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Neural encoding of perceived patch value during
competitive and hazardous virtual foraging
Brian Silston1,8, Toby Wise2,3,4,8, Song Qi2, Xin Sui2, Peter Dayan 5,6 & Dean Mobbs 2,7✉

Natural observations suggest that in safe environments, organisms avoid competition to

maximize gain, while in hazardous environments the most effective survival strategy is to

congregate with competition to reduce the likelihood of predatory attack. We probed the

extent to which survival decisions in humans follow these patterns, and examined the factors

that determined individual-level decision-making. In a virtual foraging task containing chan-

ging levels of competition in safe and hazardous patches with virtual predators, we

demonstrate that human participants inversely select competition avoidant and risk diluting

strategies depending on perceived patch value (PPV), a computation dependent on reward,

threat, and competition. We formulate a mathematically grounded quantification of PPV in

social foraging environments and show using multivariate fMRI analyses that PPV is encoded

by mid-cingulate cortex (MCC) and ventromedial prefrontal cortices (vMPFC), regions that

integrate action and value signals. Together, these results suggest humans utilize and inte-

grate multidimensional information to adaptively select patches highest in PPV, and that

MCC and vMPFC play a role in adapting to both competitive and predatory threats in a virtual

foraging setting.
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A
cross phylogeny, foraging decisions (e.g. patch selection,
feeding behavior, and duration) are strongly influenced by
competitor density, food quantity, and expected energy

cost1–3. In predation free, yet competitive, environments, avoid-
ing competition dense patches is an adaptive strategy to maximize
gain (e.g. see4,5). In contrast, foraging decisions under the
potential threat of predation are governed by risk-dilution stra-
tegies (i.e. safety in numbers), for which larger groups of con-
specifics reduce the chance a particular individual will fall victim
to lethal attack by predators6–9. Risk-dilution strategies, as
characterized in Hamilton’s “selfish herd” theory, provide a
mechanism by which prey animals aggregate and maneuver in an
attempt to locate themselves between other members of the prey
group, thus reducing the probability of attack by a predator,
which will strike the nearest animal10. However, risk-dilution
strategies incur efficiency costs, reducing exploitation and harvest
rates1. Accordingly, optimal foraging theories1,2 suggest that the
conflicting trade-off between the threat of competition and the
threat of predation are mitigated by the overall fitness or per-
ceived value of the patch. That is, the subjective value should
depend upon not only the level of reward or threat in the
environment, but also the social context. Perceived patch value
(“perceived patch value”, or “PPV”), therefore, is represented as
the overall potential benefit, whether in the safe domain via
selection of less competition dense patches or risk dilution in the
threat domain via occupation of more competition dense patches.
It is thus distinct from the observed social density of a patch, as
social density can result in greater or lesser value depending on
the danger posed by predators. It is unclear whether humans obey
these rules and whether, independent of the observable statistics
of a foraging environment, is represented in the human brain.

A growing body of literature is beginning to elucidate the
underlying neurobiological mechanisms of foraging decision
making, and while recent work has investigated varying levels of
economic risk, reward, and uncertainty11,12, little work has
included the effects of the ecological factor of threat. Human and
non-human primate research has focused primarily on virtual
two-patch foraging tasks in the absence of threat, consistently
highlighting regions involved in action selection and value
encoding (e.g. mid-cingulate cortex [MCC] and ventromedial
prefrontal cortex (vmPFC)13–15. Further, anterior to the MCC is
the dorsal cingulate cortex (dACC), which has been linked to
foraging decisions and the difficulty of such decisions (see for
debate13,14), while the vmPFC has been linked to representations
of choice value during foraging tasks14,16, which is in line with its
role in monitoring action value, exploration and economic
decisions17,18. Given the functional heterogeneity of the MCC
and vmPFC, one hypothesis is that these regions reflect the
perceived patch value of foraging decisions, providing a primary
decision variable more immediately relevant to behavior than the
simple social density of an environment. We addressed this idea
by creating foraging environments that are identical except for
the number of competitors in each patch. Thus, testing conditions
for both safe and hazardous environments in which the optimal
strategies are inversely correlated, for example competition
avoidance and risk dilution, allows us to investigate the overall
value of the patch independent of its directly observable statistics.

In this study, participants were scanned for approximately 4 h
each over the course of 2 days while they performed a two-patch
foraging task with changing level of threat and competition
density (see Fig. 1A for task design). We examined multivariate,
distributed neural representations involved in competition
avoidance and risk dilution during a virtual foraging paradigm in
which participants assessed competition density and risk of pre-
dation and made choices to enter one of two patches. First,
participants learned the sequence of competitor states

(specifically, the number of competitors in each patch for
repeating pairs of side-by-side patches), and then were asked to
select the patch in which they would like to forage. Simply
selecting a patch was insufficient to receive a food reward token.
Food tokens appeared at random times and locations in the
patch, and the player was required to navigate to it before other
competitors in the patch. Therefore, the higher the density of
competitors, the less likely it was that the participant would be
able to acquire the token. However, in some patches (identified by
the color), a predator could appear randomly at any time or
location and would capture the player or one of the other com-
petitors, also at random.

We hypothesized that participants would adapt their foraging
decisions based on the underlying perceived patch value. Per-
ceived patch value should be higher in low social density patches
during safe foraging (as a result of high reward availability).
Conversely, perceived patch value should be higher in patches
with greater social density when under threat of predation
(greater density decreases a given individual’s risk of predation),
up to a level in which greatly increased competition significantly
reduces resource capture. We additionally hypothesized that these
decisions would be supported by neural encoding of perceived
patch value independently of social density per se. Importantly,
our safe and hazardous patches were matched for the effort of
decision, energy costs, and competition and reward density.
Further, patch switch costs were zero, therefore allowing us to
investigate pure contextual changes in the perceived patch value
of the decision.

The current results suggest that humans adapt decisions in
response to environmental demands, varying decision preferences
based on a computed perceived patch value. Here, we show that
perceived patch value is associated with activity primarily in the
vmPFC and MCC regions of the brain.

Results
Behavioral evidence for risk dilution and competition avoid-
ance strategies. We assessed decision making by condition by
computing the percentage of trials in which the player selected
the patch with fewer competitors (Fig. 1C), and in more fine-
grained detail by calculating a difference score reflecting the
number of competitors present in each patch at the time of
decision. Participants selected the less populated patch in 89% of
decisions for the safe condition and in 32% of decisions in the
threat condition, inclusive of all trial durations (χ2= 4046,
p < 0.0005, 95% CI= [0.55, 0.58], proportion; paired t(20)= 9.50;
p < 0.0005, 95% CI= [0.44, 0.69], mean of differences = 0.57).
Further, we observed different average difference scores for safe
and threat conditions (paired t(20)= 9.66, p < 0.0005, 95% CI=
[2.53, 3.93]), indicating a context dependent shift in behavioral
decision making based on perceived patch value of each patch.

Choosing patches with a greater number of competitors in the
presence of potential predation increased the probability of
avoiding capture as a result of risk dilution, even for the smallest
patch difference (Fig. 1E; all non-paired t-test comparisons
between positive and negative values p < 0.005). For the safe
context, avoiding competition resulted in the maximum token
collection (Fig. 1B). Decisions to forage in patches with fewer
competitors increased capture probability compared with fora-
ging in patches with more competitors, even for the closest value
differences, e.g. between having 2 more players in the patch or
two fewer players in the patch (χ2= 109.9, p < 0.0005, 95%
CI= [0.12, 0.19]). Players also collected significantly fewer food
tokens in the threat than the safe condition, likely reflecting both
increased competition and distraction due to anticipation of the
predator (paired t(20)= 13.11, p < 0.0005, 95% CI= [34.64,
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47.75]; Fig. 1B). To assess the effect of distraction of threat above
and beyond basic competition we assessed mean token collection
at each level of competition across both safe and threat
conditions, and overall across conditions (see Supplementary
Fig. 2). No discernable patterns were observed in the mean token
collection as a function of number of competitors in the
occupied patch.

Optimization in the safe domain via selection of less
competitive patches held across all four blocks and began early
in the first block, reflecting the spontaneous and swift acquisition
of adaptive decision-making behavior. Likewise, most, but not all
participants quickly adopted a risk-dilution strategy in the
presence of predation, evidenced by consistent decision behavior
across all four trial blocks. While some participants adopted an
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identical strategy across trial type (e.g. safe/threat), most decisions
in safe trials reflected a competition avoidance strategy, that is, to
a patch with fewer competitors in order to maximize gain (see
Fig. 1B), while the opposite was true for threat trials, on average,
suggesting a risk-dilution strategy (see Fig. 1C). This pattern was
also observed in finer-grained detail when examining specific
numbers of competitors in each patch across conditions (Fig. 1D;
all non-paired t-test comparisons p < 0.005).

In order to provide a mathematically grounded quantification
of perceived patch value, the key decision variable emerging in
our behavioral analyses, we fit a model to participants’ decisions
that made decisions based on the perceived patch value of each
patch (see Methods). Perceived patch value depended on the
average number of points collected in each condition, and
included a free parameter representing the value of receiving a
shock, which was negative for all but two participants (Fig. 2A).
As expected, inferred perceived patch value from the model
decreased with more competitors during safety and increased
during threat (Fig. 2B), and the difference in perceived patch
value between the two patches was strongly predictive of choice
(Fig. 2C), correctly predicting 69.89% of choices. Predicted
probabilities based on perceived patch value difference were also
well calibrated with respect to true choice probabilities (Fig. 2D).
We compared this model to variants including one that learned
the value of different patches, depending on the number of
competitors and threat level, and one that incorporated a
tendency to stick with the previously chosen patch. Model
comparison indicated that the initial model provided a better fit
(WAIC=−6181.56, higher= better) versus the variant incor-
porating learning (WAIC=−6219.19) and the variant incorpor-
ating choice stickiness (WAIC=−9829.30).

Medial PFC and hippocampal activity encode perceived patch
value. We next sought to determine how decision variables are
encoded in the brain. We selected representational similarity
analysis (RSA) to examine these variables, as this technique
enables examination and comparison of representational spaces
and structures deriving from different categories and data sour-
ces, e.g. neural and behavioral task data. The similitude of these
spaces or structures is assessed using representational dissim-
ilarity matrices (RDMs), which enables traditional statistical
comparison across modalities.

Using RSA, we first identified regions where activity patterns
aligned with the task structure during the decision-making phase

of the task, during which participants were aware of available
options but could not yet make a motor response. Thus, this
allowed us to isolate the period where participants are evaluating
the options, but not where they are making a motor action to
enter their decision. Critically, RSA allowed us to identify
multivariate representations of key decision variables, rather
than assessing changes in single-voxel activity levels as in
traditional univariate analyses, through identifying regions where
neural similarity across conditions aligns with similarity in the
properties of the task being performed. While univariate analyses
could only determine whether perceived patch value is associated
with activity in each region, RSA allows us to determine whether
the multivariate representation of perceived patch value in a
region differs across trials in a manner consistent with the way in
which task variables differ across trials. We computed RDMs for
BOLD responses to each trial using a searchlight approach, based
on beta maps from a first-level general linear model including
each trial as a separate regressor. This involved moving a 6 mm
spherical searchlight across the entire brain and calculating the
Spearman correlation between beta weights within the searchlight
across every pair of trials, providing an RDM for the neuroima-
ging data representing the multivariate similarity between each
pair of trials. The RSA analysis then sought to predict neural
similarity based on the similarity of task conditions, based on the
number of competitors, perceived patch value, and threat level.
First, we computed task RDMs based on perceived patch value (as
determined using our behavioral model) in the current patch (the
patch selected on the previous trial) and the alternative. Second,
we computed RDMs representing the perceived patch value of the
current and alternative patch. We also included RDMs represent-
ing the (1) difference in competitors between patches; and (2) the
difference in perceived patch value between patches. Finally, we
included an RDM representing the (3) effect of threat. Within
each searchlight sphere, we then used linear regression to predict
the observed pattern of neural similarity from RDMs for task
conditions (Fig. 2E), and the beta weights from these regressions
provided an index of how well each task RDM predicted the
neural RDM within that sphere.

This identified a distributed network of regions encoding the
perceived patch value of the alternative patch during decision
making, including the MCC, posterior cingulate cortex (PCC),
medial prefrontal cortex (mPFC), and orbitofrontal cortex (OFC)
(voxel ps < 0.05, threshold-free cluster correction, Fig. 2F). The
perceived patch value of the current patch was also represented in

Fig. 1 Task design and behavioral results. A Task Design. In the safe play (blue patches) phase the player (1) observes possible patches; (2) views the

decision options; (3) makes a patch decision; and (4) is placed into the selected patch then competes to capture rewards; in the danger phase (red

patches) the player follows the same procedure as safe play, except that the participant is subject to potential capture by the predator. In the safe condition

the trial ends after time expires. The side-by-side patches were the same color during the experiment and are just color-coded here to clarify the

differences between safe and threat conditions. B Players collected significantly more rewards in safe than in threat patch configurations, evidenced by a

paired t-test; C Players spontaneously adopted a competition avoidance strategy in the safe condition, while most but not all players adopted a risk-dilution

strategy in the threat condition, evidenced by a paired t-test; D Decision tendency as a function of threat and competition. Participants selected patches

with few competitors more frequently in the safe condition, and patches with more competitors in the threat condition; all non-paired t-test comparisons

p < 0.005. E Probability distribution of being captured as a function of the difference score on a given trial. A large positive difference score indicates the

presence in a patch with few or one other competitor. A large negative score indicates the presence in a patch with several other competitors; all non-

paired t-test comparisons between positive and negative values p < 0.005. F The risk calculus that informs individual decision making based on perceived

patch value. In safe patches (blue dotted line) the optimal strategy is to select the patch with the fewest number of competitors, thus maximizing reward

gain and perceived patch value. In dangerous patches (black curved line) increasing group size threatens the ability to capture rewards but dilutes risk of

being the target of the predator. do represents a decision in which perceived patch value has been maximized in the safe condition; d1 represents an

individual with moderate risk tolerance for both competition and threat in the danger condition, willing to select a patch with several competitors in order to

reduce capture risk while still competing for rewards; Optimal Zones represent regions with high perceived patch value. *p < 0.05; **p < 0.01; ***p < 0.005.

Pink bars represent threat condition; blue bars represent safe condition. Error bars represent SE of the mean. Sample size of n = 21 used to derive error bar

statistics for panels. Source data are provided as a Source Data File.
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these regions (aside from the OFC), but was additionally
represented in the premotor cortex, hippocampus, and anterior
insular cortex (voxel ps < 0.05, threshold-free cluster correction,
Fig. 2F). As shown in Fig. 2G, these regions encoded perceived
patch value but did not encode social density, indicating that they
are not simply encoding the number of competitors. The
amygdala, a region intimately linked to threat, did not encode

perceived patch value for either patch, although there was a trend
towards encoding the perceived patch value of the current patch
(Fig. 2G). Importantly, our analysis approach isolated unique
effects of each task RDM, controlling for effects of other task
RDMs. In contrast, no areas represented the number of
competitors in the current or alternative patch. Notably, we
found no region encoding the difference between patches, either
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in terms of number of competitors or perceived patch value.
Threat level (i.e. safe or at risk of predation) was encoded in a
wide range of cortical and subcortical regions (see Supplementary
Fig. 3), including the MCC, vmPFC, hippocampus and amygdala.

To complement the RSA results, we also performed univariate
analyses to identify regions in which overall activity levels varied
according to the key decision variables involved in the task
(Supplementary Fig. 4). These analyses showed that a greater
number of competitors in the current patch was associated with
increased activity in visual cortex, while more competitors in the
alternative patch were associated with reduced activity in visual
cortex. This pattern in visual cortex also emerged when looking at
the effects of perceived patch value, however in addition greater
value in the current patch was associated with greater activity in
the thalamus, while greater value in the alternative patch was
linked to greater activity in the OFC and mPFC and reduced
activity in the thalamus, insula, and dorsal striatum. No
significant clusters emerged when focusing on the effect of threat
during the decision phase.

Finally, to facilitate comparison with prior work on value-
based decision making, we performed univariate analyses
focusing on the difference in value between the chosen and
unchosen patch (in contrast with our primary analyses, which
focused on the current and alternative patch). Results are shown
in Supplementary Fig. 6, and these revealed widespread negative
effects of chosen—unchosen value difference, including clusters
in the dorsal anterior cingulate cortex and dorsolateral prefrontal
cortex, with a single cluster in the right dorsolateral prefrontal
cortex associated with the absolute value difference. Activity
associated with the value of the chosen and unchosen option
independently was observed primarily in occipital areas.

Discussion
Our results demonstrate that humans adaptively select social
environments based on their perceived patch value, using a
competition-avoidant strategy when threat is absent and switch-
ing to a risk-diluting strategy in the presence of threat. Impor-
tantly, the key variable underpinning this decision, the perceived
patch value of a foraging patch, was encoded in a network focused
on the MCC and vmPFC, suggesting that these regions represent
the overall perceived patch value of both the current patch and an
alternative. Our results identify distributed neural systems
representing key decision variables underlying adaptative fora-
ging in response to competition and threat19,20.

Behaviorally, we found that participants adapted their
decision-making strategy based on the perceived patch value of
foraging patches. Under conditions of safety participants were
biased towards patches with low competition density, as found in
previous work15, representing a competition-avoidant strategy. In
contrast, when under threat, participants chose patches with high
social density, representing a risk-dilution strategy. These results
indicate that while foraging in social environments with the threat
of predation, human participants base their decisions on the
perceived patch value of available patches. Different participants
have different thresholds for both types of risk (Supplementary
Fig. 5), suggesting a role for variability in motivational systems
that may preference risk towards one domain over the other.

An important caveat of this work is that we cannot be certain
how participants determine the perceived patch value of a patch.
In our task, it was possible for participants to learn the value of
each patch in a model-free manner, and this was reflected in our
computational modeling. As a result, while the value of a patch
clearly depends on the social component of the task, the parti-
cipant does not necessarily need to perform any online integrative
computations that adjust the value of a patch based on the level of
competition, even if this may be a more effective strategy in the
real world. To investigate this further, future work will need to
exploit more complex experimental designs in which perceived
patch value cannot be learned easily.

In the natural world, and in the absence of predation risk,
immediate survival depends on maximizing food resources, and is
therefore highest in environments with the fewest competitors.
When under threat of predation, survival focus shifts to risk of
capture, and is higher in environments with a greater number of
competitors, and remains so until competition density outweighs
the risk-dilution benefit. perceived patch value will depend on the
interaction between multiple factors, and our task presents a
simplistic case where reward is readily available. For example,
when food is persistently scarce, perceived patch value is likely to
be relatively high in the absence of competition even under threat.

At the neural level, we found that the perceived patch value of a
social decision environment was encoded across a distributed
network of regions, primarily located in the vmPFC, OFC, MCC,
and PCC. These regions were largely the same for the current and
alternative patch, although the value of the current patch was
additionally encoded in the hippocampus, while the OFC pre-
ferentially coded for the value of the alternative patch. Notably,
we found no strong evidence for encoding of perceived patch

Fig. 2 Behavioral modeling and neural results. A Values of the shock cost parameter from our behavioral model, negative for all but one participant.

B Perceived patch value across task conditions, demonstrating that perceived patch value depends on both threat level and the number of competitors.

C Probability of choosing a patch based on the difference between its perceived patch value and that of the alternative. The function represents the results

of logistic regression models predicting choice from perceived patch value difference (see methods). D Calibration plot showing predicted probability of

choice based on perceived patch value difference derived from a logistic regression model versus the true choice probability for safe and threat conditions.

Probabilities are binned (10% bins); error bars represent 95% confidence intervals across participants. E Representational dissimilarity matrices (RDMs)

for the neural data (hypothetical example shown left) and task conditions of interest (right). Neural RDMs modeled as a function of task RDMs using linear

regression, with each RDM weighted by a weight parameter βRDM. RDMs shown for a subset of trials for one participant. In the task RDMs, rows and

columns represent individual trials, while the colors in the matrix represent the difference in perceived patch value between that trial and other trials. RDMs

are shown for the perceived patch value of the current and alternative patch. F Left panel: effects of the current patch perceived patch value RDM, showing

widespread effects, including the mid-cingulate cortex (MCC), posterior cingulate cortex (PCC), medial prefrontal cortex (mPFC), orbitofrontal cortex

(OFC). Right panel: effects of the alternative patch perceived patch value RDM, showing effects across similar areas, with the most prominent clusters in

the mid-cingulate cortex (MCC), and mPFC/OFC. Maps represent p values determined using threshold-free cluster correction (TFCE), thresholded at

p < .05, two-sided. G Mean extracted beta values from the MCC and vmPFC, taken from the AAL atlas45 MCC and frontal medial orbital regions

respectively, in addition to hippocampus and amygdala regions. Higher values indicate greater similarity between the task RDM and neural RDM. Values

are provided for illustration only and will be weaker than actual effects due to averaging across the entire region; significance was determined using

voxelwise tests as shown in (F). Error bars represent 95% confidence intervals across participants. All error bars and bands are calculated using n= 19

independent participants used for neuroimaging analyses, and the center of the error bar represents the mean. Source data are provided as a Source

Data file.
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value in the amygdala. In contrast, we found little evidence for a
representation of the number of competitors per se, or the dif-
ference in perceived patch value or social density between
patches.

Our use of RSA allowed us to focus on the multivariate
representations of these variables in the brain, rather than relying
on single-voxel activity changes. Thus, the regions we identify do
not simply show similar activity levels across high perceived patch
value conditions but represent survival in the same manner across
conditions. Our focus on multivariate representations of decision
variables during foraging, as opposed to overall activity levels,
distinguishes this work from prior studies, which to date have
exclusively used univariate approaches. Thus, while activity levels
may be modulated by the difference between options, the pattern
of activity represents the value of each option independently. This
is demonstrated by comparison to our univariate analyses, which
do not identify the same patterns.

While this approach does enable us to identify where in the
brain these key decision variables are encoded, it provides little
information about how these variables are encoded. Multivariate
approaches rely on identifying distributed patterns of activity that
are linked to a particular variable of interest, but it is challenging
to qualitatively assess exactly what this encoding pattern looks
like. For example, we are unable to say for certain that the per-
ceived patch value is encoded relative to a particular reference
value. Instead, this approach makes the implicit assumption that
the variable of interest is encoded by the relative values of neural
subpopulations within the region being examined. Thus, while
simple coding schemes may exist within these small-scale popu-
lations, at the macro scale we cannot identify such a straight-
forward coding. Relatedly, there are other processes that may
influence our results. For example, decision confidence and
subjective value (which may be distinct from the value under-
pinning decisions) are likely to be confounded with perceived
patch value to some degree, but were not measured in this study.
Further work will be required to understand how these processes
interact to influence decision making and the subjective experi-
ences of participants during these tasks.

Historically, the MCC and vmPFC have been implicated in
human foraging14. These regions are also primary components in
our concept of perceived patch value, and active when partici-
pants consider both current and alternative patches. Importantly,
our results show that these regions encode the perceived patch
value of an environment across safe and threat conditions, rather
than the social density of competition alone. What are these two
regions computing? First, it is important to state that our MCC
cluster is more posterior than the dACC area that has been linked
to the difficulty of foraging decisions and the value of alternative
options8,10,13. Also, our task conditions of interest are largely
orthogonal to decision difficulty. Thus, our lack of dACC activity
may reflect the matching of difficulty across conditions. Our
results also indicate that the MCC is not purely signaling the
value of an alternative option, or the difference between options,
but simultaneously represents both the value of both the current
and alternative option.14,16,21 However, based on the knowledge
of this region’s connectivity and function, which suggests it plays
little role in value-based, goal-directed actions per se22, it seems
incorrect to say that the MCC reflects pure value. Instead, the
MCC may act as a hub, coordinating emotional responses and
motor actions according to learned values23, particularly when
threat may be imminent24. Of note, threat level itself was also
encoded in these regions, suggesting that they represent predation
threat in addition to decision variables, especially in uncertain
contexts25,26.

Our results are in line with the role of the vmPFC in the
valuation of options during foraging. In prior work using foraging

paradigms, however, the vmPFC has been implicated as a com-
parator of options, while our work suggests that it independently
signals the values of multiple options27. Others have shown that
damage to the vmPFC can result in poorer learning of the value of
spatial locations of rewards, supporting the role of the vmPFC in
domain-general valuation16,28. While novel task designs are
required to dissect their functional roles precisely, the extensive
prior work on the roles of the vmPFC and MCC suggests that
they are perfectly situated to calculate different aspects of foraging
decisions based on perceived patch value and coordinate adaptive
behaviors in response to threats. While the vmPFC appears
important in representing the perceived patch value of options
itself, potentially facilitating the decision-making process, MCC is
likely involved in the coordination of motor actions (i.e. to stay or
go) and has also been shown to be active in threat valence
contexts29.

While our results provide insights into the neural representa-
tion associated with aspects of the virtual foraging task, future
investigations could benefit from focusing more on detailed
behavioral measures. For example, because participants were
given a period in which to consider their decision before having
very little time to actually enter the decision (to enable analysis of
the neural representation of the decision-making process), we do
not have reliable access to reaction time data, which may have
allowed us to investigate factors such as decision confidence. As a
result of our focus on the decision-making process, the task was
also not ideally suited to investigate how participants may learn
the value of different patches when faced with competition and
threat, and how they may make decisions that incorporate
uncertainty in these learned values. This is illustrated by our
modeling analyses, in which we found that a model incorporating
learning did not provide as good a fit to the data, accounting for
model complexity. Rewards were stable over the course of the
task, and participants were able to practice the task prior to
entering the scanner, allowing them to learn the value of different
options prior to beginning the real task. Additionally, the length
of the task (approximately 4 h) means that even if some learning
does occur early in the task, the majority of the task required little
learning for participants to be reasonably effective. Substantial
learning or use of learned information online during the task
would be evidenced by optimal decision making among current
and later choice options, which was not observed at scale across
participants.

The current study introduces a mathematically grounded
concept of perceived patch value, which encompasses both
competition avoidance and risk-dilution strategies. While not
underplaying the importance of other brain regions, these stra-
tegies are represented in a network centered on the vmPFC and
MCC. Importantly, these regions did not represent a computed
comparative value or simple difference; instead we found evi-
dence that perceived patch value in each patch is valued inde-
pendently, and critically, independent of the number of
competitors in a given patch. Individually calibrated levels of
perceived patch value predicted behavioral foraging decisions in
both safe and threat contexts, imbuing the concept with pre-
dictive value for a complex foraging task which, different from
prior work, required assessments in competing safe and threat
contexts.

Methods
Participants. Participants were screened for requirements to participate, including
standard health measures that determine inclusion for fMRI experiments. Fol-
lowing the screening, 22 (6 F; mean age: 31; range: 18–49) participants were trained
on and completed a computerized, virtual foraging task featuring two conditions:
safe and threat (Fig. 1A). Behavioral and neural data were lost for one session for
one participant and neural data for another participant resulting in reporting of 20
participants for behavioral and neural data analyses. Participants were scanned for
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approximately 4 h each over the course of 2 days. The threat condition involved the
possibility of electric shock, administered to the underside of the left wrist. Electric
shock intensity was individually calibrated prior to the task to an aversive, yet
tolerable level. All participants provided informed consent to participate in the
study, which was reviewed and approved by the Committee for the Protection of
Human Subjects (IRB) at the California Institute of Technology. Subsequent to
participation, all participants were debriefed regarding the purpose of the study.

Task. The task was a dynamic foraging game designed to investigate the effects of
competition and threat on foraging decisions and behavior. Participants foraged for
two, 45 min blocks per day over 2 days for a total of four blocks (Supplementary
Fig. 1) and approximately 4 h of total scanning including structural scans. Each
block maintained an identical trial structure, the difference being the number and
cycle of competitors in the two patches. During each block a consistent cycle of
competitors repeated, such that the player could quickly learn to predict the
configuration (e.g. number of competitors in each patch) of the following part of
the cycle. The game consisted of two patches containing 1–6 other AI players that
foraged the environment for rewards, which appeared on a consistent,
periodic basis.

Cycles. Each session was characterized by a regular progression of cycles (Sup-
plementary Fig. 1). Each cycle consisted of three distinct competitor states that
repeated sequentially throughout a session. During session one, the left patch
(denoted P1) progressed in such a manner that if the participant saw one com-
petitor during the current trial, on the following trial the participant would see five
competitors, followed by two competitors. The cycle repeated for the duration of
the session. The same mechanism operated for the right patch (denoted P2) such
that when the participant saw one competitor in the left patch (P1), four would be
present in right patch (P2); if five competitors were present in the left patch (P1),
then one competitor would be present in the right patch (P2); if two competitors
were present in the left patch (P1), then five competitors would be present in the
right patch (P2). Different, repeating competitor state progressions were used for
sessions two, three and four (Supplementary Fig. 1).

Trial types. Trial types included a short duration, immediate decision (SI) in
which participants were briefly shown the upcoming competitor state, prompted to
select either the left (P1) or right (P2) patch, were placed in the selected patch and
foraged for seven seconds; short duration, later decision (SL) in which participants
were briefly shown the current competitor state, prompted to select either the left
(P1) or right (P2) patch for the current state in the cycle, or, if they wished, the next
state in the cycle, were placed in the selected patch and foraged for seven seconds;
and long duration, immediate decision (LI) in which participants were briefly
shown the current competitor state, prompted to select either the left (P1) or right
(P2) patch for the current state in the cycle, were placed in the selected patch, and
foraged for 14 s. During the 14 s period the patch state would change once (e.g.
every 7 s). Importantly, LI trials were single condition trials such that if the first 7 s
was safe, the latter portion of the trial was also the safe condition, and if the first 7 s
was under threat, the latter portion of the trial was also the threat condition. Since
few participants utilized the later decision option (being chosen on 7.6% of trials
across participants), data analyzed includes only immediate decisions categorized
as SI and LI. In each of these instances the trial format was identical, and parti-
cipants selected from among the patch options displayed to them prior to engaging
in foraging activity, enabling us to collapse decisions across trial types. Each trial
ended with a 3 s ITI.

Decision. At the beginning of each trial, two patches were displayed for three
seconds, each with a different number of competitors (a competitor state). After the
three-second period elapsed the patches disappeared, and the participant had three
seconds to make a decision regarding the patch in which they would like to forage.
In the SI condition, the participant chose between the two patches visually dis-
played, and was placed in the selected patch for the remainder of the trial. In the SL
condition, the participant could choose either from among the patches visually
displayed or the next iteration of patches per the repeating competitor states. If the
player selected a patch from the visual display the trial would proceed identical to
the SI trial type; however, if instead a patch from the next state in the cycle (not
visually displayed) was selected the patches would immediately change to the
following competitor configuration state and the player would proceed to forage for
the remainder of the trial. In the LI condition, the patch configuration iterates
halfway through the trial, forcing the player to consider both the current and next
state in the cycle as they make a decision from among the visually displayed
patches.

Gameplay. After choosing a patch, participants foraged using a diamond button
box with four easy to use buttons indicating directions up, down, left and right,
until trial ended, which occurred due to a time parameter or appearance of a virtual
predator. AI competitors were opaque (the player could not move through AI
competitors and vice versa) and programmed to chase food tokens within a

predetermined radius at the same speed as the player. During or after the threat
trials the game paused for 2 s when the virtual predator appeared, after which the
predator moved towards and captured a player at random, ending the trial. The
predator was more likely to attack the patch in which the participant was located,
but not more likely to attack the participant than other players. If the participant
was captured they received an electric shock and lost a small portion of the
accumulated earnings acquired over the course of the block. The trial finished
with a 3 s ITI before the next trial began. Importantly, the combination of the 3 s
ITI and 3 s period in which options were displayed (prior to available options on
the current trial being highlighted) ensured that the decision period (the focus of
the imaging analyses) was separated from the administration of shock by at
least 6 s.

Safe trials consisted of making decisions based on the configuration of
competition in each patch and the learned repeating cycles that enable recognition
of the location within a cycle and hence, the upcoming configuration. Threat trials
included the appearance of a virtual predator, adding a relevant parameter to
participants’ decisions. Selecting a patch with few players increases the risk of
capture by a predator, but also increases the chance of acquiring rewards.
Occupying a patch with several other players dilutes the risk of capture by a
predator, but decreases the chance of acquiring rewards.

Each block was divided into eight (8) sub-blocks consisting of 18 trials of which
half were safe trials and half were threat trials. Based on this structure, participants
completed a total of 576 trials, balanced between the three trial types detailed above
(SI, SL, LI). Threat trials ended when a virtual predator appeared and captured a
player. The task duration over the course of 2 days was approximately 3.5 h,
including a short training period. During the training period the participant
observed changing patch configurations as a fixed 3-change cycle was repeated. For
example, the left patch might cycle through the following number of competitors:
6, 4, 3 such that if the player observes four players in the patch, the next cycle will
display three players with 100% certainty. Participants completed a post-task
questionnaire, were debriefed on the experimental purpose, and paid $120 for
participation.

Behavioral data acquisition and analysis. Participants’ x–y coordinates were
recorded at a sampling rate of 30 Hz. Other variables collected included reward
spawn location and collection; patch selection decisions; safe/threat value of each
environment, number of competitors in each environment, captures and shocks
received.

Decisions tallies were generated for two focal variables including whether (1)
the player selected the patch with fewer competitors; (2) the player selected a
patch currently observed or a prospective patch. These decisions were analyzed
based on several factors including (1) the trial type, e.g. safe or threat; (2) the trial
length, e.g. short or long; (3) the block, e.g. low competitor numbers or high
competitor numbers; and (4) the actual number of competitors in each patch.
Data cleaning and organization was performed using Python 3.7. Statistical testing
was performed using R version 3.5.0 (see below for details regarding behavioral
modeling).

Behavioral modeling. To quantify perceived patch value at the individual parti-
cipant level, we fit a model to the behavioral data. This model represented decisions
as being based on the perceived patch value of the two potential patches. Perceived
patch value was determined based on the average accumulated points across the
task in each condition (i.e. every combination of competitor number and threat
level) across the entire task, accounting for losses incurred when caught, and was
calculated independently for each participant. In addition, we included the prob-
ability of being caught in each condition, multiplied by a free parameter repre-
senting the cost of receiving a shock. Thus, perceived patch value was dependent on
both the number of points collected and the cost of shocks. Notably, the mean
number of tokens collected across competitor number and PPV condition showed
no discernable pattern, differing only three competitors at which no difference in
the mean token collection was evident (Fig. S2), suggesting an effect of threat above
and beyond competition vis a vis perceived patch value. The perceived patch value
of condition X was therefore calculated as:

PPV ¼ pointsX þ P shockð ÞA � shockcost ð1Þ

A softmax function with a free temperature parameter (τ) was used to transform
the values of the two patch options (A and B) to choice probabilities. This cal-
culation used only the value of the two patches shown on screen, rather than later
patches on LI trials, as behavioral results demonstrated little evidence for partici-
pants considering these later patches:

P Að Þ ¼
exp PPVA=τ

� �

exp PPVA=τ
� �

þ exp PPVB=τ
� � ð2Þ

We also evaluated a model that learned the value of patches with different numbers
of competitors and threat levels over the course of the task. On each trial, the
expected value of the chosen patch was estimated using a Bayesian mean tracker
model. The mean (m) and variance (v) of the patch value are updated on each trial

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25816-9

8 NATURE COMMUNICATIONS |         (2021) 12:5478 | https://doi.org/10.1038/s41467-021-25816-9 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


using learning rate G as follows:

mt ¼ m t�1f g þ δt � Gt ð3Þ

vt ¼ 1� Gt

� �

� v t�1f g ð4Þ

The learning rate G is updated on each trial as a function of the variance and an
additional free parameter theta (fixed at 1), representing the error variance.

Gt ¼
v t�1f g

v t�1f g þ θ
2
ϵ

ð5Þ

Finally, we tested a variant of the initial decision model with an additional
free parameter representing a tendency to stick with the previously chosen
patch (e.g. selecting the left patch consecutively) rather than switching to the
alternative. Here, the value of the chosen option from the previous trial was
multiplied by this parameter, which has the effect of making it more likely to be
chosen.

Models were fit in Python using PyMC3, with variational inference. Model fit
was evaluated and compared using the Widely Applicable Information Criteria,
which penalizes according to model complexity. For further analyses, we used the
mean of the posterior distribution over parameters.

FMRI data acquisition. fMRI data was collected using a 3 T Prisma scanner in the
Caltech Brain Imaging Center (Pasadena, CA) with a 32-channel head receive array.
BOLD contrast images will be acquired using a single-shot, multiband T2*-weighted
echo planar imaging sequence with the following parameters: TR/TE = 1000/30ms,
Flip Angle = 60°, 72 slices, slice angulation = 20° to transverse, multiband accel-
eration = 6, no in-plane acceleration, 3/4 partial Fourier acquisition, slice thickness/
gap = 2.0/0.0 mm, FOV = 192mm × 192mm, matrix = 96 × 96). Anatomical
reference imaging employed 0.9mm isotropic resolution 3D T1w MEMP-RAGE (TR/
TI/TE = 2550/1150/1.3, 3.1, 4.0, 6.9ms, FOV = 230m × 230mm) and 3D T2w
SPACE sequences (TR/TE = 3200/564ms, FOV = 230mm×230mm). Participants
viewed the screen via a mirror mounted on the head coil, and a pillow and foam
cushions were placed inside the coil to minimize head movement. Electric stimulation
was delivered using a BIOPAC STM100C.

FMRI preprocessing. Participants’ data were preprocessed using fMRIprep30

version stable RRID:SCR_01621630 a Nipype31,32 [RRID:SCR_002502] based tool.
Each T1w (T1-weighted) volume was corrected for INU (intensity non-uniformity)
using N4BiasFieldCorrection33 v2.1.0 and skull-stripped using antsBrainEx-
traction.sh v2.1.0 (using the OASIS template). Spatial normalization to the ICBM
152 Nonlinear Asymmetrical template version 2009c34 [RRID:SCR_008796] was
performed through nonlinear registration with the antsRegistration tool of ANTs
v2.1.035 [RRID:SCR_004757], using brain-extracted versions of both T1w volume
and template. Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter
(WM) and gray-matter (GM) was performed on the brain-extracted T1w using
fast36 (FSL v5.0.9, RRID:SCR_002823).

Functional data were motion corrected using mcflirt37 (FSL v5.0.9). This was
followed by co-registration to the corresponding T1w using boundary-based
registration38 with six degrees of freedom, using flirt (FSL). Motion correcting
transformations, BOLD-to-T1w transformation and T1w-to-template (MNI) warp
were concatenated and applied in a single step using antsApplyTransforms (ANTs
v2.1.0) using Lanczos interpolation.

Physiological noise regressors were extracted applying CompCor39. Principal
components were estimated for the two CompCor variants: temporal (tCompCor)
and anatomical (aCompCor). A mask to exclude signal with cortical origin was
obtained by eroding the brain mask, ensuring it only contained subcortical
structures. Six tCompCor components were then calculated including only the top
5% variable voxels within that subcortical mask. For aCompCor, six components
were calculated within the intersection of the subcortical mask and the union of
CSF and WM masks calculated in T1w space, after their projection to the native
space of each functional run. Framewise displacement40 was calculated for each
functional run using the implementation of Nipype.

Many internal operations of FMRIPREP use Nilearn41 [RRID:SCR_001362],
principally within the BOLD-processing workflow. For more details of the pipeline
see https://fmriprep.readthedocs.io/en/stable/workflows.html.

Representational similarity analysis. First-level models were constructed using
FSL 6.042. Each run of the task was modeled and estimated separately, including
single regressors for each task periods of no interest. Data were normalized such
that each voxel had a mean value of 100 prior to analysis. As our analyses focused
on the decision period of the task, we modeled this period of each trial using a
separate regressor, resulting in independent beta maps for each trial43. Aside from
the decision period, we also modeled the pre-decision period, between the trial
starting and the available options being revealed, the foraging period, and the
receipt of shock as events with durations corresponding to their duration in the
trial, convolved with the standard hemodynamic response function. These were
modeled using single regressors representing all trials across the run. We also
included framewise displacement, six motion parameters, white matter and CSF

time series as regressors of no interest to account for signals related to motion and
physiological processes. As the number of trials per condition was dependent on
participants’ choices, we excluded participants who did not experience the +/−2 or
3 competitor difference conditions. This resulted in the exclusion of a single
participant.

Maps for each condition were subsequently used for representational similarity
analysis (RSA) using a searchlight approach after being spatially smoothed with a
3 mm FWHM kernel. This involved calculating representation dissimilarity
matrices (RDMs) for the neural data by computing the Spearman correlation
distance between voxel-level representations within a 6 mm sphere for each
condition across the entire task. This resulted in RDMs with as many rows and
columns as trials in the task. To quantify associations between the neural RDMs
and task variables, we calculated task RDMs representing the distance between
conditions in terms of task features of interest.

We focused on two RDMs representing task features of particular interest:
First, the number of competitors in each patch, with one RDM for the current
patch, one for the alternative, and one for the difference between the two. Second,
the perceived patch value of each patch, also including RDMs for current,
alternative, and difference between patches. We then used linear regression to
determine the influence of task RDMs on neural RDMs, with each RDM being
weighted by its own β parameter. We also included a further RDM representing
threat level, along with RDMs representing condition similarity in run number
(where conditions from the same run have the highest similarity) and session
number (where conditions from the same session have the highest similarity).
This produced whole-brain maps representing the β weights for the RDMs of
interest, with each voxel representing the effect in the 6 mm sphere of which it
was the center.

Maps from the searchlight RSA analysis were thresholded using the randomize
function in FSL, using a one-sample t-test against zero. Statistical significance at
every voxel was determined using threshold-free cluster correction with 5000
permutations and 10 mm variance smoothing. While statistical significance was
determined using this whole-brain approach, for the purposes of illustrating the
pattern of effects across different regions, we extracted beta values from the RSA
within key regions showing significant effects (as shown in Fig. 2). For this we used
the AAL atlas, selecting the MCC, frontal medial orbital cortex, hippocampus and
amygdala regions, extracting the mean beta value from the RSA within the region
for each participant. We show the mean and 95% confidence intervals in
Supplementary Fig. 3.

Univariate analysis. Univariate analyses were conducted using Lyman (http://
www.cns.nyu.edu/mwaskom/software/lyman/index.html). Data were first
smoothed using an 8 mm FWHM kernel, and first-level models were constructed
as described for the representational similarity analysis for each run. The only
exception was that rather than modeling the decision period of each trial sepa-
rately, we instead modeled the decision period using a single regressor for each
trial, including parametric modulators for each decision variable of interest (per-
ceived patch value and the number of competitors for the current and alternative
patch, the difference between these values, and threat level). No participants were
excluded for this analysis. Maps from first-level analyses for each run were then
combined using a second-level fixed-effects analysis within participant, and
participant-level maps from this stage were finally used for group-level analysis. At
the group level, significance was determined using FSL’s randomize tool, with 5000
permutations and 10 mm variance smoothing. Results of the univariate analysis are
displayed in Supplementary Fig. 4.

Additional analyses focusing on the value difference between chosen and
unchosen options were conducted using the same approach, including regressors
representing the value of the chosen option, the value of the unchosen option, the
value difference between chosen and unchosen options, the absolute value
difference between chosen and unchosen options, and the sum of the value of the
two options. These were modeled in separate GLMs due to collinearity between
regressors.

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
The behavioral data generated in this study have been deposited on the GitHub44

repository (https://github.com/mobbslab/foraging_paper) and Zenodo (https://doi.org/

10.5281/zenodo.5113171). The processed neural data are available at the Open Neuro

database, at https://openneuro.org/datasets/ds003484. Raw neural data will be made

available upon request to the corresponding author. Source data are provided with

this paper.

Code availability
All code used for the analysis and modeling of behavioral and neural data in this study is

available at GitHub (https://github.com/mobbslab/foraging_paper) and Zenodo (https://

doi.org/10.5281/zenodo.5113171).
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