynamic regulation of conditioned 

associations via attentional mechanisms. In general, a 
combination of both types of factors may be operative, 

since the non-equipotentiality of prewired connections can 
facilitate conditioning among certain sets of events above 

others. 
Seligman illustrated the role of non-equipotentiality dur-

ing an experience when he 

feit the effects of the stornach flu six hours after eating fi­
let mignon with sauce Bearnaise. The next time I had sauce 

Beamaise, I could not bear the taste of it. ... Neither the 

fIlet mignon, nor the white plates offwhich I ate the sauce, 

nor Tristan und Isolde, ... nor my wife ... , became aver­

sive. (Seligman & Hager, 1972) 

Several experiments also suggest that some combina­
tions of stimuli and reinforcers result in faster condition­

ing than do others. For instance, Garcia and Koelling 
(1966) found that when a compound gustatory and audi­

tory stimulus are paired with agents that produce nausea, 
gustatory but not auditory stimuli are associated with 
nausea. On the other hand, when the compound stimulus 
is paired with a shock US, the auditory stimulus is as­
sociated with the US (Domjan and Wilson, 1972). Foree 
and LoLordo (1973) showed that pigeons associate visual 
stimuli with a food US more readily than auditory stimuli 
with a food US, and that this relationship is reversed when 

a shock US is used. 
Seligman and Hager (1972) suggested that the results 

could be explained in terms of a selective associative 

difference by which a given CS is innately more "pre­

pared" to be associated with a given US than with others. 

Mackintosh (1973) proposed that previous experience with 

the difference in the correlation of different classes of CSs 

and USs determines their predisposition to be associated 

at a later time. 
Grossberg (1975) suggested a mechanistic solution of 

the persistence problem in which the possible non­

equipotentiality of innate connections was acknowledged, 

but additional attentional regulatory mechanisms were in­
yoked to dea1 with the case in which the sensory ess were 
approximately equipotential with respect to pairs of moti­

vationally incompatible responses. This solution proposed 

how incentive motivational feedback due to eonditionable 

D -+ S pathways could shift an organism's attentional fo­

eus to preferentially process previously experieneed 



motivationally compatible cues. Thus attention-switching 
between sets of motivationally compatible cues can dy­

namically buffer motivationally incompatible sets of cues 
against rapid cross-conditioning, since when a sensory 

representation S has a zero signal Sk in Equations 14 and 

15, no new conditioning of its L TM traces Zk7 and Zk8 can 

occur. In addition, a sensory cue that possesses a large 

conditioned S -+ D -+ S feedback pathway can quickly 

prime the STM of motivationally compatible sensory cues 

while amplifying the STM activity of its own sensory rep­

resentation (Figure 2). Reinforcing cues can hereby draw 

attention to themselves and to their entire motivational 

"set" via self-generated incentive motivational feedback 

signals (Figure 28). Killeen (1982a, 1982b) also empha­

sized the importance of incentive motivation for the 

modeling of instrumental conditioning data. 

23. Competition for Limited-Capacity 
Short-Term Memory Activity and Attention 

The sensory representations that emit conditioned rein­

forcer signals and receive incentive motivational signals 

also compete among themselves for a limited-capacity 
STM resource (Figure 2). The ubiquitous occurrence of 

limited-capacity STM was traced in Grossberg (1973, 

1980) to a more basic processing requirement: the abil­

ity of cell networks to process spatially distributed input 

patterns without irreparably distorting these input patterns 
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Figure 28. Augmentation of short-term memory (STM) activation 
at a sensory representation, Ses, by feedback signaling through the 
pathway Ses -+ D -+ Ses. In response to the sensory input (a) 
received by Ses, the STM activation prortle before learning is as 
schematized in (b). After learning within the Ses -+ D -+ Ses path­
way takes place, the initial activation remains as in (b). However, 
as the feedback signals are registered, the STM activation of Ses 
can be greatly amplified and prolonged, as schematized in (c). 
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due to either internal noise or saturation effects. This 
noise-saturation dilemma can be prevented by an on-center 

off-surround anatomy through which the cells interact via 

mass action (or shunting) laws. Such a network interaction 
implies, without further assumptions, that the total supra­

threshold activation of the network tends to be conserved, 

and thus possesses a limited capacity . 

When such a network is also designed to accomplish 

STM storage, its on-center off-surround interactions are 

recurrent, or feedback, interactions in which the cells ex­

cite themselves and inhibit other cells via feedback path­

ways (Figure 2). In addition to its noise-saturation and 

limited-capacity properties, such a recurrent on-center off­

surround network contrast enhances an input pattern be­

fore storing the contrast-enhanced activation pattern that 

emerges across the cells in STM (also called working 

memory). Thus one must distinguish between the input 

pattern and the more focal STM activity pattern that it 

generates. Attention is paid to those sensory representa­

tions whose cells receive a positive level of stored STM 

activity. 
When incentive motivational feedback signals form part 

of the total input pattern to the sensory representations 

(Figure 2), these signals can bias the competition for STM 

activity toward motivationally salient cues. Due to the 

limited capacity of STM, motivationally salient cues, in 

particular primary and secondary reinforcers, can draw 

attention to themselves via their strong conditioned 

S -+ D -+ S feedback loops. In order to initiate such an 

attention shift, such cues must first start to be processed 

due to their sensory properties. After sensory processing 

is initiated, it can activate the learned reinforcing and 

motivating pathways of the cues, and can thereby help 

to direct the ultimate allocation of sensory and attentional 

resources. 

Once attention shifts away from a sensory representa­

tion, its activity can become small or even subthreshold. 

If, by whatever means, an attention shift causes a signal 

Sk from a sensory representation to become small or zero 
in the LTM equations 14 and 15, then the LTM traces 

of the representation learn very slowly or not at all. 

24. Gated Dipoles and Opponent Extinction 
Gated dipoles were originally derived in Grossberg 

(1972b) to explain how the offset of a reinforcer of posi­

tive (or negative) sign can generate an antagonistic re­

bound to which a simultaneous CS can be conditioned as 

a reiniorcer of negative (or positive) sign. Using these 

gated dipoles, the drive representations in Figure 2 were 

organized into the on-channels and off-channels of recur­

rent gated dipoles. These gated-dipole circuits were, in 

turn, linked together via competitive interactions into 

gated-dipole fields, which were designed to choose that 

drive representation whose combination of sensory, rein­

forcing, and homeostatic constraints was most favorable 

at any given time ("winner-take-all"). The chosen chan-
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nel could release incentive motivational output signals to 

the sensory representations and thereby focus attention 
upon the motivationally most favored sensory represen­

tations. These enhanced representations could thereupon 

generate output signals to release conditioned responses 
consistent with these momentary sensory and motivational 
eonstraints. 

A surprising property of agated dipole is that the un­
expected nonoccurrence of an event can trigger an an­

tagonistic rebound by causing a sudden increment in its 

nonspecific arousallevel I (Grossberg, 1972b, 1987a). 
These two types of rebound-inducing events clarified how 
a large on-eonditioned reinforcer value of CS-that is, 

its on-LTM trace Zk7 in Equation 14-could be extin­

guished by conditioning its off-LTM trace Zk8 in Equa­

tion 15. Sueh off-conditioning of Zu may be due to rein­
forcing inputs delivered directly to the dipole's 

off-ehannel. Off-conditioning may also be due to antag­
onistic rebounds at the off-channel in response to either 
sudden offsets of on-channel inputs or unexpected non­

occurrence of on-channel reinforcers. This multiplicity 
of conditions leading to off-conditioning has previously 

been used to clarify many paradoxical properties of con­
ditioning and extinction data, and will also play an im­
portant explanatory role herein. 

A new property of extinction has been understood 
through the quantitative analysis of a READ circuit de­
scribed in Part I. This property is called opponent extinc­

tion. Opponent extinction clarifies how a conditioning cir­
euit in which passive extinction does not occur can prevent 
its LTM traces from saturating at maximal values due to 

a progressive accumulation of associative strength over 
many conditioning trials. Opponent extinction also shows 

how associative memories may be actively extinguished 
even if they do not passively extinguish. The opponent 
extinction property is based upon the dissociation of as­
sociative read-in and read-out that was related to condi­
tioning at dendritic spines in Section 13. Opponent ex­

tinetion occurs as follows. 
If, by any means, off-conditioning proceeds until 

Zk8 =Zk7 >0, then the conditioned reinforcer signals SkZk7 

and SkZk8 of a conditioned reinforcer to a READ circuit 

become approximately equal. This circumstance can ac­

tively extinguish the LTM traces Zu and Zk8 as follows. 

Suppose for definiteness that only signal Sk is positive at 

any time. Then the difference signal ~ =0 in Equation 34. 

Consequently XS=0=X6, by Equations 21 and 22. Thus 

both Zk7 and Zk8 approach zero, by Equations 14 and 15. 
In summary, as the on-LTM trace and off-LTM trace of 

a conditioned reinforcer become approximately equal, 
these LTM traces are actively extinguished, due to the 

fact that conditioned reinforcer learning tracks the net im­

balance of aetivation across the dipole' s on-channel and 

off-channel. This is the opponent extinction process. More 

generally , conditioned reinforcer LTM traces continually 

readjust themselves to track the net imbalance they de­
tect in all the environmental contexts within which they 

are activated. Opponent extinction hereby avoids the pos­

sible saturation at maximal values of both L TM traces Zk1 

and Zk8, no matter how many experiments activate Sk. 

25. Adaptive Resonance Theory: Expectation, 
Mismatch, Reset, and Rebound 

The gated dipole' s rebound properties emphasize that 
cognitive, notably unexpected, events playa critical role 
in the modulation of reinforcement, conditioning, and ex­
tinction processes. The conceptual and data analyses 

generated by this cognitive-emotional connection led 

directly to the discovery and development of adaptive 

resonance theory (Grossberg, 1976a, 1976b, 1978, 1980; 
reprinted in Grossberg, 1982c). Adaptive resonance the­

ory has, by now, been used to analyze and predict a large 

interdisciplinary data base and has undergone substantial 

technical development (Carpenter & Grossberg, 1987; 
Cohen & Grossberg, 1987; Grossberg, 1987a, 1987b). 
OnlY those qualitative features of the theory that are 
needed to explain data about conditioned inhibition will 
be summarized herein. 

Adaptive resonance theory suggests how internal rep­
resentations of sensory events, including CSs or USs, can 
be learned in a stable fashion despite the potentially ero­

sive effects of irrelevant environmental fluctuations. 
Among the mechanisms for the stable self-organization 
of sensory recognition codes is the read-out of learned 

top-down expectations that are matched against bottom­
up sensory signals (Figure 1). When amismatch occurs, 
a nonspecific arousal burst is triggered via an orienting 
subsystem. This arousal burst acts to reset the sensory 
representations of aIl cues that are currently being stored 
in STM (Figure 29). In particular, representations with 

high STM activation tend to become less active, represen­
tations with low STM activation tend to become more ac­

tive, and the novel event that caused the mismatch tends 
to be more actively stored than it would be have been had 
it been expected (Grossberg, 1982a, 1987a). These prop­
erties can be traced to the combined action of gated-dipole 
interactions and limited-capacity competitive interactions 
that are hypothesized to take place among the sensory rep­
resentations. As a result of such an STM-reset event, sen­

sory representations that had been actively reading out 

an erroneous expectation become less active in STM; 

hence, the expectation can be updated. Representations 

that were attentionally blocked before the reset event oc­
curred can become unblocked, or dishabituated, in STM; 

they code sensory information that may have been errone­
ously unattended. Finally, the novel event that triggered 

the mismatch becomes more active in STM; it encodes 
potentially important new information. 

In order to deal effectively with temporal order effects, 
the architecture schematized in Figure 1 must be aug­

mented by mechanisms for storage of event sequences in 

working memory (Grossberg & Stone, 1986a, 1986b) and 

for the learning of temporal discriminations (Grossberg 
& Sehmajuk, 1987). 
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Figure 29. Short-tenn memory reaction to an arousal-mediated 
(41) unexpected event. The arousal burst M tends 10 inhibit, or reset, 

populations that were very active before the expected event and to 

enhance, or dishabituate, populations that were weakly active be­
fore the unexpected event. The novel event that triggered M is also 

preferentially stored. lnactive populations remain inactive, but they 
are sensitized by a gain change. This type of global reset event gives 

more short-tenn memory activity to those populations that did not 

control the actions leading 10 the unexpected outcome, incIuding ceIls 

that code the unexpected outcome. 

26. Parallel Learning of Sensory Expectation 

and Conditioned Reinforcement 
The synthesis of adaptive resonance mechanisms with 

conditioning mechanisms shows that the internal represen­

tation of a sensory event controls at least two distinct types 

of output signals: leamed top-down expectations within 

an attentional subsystem (Figure la) and leamed eondi­
tioned reinforcer signals to a READ cireuit (Figures Ib 
and 3). The distinct, but interacting, properties of these 

signals in different learning environments are critical to 
our explanations of conditioned inhibition data. Notable 
are the interactions whereby a disconfinned sensory ex­
pectation can eause an antagonistic rebound within a 

READ circuit. 
Suppose, for example, that an active sensory represen­

tation of a conditioned reinforcer is reset due to a sen­
sory mismatch with its top-down expectation. The reset 

event eauses a rapid decrease in the STM aetivity of the 
sensory representation and, thus, in its output signal Sk 
to the READ circuit in Equations 12 and 13. As a result, 

its conditioned reinforcer inputs SkZk7 and SkZkS to the 
READ circuit also decrease. If the eue is an on­

conditioned reinforcer (viz., Zk7 ~ zu), an antagonistic re­
bound can hereby be elicited in the READ circuit's off­

channel. 
Using the above properties, we now provide a unified 

explanation of data about conditioned inhibition. In par­

ticular, we suggest an explanation of why a eonditioned 
excitor extinguishes, yet a conditioned inhibitor does not 
extinguish. This explanation clarifies how this difference 
obtains, despite the facts that a given es could be trained 
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to become either a conditioned excitor or a conditioned 
inhibitor and that during extinction trials, only the es is 
presented. In addition, the explanation shows how the dif­
ferent affective properties of exeitors and inhibitors are 
controlled, and utilizes the difference between condition­

ing of a es to an affective reaction (viz., its role as a con­
ditioned reinforcer) and conditioning of the same CS to 
a predicted sensory event (viz., its role as a source of con­

ditioned expectation). 

27. Conditioning and Extinction of 

a Conditioned Excitor 
When a CS. is paired with shoek on successive condi­

tioning trials, several things happen in the model. Tbe sen­
sory representation S. of the CS. is conditioned to the 
drive representation D, corresponding to a fear reaction, 
both through its conditioned reinforcer pathway S. -+ D, 
and through its incentive motivational pathway D, -+ S •. 

As a result, later presentations of CS. tend to generate 
an amplified STM activation of S1, and thus CS. is 

preferentially attended. Due to the limited capacity of 
STM, less salient cues tend to be attentionally bloeked 

when CS. is presented. 
As the cognitive-emotional feedback loop S. -+ D, -+ SI 

is strengthened during conditioning trials, SI also learns 
a sensory expectation of the shoek. During extinction, CS l 

is presented on unshoeked trials. We assume, as in Fig­
ures 13-21, that the numerical parameters ofthe READ 

circuit are chosen to prevent significant passive decay of 

LTM traces from occurring; that is, we assume that ex­
tinction of conditioned reinforeer Ieaming is due to an 

active proeess of counterconditioning, as in Section 24. 

When the expected shoek does not oecur, amismatch oe­

curs with the leamed expectation read-out by SI' As 
described in Section 26, the STM activity of SI is quickly 

reduced and an antagonistic rebound oecurs in the READ 
circuit. This rebound inhibits the fear reaction that is regu­
lated by the on-channel, and activates the relief reaction 
(Denny, 1970; Dunham, 1971; Dunham, Mariner, & 
Adams, 1969; Hammond, 1%8; Masterson, 1970; McAl­

lister & McAllister, 1970; McAllister, McAllister, & 
Douglass, 1971; Rescorla, 1969; Rescorla & LoLordo, 
1965; Reynierse & Rizley, 1970; Weisman & Litner, 

1969) that is regulated by the dipole's off-channel D,. 
The collapse in SI'S STM activity may be partial or 

complete. We assume for definiteness that it is partial, 

and describe in this case how conditioning within the 

S. -+ D, -+ SI pathway is antagonized by rebound­

contingent conditioning, which progressively extinguishes 

CS. as a source of conditioned fear. 

Tbe collapse of SI 's activity oecurs prior to the rebound 

from D, to D,. Due to the hysteretic properties of a feed­

back eompetitive circuit, there exists a time interval dur­

ing which D, remains active after SI 's activity collapses. 

During this time interval, the incentive motivational path­
way D, -+ S, is weakened due to the same conditioning 
mechanism (Section 24) that could lead to total extinc­
tion were S, to become totally inactive. IfCS, is followed 
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by a no-shock interval on successive leaming trials, the 
weakening of the Df -+ SI pathway is cumulative. As a 

result, on a later presentation of CS l , Df will supply less 
feedback to SI, so that SI will be less attended than previ­

ously, but could possibly still be more attended than an 

irrelevant situational cue. 
In addition to conditioned weakening of the Df -+ SI 

pathway, the SI -+ Df pathway can be greatly weakened 
or even totally extinguished. This is because SI remains 

active after it is reset. Consequently, SI can become as­

sociated with an antagonistic rebound at D,. This leam­
ing may take place at a slower rate than it did when SI 
was associated with D

b 
because SI is smaller after reset 

than before. On the other hand, the maximal possible 

LTM strength of the SI -+ D, pathway can exceed that 
of the SI -+ D

f 
pathway, as it does in the simulations sum­

marized in Figures 14 and 15, as weIl as those in Figures 
16 and 17. If CS l is followed by a no-shock interval on 

successive trials, this learning process will be cumulative. 
Finally a time will occur when the pathway SI -+ D, is 

as strong as the pathway SI -+ Df . As this time is ap­
proached, both conditioned reinforcer pathways become 
extinguished by the mechanism described in Section 24, 

and SI is extinguished as a conditioned excitor. 
In the event that extinction of conditioned reinforcer 

S -+ D pathways occurs rapidly, it rnay permit residual 
D -+ S incentive rnotivational associations to persist. Such 

residual associations, including the associations which en­

code sensory expectations (Section 25) help to explain 

how, during successive acquisitions and extinctions, rate 

of acquisition and extinction may increase as a result of 
successive reversals (Davenport, 1969; GonzaIez, Berger, 

& Bitterman, 1967; Schmaltz & Theios, 1972). 

28. Conditioning and Nonextinction of 
a Conditioned Inhibitor 

Suppose that CS l has become a conditioned excitor, 
thereby learning to strongly activate the SI -+ Df -+ S, 
pathway as weH as a learned expectation of a subsequent 

shock. Now present the cornpound stimulus CS l +CSz and 
foHow it by a no-shock interval. When CS l and CS2 are 
simultaneously presented, SI'S activity is amplified by 

positive feedback through the strong conditioned 

SI -+ D
f 

-+ SI pathway (Figure 30). As a result of the 

limited capacity of STM, the STM activity of S2 is in­

hibited, or blocked. (The novelty of CS2 can partially 

mitigate this blocking effect.) When the expected shock 

does not occur, the mismatch with SI' s sensory expecta­

tion causes both SI and S2 to be reset. As described in 

Section 25, SI'S STM activity decreases while S2'S STM 

activity increases. Due to SI'S decrease, a rebound oc­
curs at D,. Consequently, the unexpected nonoccurrence 
of the shock enables Sz to become associated with D, in 
both ofthe pathways Sz -+ D, and D, -+ Sz. These are the 
primary cognitive-emotional conditioning events that turn 

CSz into a conditioned inhibitor. 
If CS. -+ shock trials and CSI +CSz -+ no-shock trials 

are interspersed, then CSI's status as a conditioned exci-

tor can be restored against the extinction that takes place 

on the no-shock trials, in the manner summarized in Sec­
tion 27. Intermittent restoration of the conditioned exci­

tor properties of CSI enables CS l to motivate the cumula­

tive training of CSz as a conditioned inhibitor on the 

intervening no-shock trials. 
Why does CSz not extinguish when it is presented alone, 

as a conditioned excitor does (DeVito, 1980; Owren & 
Kaplan, 1981; Witcher, 1978; Zimmer-Hart & Rescorla, 

1974)? Why does a neutral stimulus presented with a con­
ditioned inhibitor not acquire excitatory value (Baker, 

1974)? Simple answers are now available. 
When 5z is unblocked by the nonoccurrence of shock, 

it learns a sensory expectation. This sensory expectation 
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Figure 30. Presentation of conditioned stimuli CSl and CSZ when 
CS I has become a conditioned excitor and the compound stimulus 
is followed by no-sbock. During tbe no-sbock interval between times 
TI and Tz, SI is adively amplified by positive feedback and Sz is 
blocked. During tbe sbock interval, disconfirmation of tbe expected 
sbock causes both SI and Sz to be reset. SI'S sbort-term memory 
(STM) activity decreases and Sz's STM activity increases. Due to 

SI'S increase, Dr also decreases, tbereby causing a rebound at Dr • 

Tbis rebound becomes associated with tbe increased activity of S2. 



does not, however, predict shock. It includes whatever 

contextual representations are sufficiently salient and 
repeatable to be cumulatively leamed on successive con­

ditioning trials. Thus presentation of the conditioned in­

hibitor CS2 within a given context does not disconfirm 

the sensory expectation controlled by S2. Since passive 

extinction does not occur, a conditioned inhibitor CS2 does 

not extinguish when it is presented alone. 

On the other hand, S2 does leam to control a strong 

S2 --+ D. --+ S2 pathway. Hence it becomes attentionally 

amplified and can block the processing of neutral stimuli. 

Thus a neutral stimulus presented with a conditioned in­
hibitor does not acquire excitatory value (Baker, 1974). 

29. An Explanation of the "Slave" Data 

Our explanation of Lysle and Fowler's (1985) data 

about conditioned inhibition as a "slave" process com­

bines adaptive resonance properties of expectancy match­

ing and STM reset with READ circuit properties of adap­

tation level and rebound. Tbe following additional model 

properties are particularly relevant. 
Extinction of a conditioned excitor CSI includes not only 

extinction of the feedback pathway SI --+ Df --+ SI, but also 

reconditioning of the sensory expectation associated with 

SI to anticipate a no-shock, purely contextual, sensory en­

vironment. Contextual cues X can also become condi­

tioned excitors in a situation wherein a conditioned exci­

tor CSI or a shock occurs at random times. Such 

contextual cues X may condition an expectation of shock 

and a pathway Sx --+ D
f 

--+ Sx between their sensory 

representations Sx and the drive representation D" as does 

SI. The fact that cues X may be attended during no-shock 

intervals does not, in itself, imply that the Sx --+ Df --+ Sx 

pathways will extinguish, because extinction does not oc­

cur passively (Section 17). Contextual cues extinguish 

only during time intervals when their expectation of shock 

is actively disconfrrmed, thereby triggering the rebounds 

that enable Sx to become associated with D •. 
Consider what happens within the model in response 

to the conditioning experiences of the groups CSI[CS2], 

X[CS2], and N[CS2] that were defmed in Section 20. 

When CSI is extinguished by being fOllowed by no-shock 

intervals, both its sensory expectation of shock and the 

sensory expectation of shock controlled by attended con­
textual cues X are simultaneously extinguished. Likewise, 

the conditioned reinforcer pathways SI --+ Df --+ SI and 

Sx --+ Df --+ Sx are simultaneously extinguished. Thus, 

when CS2 is trained as a conditioned excitor by being ran­

dornly paired with shock on 50 % of its trials, the context 

in which CS2 occurs is one in which no shock is expected. 

Thus the occurrence of a shock after CS2 is, in this situa­

tion, surprising. In addition, because the fearful effects 

of X on Df have been at least partially extinguished, the 

net effect of the compound cue CS2 + X on the gated di­

pole is to generate a net positive reaction at D •. When 

a shock occurs subsequent to a presentation of CS2, a large 
rnismatch occurs with the sensory expectation of CS2 and 
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S2 is vigorously reset. Due to the net positive reaction 

of D. to CS20 the reset of S2 causes a large rebound from 
D. to Df . As this rebound from D. to Df is forrning, the 

shock itself generates an unconditioned input to Df • The 

rebound and the direct shock input summate to generate 
an unusually large activation of Df . This enhanced fear 

reaction is leamed by S2. Thus, we trace the enhanced 

suppressive effect of CS2 in the CSI[CS2] group to the 
same types of mechanisms Grossberg (1975) used to ex­

plain the partial reinforcement acquisition effect. It is im­

mediatelyclear from this explanation why extinction of 

the context X in group X[CS2] should have a similar, but 

smaller, effect on the subsequent suppressive effects of 

CS2 • 

In contrast, consider what happens in group N[CS2]. 

Here neither CSI nor X is extinguished. Thus contextual 

cues X are still conditioned to an expectation of shock 
and to the fear center Df when retardation testing of CS1 

commences. When CS1 is presented in such a context X, 

an expectation of shock can still be maintained by con­

textual cues. In addition, although Sl is conditioned to D., 

X is conditioned to Df . As a result, the net effect of both 

sets of signals upop the READ circuit is to generate a large 
adaptation level 1 in Equation 33 and a small, possibly 

even zero, difference value .d in Equation 34. We con­

sider the case .d=0 to make our argument in its most ex­

treme form. A sirnilar qualitative argument holds for small 

values of .d. 

Consider what happens within the model when CS1 is 

first followed by a shock. Unlike the case for group 

CSI[CS2], an expectation of shock does exist. Thus the 

reset of Sl and X will be much less in the N[CS1] group 

than in the CSI [CS1] group. In addition, if.d == 0, this reset 
event may cause no significant rebound, since both chan­

nels of the READ circuit may receive sirnilar conditioned 

input both before and after the reset event. Tbe primary 

effect of the shock is to generate an unconditioned input 

to Df . This input does not summate with a rebound from 

D. to Df . Moreover, this unconditioned input is received 

~y agated dipole with an unusually large adaptation level 
I. The net response of agated dipole to a fixed phasic 

!!tput is reduced in the presence of a large adaptation level 

1 (Grossberg, 1972b, 1987a). Thus conditioning from Sl 

to Df is much slower in the N[CS1] group than in the 
CSI[CS1] or X[CS1 ] groups. 

Restoration of the conditioned inhibitory properties of 

CS1 by presentation of a US is readily explained by the 

same mechanisms if the US is presented within the same 

context as the CS1 . Such restoration can also be explained 

if the US is presented in a novel context that shares cues 

with the original context. These cues may, for example, 

include sirnilar shapes of the conditioning chambers and 

similar procedures in the animals' handling. 

This explanation ofthe "slave" properties sets the stage 

for explaining the "comparator" properties described by 

Miller and Schachtman (1985) by explicating the mediat­

ing role of the context X. 
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30. An Explanation of tbe "Comparator" Data 
How can CSI become a conditioned excitor if 

P(US/CS I ) = .33 and P(US/CS I ) = 0, but a conditioned 

inhibitor if P(US/CSd = .33 and P(US/CS t ) = .67? In 

addition to answering this question, an explanation of the 

"comparator" properties would also show why there ex­

ists a neutral region of values of P(US/CS I ) and 

P(US/CS I ) in which CSI does not become a conditioned 

reinforcer. This crossover region often occurs when 

P(US/CS I ) = P(US/CS I ) (Rescorla, 1968). 

In the case P(US/CS I ) = .33, P(US/CS I ) = 0, CSI 
generates a much stronger conditioned expectation of 

shock and conditioned attachment to D, than does X. In 

the case P(US/CS I ) = .33, P(US/CSI ) = .67, the reverse 

is true. In particular, consider an early learning trial when 

CSI is presented under the P(US/CS I ) = .33, P(US/CS I ) 

= .67 contingency. Because Sx is conditioned more 

strongly to D, than is Slo Sx can partially block SI' Sup­

pose on this trial that the shock is unexpectedly absent. 

When the mismatch occurs, Sx can be reset as SI is un­

blocked. Consequently, SI can be associated with the re­

bound from D r to Dj that is caused by the reset ofX. This 

conditioning event tends to make CSI a source of condi­

tioned relief. 

On the other hand, CSI is followed by shocks on some 

trials, because P(US/CS) = .33. Thus the above argu­

ment does not necessarily imply that the LTM trace from 

SI to D, is weaker than that to D r • In general, however, 

the net conditioned fear caused by SI alone is significantly 

less than the net conditioned fear caused by Sx alone, and 

SI may be a source of net conditioned relief in some 
parameter ranges. In the case where SI remains condi­

tioned to fear, the ratio zx,I ZXr is much larger than the 

ratio ZljlZlr; that is, 

Zx, ZI, 
> 

ZXr Zir 
(49) 

where the zs denote the L TM traces in the indicated 

pathways. 
On a later test trial when contextual representations Sx 

are alone active, they share the limited-capacity STM 

strength (Equation 35) among themselves. We simplify 

this constraint by lumping all contextual representations 

into one and writing 

Sx = S. (50) 

During such a time interval, the conditioned reinforcer 

signal SxZXj is much larger than SxZXr; that is, 

SxZXj > SxZXr. (51) 

When CSI is tumed on, Sx tends to partially block acti­

vation of SI due to the strong positive feedback Sx ..... 

D, -+ Sx implied by Equation 51. On the other hand, be­

cause P(US/CSI) = .67, attentional fluctuations during 

training trials enable the animal to attach fear reactions 

to only a subset of the sampled contextual cues X. Thus 

in the moments just after presentation of CS Io CSI may 

be sampled with neutral contextual cues and may thus be­

gin to activate SI' To the extent to which SI survives 

blocking by Sx, both sensory representations may share 

the limited-capacity STM activation, so that 

SI + Sx = S, 

although, due to blocking of CSI by X, often 

Sx > SI. 

(52) 

(53) 

When Equation 52 holds, the total signal SIZIf + SxZXj 

to Dj is smaller than the total signal Szx, to Dj that was 

active in response to X alone. Consequently, a sudden 

decrease in total input to D, may occur after CSI is 

presented. This decrease causes a net reduction in condi­

tioned fear and, if it is large enough, can cause arelief 

rebound at Dr • Thus CSI can act as a conditioned inhibi­

tor when it is presented within context X whether or not 

Zir is larger than ZIf' The possibility that SI can act like 

a conditioned inhibitor even if ZIf > Zir depends critically 

upon the antagonistic rebound properties of the READ 

circuit. When a relief rebound does occur, there exists 

a range of parameters such that SI can become a source 

of net conditioned relief, by being associated with the re­

bound at D r • 

Some more subtle effects should also be noted. By 

Equations 21 and 22, [xsr > Oonly if [X6J+ = 0 and [X6]+ 

> 0 only if [xs]+ = O. On the other hand, Zk1 and Zu in 

Equations 14 and 15 perform a slow time-average of these 

quantities, as in Equation 38. Thus, although [xsJ+ and 

[X6]+ cannot simultaneously be positive, Zk7 and Zk8 can 

both be positive in a probabilistically defined environment, 

such as P(USICS I ) = .33, P(US/CS I ) = .67, wherein 

expectations are intermittently disconfirmed. In such a sit­

uation, presentation of CSI can generate net positive sig­

nals SIZI, and SIZlr to both D, and D r• When this happens, 

SIZI, + SxZXj ZXj 
< 

SIZlr + SxZXr ZXr 
(54) 

Hence, in addition to the decrease in total input to D" 
there may also be an increase in the total input to D r • When 

this occurs, the fearful differep.ce ß in Equation 34 may 

decrease as the adaption level I in Equation 33 increases. 

Thus a reduction in sensitivity to shock may occur in ad­

dition to, or in lieu of, a net relief reaction. 

The same type of explanation shows why the critical 

factor in generating conditioned excitation or inhibition 

was whether or not unsignaled shocks were given in the 

conditioning context. Once a net fear connection SI ..... Dj 

or a net relief connection SI -+ D r is established within 

the conditioning context, it is carried intact to the same 

or to a novel, test context. In addition, the associative 

averaging property defined by Equations 35 and 36 can 

explain why prior unsignaled shocks in context B do not 

necessarily increase the conditioned excitatory effect of 

CSI in context B during conditioning. 



31. The Asymmetry Between Context Inflation 
and Context Deflation 

In the context deflation experiment, training on 

P(US/CS 1) = .33, P(US/CS1) = .67 was followed by 
extinction on P(US/CS) = O. Then CS1 was tested in both 

a deflated group and a nondeflated group. The lick la­

tency to CS 1 was longer after deflation than in the ab­
sence of deflation. This type of effect follows from the 

properties summarized in Section 30. Without deflation, 

presentation of CS1 in X can reduce t1!.e fearful difference 

.:l and increase the adaptation level I relative to the di­

pole's state in response to X alone. After deflation, X does 

not generate fearful inputs to Dj • Hence the deflated X 

does not establish a large fear reaction within Db and thus 

does not block CS1 • Presentation of CS1 in X can there­

fore effectively activate S .. which can cause an increase 
in the fearful difference .:l relative to the dipole's state 

in response to X alone. Consequently, deflating the con­

text X can increase the conditioned excitor properties of 

CS 1 when it is subsequently presented in X. 
In the context inflation situation, P(US/CS) is chosen 

to be larger than the P(US/CS) = .67 used during train­

ing trials, with little effect on CS1 's effect during testing. 

Several model properties conspire to produce this result. 

These properties depend upon the fact that probabilities 

P(US/CS 1) that significantly exceed .67 define a leam­

ing situation wherein essentially all contextual cues X may 

be associated strongly with Dj • The context X becomes 

one characterized by inescapable fear. 

In such a situation, very strong, persistent activation 

ofthe Sx -+ D, -+ Sx pathway occurs. Thus SI is strongly 
blocked by Sx whenever CS1 is presented. This property 

prevents SI from reading out the conditioned reinforcer 

values that could otherwise have enabled CS 1 to act as 

a conditioned inhibitor. Choosing a very high P(US/CS1) 

can also persistently inhibit the orienting reactions (Gross­

berg, 1975, 1982c, 1984b) which could have enabled the 

model to intermittently reset fearful contextual represen­

tations and thereby facilitate the probability that initial 
processing ofCS1 could partially overcome the strong con­

textual blocking effect. 

32. Some Additional Data Explanations 
To explain the data ofCotton et al. (1982), summarized 

in Section 21, it is necessary to add only that a large shock 

can cause large ZXj values to be leamed, whereas a small 

shock causes only small ZXj values to be learned. These 

conclusions follow from inspection ofEquations 4,8, 10, 

and 14 under the hypothesis that J is large (smali) when 

shock is large (smali). 

The fact that conditioned excitation is retarded and con­

ditioned inhibition is facilitated by preconditioning US­

alone exposures (Hinson, 1982) can be explained by the 

same mechanisms that explained CS 1 properties in 

response to P(US/CS 1} = .33, P(US/cS1} = .67, with 

the difference that the P(US/CSt ) manipulation precedes, 
rather than being interspersed with, eSI trials. The ar­

gument did not depend upon this difference. 
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The classical fact that a conditioned inhibitor attenu­

ates excitor behavior on a summation test far more than 

does a novel stimulus (Pavlov, 1927) can be traced to the 

different types of mechanisms that regulate attention 
through an expectancy mismatch and through the 
S -+ D -+ S feedback pathways. Whereas a novel event 

can amplify its initial storage in STM via an expectancy 

mismatch, and thereby temporarily remove attentional re­

sources from a conditioned excitor, the conditioned ex­

citor can restore its attentional focus through persistent 

self-amplification via its S -+ Dj -+ S pathway subsequent 

to the novel event. In contrast, a conditioned inhibitor with 

a sufficiently strong S -+ D r -+ S pathway can compete 

effectively with the S -+ Dj -+ S pathway of a conditioned 

excitor throughout the time interval of their simultaneous 

STM storage, thereby causing a sustained reduction in the 

efficacy of the conditioned excitor. 

33. Concluding Remarks 
At least four types of leaming processes are relevant 

in the data discussions herein: learning of conditioned 

reinforcement, incentive motivation, conditioned 

response, and sensory expectancy. These several types 

of learning processes, which by their very nature operate 

on a slow time scale, regulate and are regulated by rapidly 

fluctuating limited-capacity STM representations of sen­

sory events. The theory suggests how nonlinear feedback 

interactions among these fast information processing 

mechanisms and slow learning mechanisms control data­

predictive emergent properties-such as STM reset, an­

tagonistic rebound, adaptation level shift, associative aver­

aging, and opponent extinction-which cannot be under­

stood using traditional concepts such as contiguity learning 

and associative summation. 

From this perspective, the different time scales on which 

sensory expectancies and conditioned reinforcers may be 

leamed becomes a key explanatory issue. This is the type 
of distinction hinted at by Gibbon et al. (1980, p. 45), 

who observed, "Perhaps intermittent reinforcement 
generates schedule-induced cues only later in training, and 

early unreinforced trial episodes are in some sense 

'ignored. ' " 
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NOTES 

1. In addition to being used to analyze data about conditioning, special­

ized gated dipoles have been used to analyze data about certain mental 

disorders (Grossberg, 1972b, 1984a, 1984b), mammalian circadian 

rhythms (Carpenter & Grossberg, 1983, 1984, 1985, 1986), eating and 

drinking rhythms (Grossberg, 1984b, 1985), photoreceptor transduction 

(Carpenter & Grossberg, 1981), cortical mechanisms of preattentive 

visual perception (Grossberg, 1987c, 1987d; Grossberg & Mingolla, 

1985), decision making under risk (Grossberg & Gutowski, 1987), and 

neural and evoked potential substrates underlying the learning of cog­

nitive recognition codes (Banquet & Grossberg, in press; Carpenter & 

Grossberg, 1987, in press a; Grossberg, 1980, 1984b). Many of these 

data have, moreover, received no other mechanistic explanation. 

2. The theory developed by Grossberg (1975, 1982a) provided a rea1-
time explanation of blocking and unblocking, as well as a variety of 

other conditioning properties such as overshadowing, partial reinforce­

ment acquisition effect, secondary reinforcernent, latent inhibition, super­

conditioning, leamed helplessness, vicious circle behavior, hypothalamic 

self-stimulation, hyperphagic eating, intragastric drinking, peak shift 

and behavioral contrast, differential effects of sudden versus gradual 

shock onsets, and dishabituation by novel cues (Grossberg, 1971, 1972a, 

1972b, 1982a, 1984b). Grossberg and Levine (in press) have further 

developed the theory by carrying out real-time computer simulations 

of blocking, inverted U in learning as a function of interstimulus inter­

val, anticipatory conditioned responses, secondary reinforcement, at­

tentional focusing by conditioned motivational feedback, and limited­

capacity STM processing. 
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