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Electrical activity is the foundation of the neural system. Coding theories that describe neural electrical activity by the roles of
action potential timing or frequency have been thoroughly studied. However, an alternative method to study coding questions is
the energy method, which is more global and economical. In this study, we clearly de�ned and calculated neural energy supply
and consumption based on the Hodgkin-Huxley model, during �ring action potentials and subthreshold activities using ion-
counting and power-integral model. Furthermore, we analyzed energy properties of each ion channel and found that, under the two
circumstances, power synchronization of ion channels and energy utilization ratio have signi�cant di�erences. 
is is particularly
true of the energy utilization ratio, which can rise to above 100% during subthreshold activity, revealing an overdra property
of energy use. 
ese �ndings demonstrate the distinct status of the energy properties during neuronal �rings and subthreshold
activities. Meanwhile, aer introducing a synapse energy model, this research can be generalized to energy calculation of a neural
network. 
is is potentially important for understanding the relationship between dynamical network activities and cognitive
behaviors.

1. Introduction

Coding and decoding of neural information have been the
core problem in cognitive neural science [1–6]. Phase coding,
frequency coding, and group coding have been established to
deal with this problem [1]. 
ese issues have been of interest
to scientists from around the world. Unfortunately, these
techniques are limited in scope and are di�cult to complete
successfully [7, 8]. Currently, there is no complete theory for
neural coding and decoding to direct the research of global
brain activities. 
e reason is that these local coding theories
do not include the cross in�uence of large-scale neural
activities. 
e neurodynamics are nonlinear, which makes it
very hard to perfectly analyze the neural coding and decoding
problem [8–18].Neural activities andneural information pro-
cesses should follow the principles of energy minimization
and information transmission e�ciency maximization [19];
in other words, neural system should be restricted by energy
minimization regardless of suprathreshold or subthreshold
activity. 
is is the economical essence of neural system
because of evolution. Information transmission e�ciency

must maximize the energy utilization in a neural system; this
property is determined by the high e�ciency of neural system
[19]. However, it is di�cult to describe on a quantitative
basis neural metabolic energy, neural electric energy, and
the relationship between them. Some research has calculated
neural energy, but these descriptions are restricted on the
electrochemistry level [20, 21].
us, neural energy cannot be
coupled to neural coding at the network level. 
is research
has helped us to understand the neural energy consumption
and transformation, but they are not related to information
coding by neuron group activity.

Researchers have proposed a newmethod to study neural
coding through the use of energy levels to compensate for
the problems mentioned above [22]. A biophysical model
has been constructed to describe the relationship between
bioenergy of the brain and the neural information processes
of the prefrontal cortex. Furthermore, quantitative connec-
tions between �ring patterns and neural energy evolutionary
process have been found. Based on these unique connections,
researchers have proposed the concept of energy coding [19,
23] and calculated the energy of a single neuron [24]. Some
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interesting discoveries have been found during the study
of the energy distribution properties of structural neural
networks [24]: (1) the theory of neural energy coding is based
on the use of a global concept of energy; (2) neurons release
their stored energy within a very short time (negative energy)
at the beginning of �ring action potential, aer which the
oxyhemoglobin provides them with biological energy, and
this mechanism contradicts the traditional theory of pure
energy consumption in neurons; (3) the distribution of the
negative energy, as assessed by parameter studies, re�ects the
neural network parameters and neural oscillation with a high
consistency. 
ese ideas have laid the foundation for energy
coding research of the functional neural network.

Scientists studying neural energy consumption [6, 20, 25–
27] have analyzed the demand of adenosine triphosphate
(ATP) in the coding of certain bits of information from
experiments and computational model and provided the
e�ciency relationship between information transformation
and energymetabolism in certain conditions. However, these
remarkable works focused only on one single prospective
of energy consumption of a neuron, or the energy support
during neural information process. 
ey ignored the other
equally important reversal problem, which is, from energy
metabolism and utilization properties, whether we can
decode some information of stimulus and neural response.
In this research, we analyze this problem by energy coding
method. 
e most important neural activity is the changing
of membrane potential of a neuron, which depends on the
work of ion pumps. Among these pumps, the Na+/K+ pump
is themost crucial one and it consumesmost of themetabolic
energy. 
us, energy consumption by the Na+/K+ pump
re�ects the metabolic energy used by neurons at the same
time. 
is energy transforms to potential energy to maintain
membrane potential and is consumed by electrical activity.
Finally, the energy dissipates and turns into heat.
us, energy
is supplied to the ion pump by ATP; then the ion pump
works to transport ions against the concentration gradient to
preserve electrical potential energy.
is process is equivalent
to charging a battery. When an action potential occurs, ions
move along the electric potential di�erence, and the potential
energy preserved in the membrane is released and turned
into joule heat due to the resistance e�ect of ion channels.
In general, energy is supplied by ATP and consumed by the
ion channel. Apparently, energy should be conserved during
lager scale of time, but in small time interval energy supply
and consumption are not really matched every moment.
is
property makes it possible to study brain activity status based
on energy supply.

2. Model and Method

From the former discussion, it can be deducted that energy
supplied to a neuron could be measured by the amount
of ATP consumed by the ion pump, which is the direct
energy source of a neuron. 
e energy consumed by a
neuron can be measured by the joule heat transformed from
electric potential energy, so that we can calculate this energy
consumption from membrane potential, Nernst potential,
and ion current. Most metabolic energy released by ATP is
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Figure 1: Circuit of H-H model.

provided to the Na+/K+ pump, so energy consumed by the
Na+/K+ pump could represent the energy supply to a neuron.
On the one hand, for every 3 Na+ ions pumped out of a cell
membrane, oneATPmolecule is consumed [26]; eachmole of
ATP molecules can release between 46 and 62 kJ free energy
[28]. Aer Na+ �ow into neuron during neural activity, the
Na+/K+ pump will expel at least the same amount of Na+

to reset the resting membrane potential. 
us, as long as we
calculate the amount ofNa+ �ow into neuron,we can estimate
the ATP consumption [29] and the �nal energy supply to a
neuron. On the other hand, based on a reasonable neuron
ion channel model, joule heat generated by electric activity of
a neuron can be obtained by the integral of electric power of
each ion channel, which is the product of the electric potential
and the current [20]. 
is integral represents the energy
consumption of a neuron. Fortunately, all these characters
can be obtained by Hodgkin-Huxley model (H-H model).

Circuit of H-H model is depicted as in Figure 1.

e di�erential equation is

�� ����� = �� (�� − ��) + �Na
3ℎ (�Na − ��)
+ �K�4 (�K − ��) + ,

(1)

where �� is membrane capacitance of a neuron, �� is
membrane potential,�Na and�K areNernst potentials ofNa+
and K+, and �� is the potential while leakage current is zero.��, �Na, and �K are, respectively, leakage conductance, Na+
channel conductance, and K+ channel conductance. 
ese
three kinds of conductance are described as the following
nonlinear di�erential equations:

��
�� = �� (1 − �) − ���,
�

�� = �� (1 − 
) − ��
,
�ℎ
�� = �ℎ (1 − ℎ) − �ℎℎ,

(2)
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where

�� = 0.01 (10 + �� − ��)
exp [((10 + �� − ��) /10) − 1] ,

�� = 0.125 exp (�� − ��
80 ) ,

�� = 0.1 (25 + �� − ��)
exp [((25 + �� − ��) /10) − 1] ,

�� = 4 exp (�� − ��
18 ) ,

�ℎ = 0.07 exp (�� − ��
20 ) ,

�ℎ = 1
exp [(30 + �� − ��) /10 + 1] .

(3)

And �� is the resting membrane potential.

e action potential �ring process is as follows: (1) Aer

postsynaptic neuron receiving impulse from presynaptic
neuron, the neuron membrane increases its permeability to
Na+ changes and begins to depolarize (subthreshold activ-
ity); (2) permeability further increases, with enormous Na+

�ow inward, and membrane potential rises rapidly (supra-
threshold activity); (3) permeability toNa+ decreases andper-
meability to K+ increases, and repolarization begins; (4) per-
meability to K+ continues to increase and K+ �ows outward
until hyperpolarization; (5) aer permeability to K+ decrea-
ses, membrane potential rises to a resting level.

As a result, energy supplied by ATP during action
potential or subthreshold activity can be calculated based on
the H-H model:

�� = �
��� ∫	 �Na


3ℎ (�Na − ��) ��, (4)

where � is amount of energy released by one-mole ATP, � is
the elementary charge, which is 1.6×10−19 coulombs, and��
is Avogadro constant, and the integrand is the current of the
Na+ channel.

Energy consumption by a neuron based on H-H model
can be determined by the following method [20].

At a particular moment, electric energy contained by a
neuron is accumulated in membrane capacitor and equiva-
lent batteries generated by Nernst potentials of ions, which
is

� (�) = 1
2���

2
� + �Na + �K + ��, (5)

where �� and �� are membrane capacity and potential and
the last three terms are energy accumulated in batteries which
are di�cult to calculate directly. 
us, we focus on electrical
power which is the time rate of change of total energy:

��
�� = ���� ���� + �Na�Na + �K�K + ����, (6)

where the last three terms are ion currents and Nernst
potentials, respectively. Aer applying (1) we obtain the
following:

��
�� = �� + �Na (�Na − ��) + �K (�K − ��)

+ �� (�� − ��) .
(7)

Integrating this equation at a particular time interval, we
are able to calculate the energy consumed by a neuron during
this time-period:

�
 = ∫
	
[�� + �Na (�Na − ��) + �K (�K − ��)

+ �� (�� − ��)] ��.
(8)

Apparently, �
 = �(�) + �, where � is an unknown con-
stant determined by the electrophysiological features of neu-
ron. 
is means we can calculate energy consumption of
a neuron during a time interval (especially during elec-
tric activity), although total energy contained in neuron is
unknown to us.

As soon as energy supply and consumption are calculated,
energy e�ciency can be de�ned by percentage of energy
consumption over supply:

� = �

�� × 100%. (9)

Energy e�ciency may di�er a lot at di�erent neural
activity status, so it can be applied to re�ect activity state
of a neuron and even neural networks. In our work, we
found that this parameter can serve to distinguish supra- and
subthreshold activity.

Besides, by calculation it is easy to �nd that Na+ and K+

currents consumemost of electric potential energy.
us, it is
valuable to analyze energy usage detail of these two ion curr-
ents, energy consumption relationship between them, and its
evolution over time. 
is will help us grasp the details of
energy transformation in a neuron. We will analyze power
ratio of these two ion currents (Na+ power over K+ power)
and the change over time of power percentage over total
power (ion power over total power). Furthermore, the inner
product of Hilbert space can be applied to de�ne the syn-
chronicity of their energy consumptions to analyze their spa-
tiotemporal relationship. Synchronicity of energy consump-
tion �(�) is

� (�)

= ∫	 �Na (�Na − ��) × �K (�K − ��) ��
√∫	 [�Na (�Na − ��)]2 �� × √∫	 [�K (�K − ��)]2 ��

. (10)
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And Ψ(�) = arccos(�(�)) is the phase di�erence of energy
consumption. Similarly, ion currents synchronicity �() and
phase di�erence Ψ() are

� () = ∫	 �Na × �K ��
√∫	 �2Na �� × √∫	 �2K ��

,

Ψ () = arccos (� ()) .
(11)

Besides the energy contributed to Na+/K+ pump by ATP
hydrolysis, the external stimulus current also provides some
energy. 
is amount of energy is so small that it can be
ignored during the calculation of energy supply. However,
this stimulus energy is like a blasting fuse. If it leads to a spike
or action potential, this energy change can be ignored. If the
neuronmerely activates subthreshold, it will beworthwhile to
consider how much this energy contributes to subthreshold
activity. As a result, we can calculate the ratio of stimulus
energy over total energy consumption to detect whether this
energy can be ignored and determine if this ratio can be
distinguished from supra- and subthreshold activity.

3. Results

According to the described method, we use MATLAB
(R2013a) to perform numerical simulation. Parameters in H-
H model are taken the typical value: maximum Na+ con-
ductance �Na = 120mS/cm2, maximum K+ conductance
�K = 36mS/cm2, leakage conductance �� = 0.3mS/cm2,
andNernst potentials are 50mV,−80mV, and−56mV, respec-
tively. Resting membrane potential is 67.3mV.

3.1. Ion Currents and Energy during Firing. Initially, we set the

stimulus current at  = 3 �A/cm2 and the last at 5ms. A typi-
cal action potential is generated, which is represented in
Figure 1.

During the action potential, the ion currents that
occurred in each of the ion channels are shown in Figure 3.
If the outward direction is positive, Na+ current should be
negative. However, in Figure 3 it is depicted in absolute value
(reversed) to be compared more easily. 
e lines with color
of red, black, yellow, and fuchsia represent Na+, K+, leakage,
and stimulus currents, respectively. As shown in Figure 3,
Na+ and K+ currents are much stronger than leakage and
stimulus currents; thus it is reasonable to focus on the ion
currents and energy consumption of these two ion channels.
Meanwhile, the waveforms of these two currents result in
the cross-membrane charge being largely neutralized. 
e
synchronicity of ion currents de�ned previously is �() =
−0.987, and negative value means that the current directions
are opposite, overall. Phase di�erence Ψ() = 170.7∘, which
means the phases of these currents are almost completely
opposite. 
e net current is depicted in Figure 4. In addition,
we set the outward direction as positive. Aer about 4.5ms,
the net current has an inward spike, because Na+ burst
into the membrane and K+ conductance across the mem-
brane have not risen. 
e integral of this net current (area
between the curve and time axis) shows that the net electric
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Figure 2: A typical action potential.
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Figure 3: Di�erent ion currents during action potential.

charge across the membrane during this action potential is

15 nC/cm2. In other words, 15 nC of positive charge transfers

out of the membrane per cm2. Interestingly, the stimulus

current injected into neuron is 3 �A/cm2 and lasted 5ms,

and 3 �A/cm2 times 5ms equals 15 nC/cm2, which means,
by stimulus current, same amount of electric charge was
injected into cell and the cell stayed in electric neutrality.
is
suggests the following fact: all the ion migration across the
membrane during the whole phases of action potential serves
to neutralize the external stimulus charge injected into the
cell.

Energy consumption of each ion channel during action
potential is one of the most important problems. Figure 5
shows the electric power of each ion channel during this
process. Green line is the total power and red, black, yellow,
and fuchsia lines are powers of Na+, K+, leakage, and stimulus
currents, respectively. It is evident that most of the energy
is consumed by Na+ and K+ channel. Meanwhile, compared
with Figure 2 it is apparent that the waveforms of Na+ and K+

are quite di�erent from current waveforms. Currents climb
to the peak almost at the same time, and peak values are
barely di�erent. Meanwhile, the power peak of Na+ clearly
lags behind K+, and the value is lower. 
e synchronicity
of power �(�) is 0.782, and the phase di�erence Ψ(�) is
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Figure 4: Net current (suprathreshold).
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Figure 5: Energy consumption of each ion channel (suprathresh-
old).

38.5∘. Peak value of Na+ power is 66% of that of K+. While
comparing Figures 2 and 5, we can determine that the peak
membrane potential and the peak total power do not appear
simultaneously. Power has little lag and the peak of total
power occurs between the peaks of Na+ and K+ power.
Leakage conductance and Nernst potential are set to be
constants, so the trend of leakage current and power is similar
with membrane potential. Figure 6 shows the power ratio
of N+ and K+ (Na+/K+) at each moment to reveal their
relationship in detail.
e curve above the blue horizontal line
stands for the moments that Na+ power exceeds K+ power.
Although peak value of K+ power is larger than Na+, it has a
sharper wave, so, before resting potential restored, Na+ power
is larger than K+ in majority of time and the ratio curve
crosses the equality line several times which means power
ratio �uctuates a great deal. 
is is a signi�cant di�erence
from the subthreshold activity.

Figure 7 depicts ratios of these two channel powers over
total power at each moment. When the membrane potential
reaches its peak and is restored to the resting level, the Na+

channel occupied almost all the power consumption for two
times and showed a bimodal distribution. In contrast, the
K+ channel maintained the highest power only once when
the membrane potential has risen to the highest level. 
is
shows that when membrane potential is at the highest, all the
energy is consumed byK+ channel. Figure 8 shows the sum of
these two ratios in Figure 7. During action potential (before
7.5ms),Na+ andK+ channels consumed almost all the electric
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Figure 6: Power ratio of Na+ and K+ channels (suprathreshold).
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Figure 8: Sum of Na+ and K+ power over total power (suprathresh-
old).

power supply. Aermembrane potential is restored to resting
level, total power is too low to be considered. 
us, Na+ and
K+ channels indeed consume almost all the electric energy
during neuron �ring as we guessed. As a result, these energy
consumption properties of the two channels are a precise
re�ection of the neuron activity in detail.


e current strength and power of external stimulus are
negligible in comparison with others. 
is can be observed
visually in Figures 3 and 5. 
e calculation suggests that the
peak of ratio of total power over stimulus power can reach
hundreds of thousands (Figure 9). 
is is a typical “blasting
fuse” e�ect of stimulus current. Due to the huge power
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Figure 9: Ratio of total power and stimulus power (suprathreshold).

di�erence, stimulus energy can be ignored when we consider
the energy supply to a neuron. Meanwhile, net ion current
across the cellmembrane can only neutralize electrical charge
injected by a stimulus current. Such a large di�erence occurs
during analyzing relationship between neural activity and
stimulus current in perspectives of electric charge and electric
power. 
is is quite an interesting phenomenon.

By ion-counting method, which integrates Na+ current,
we can get that 1.429 �C (per cm2) of positive electric charge
�ows into cell membrane in the form of Na+ during an action
potential. 
ese are 8.918 × 1012 of Na+ ions. Na+/K+ pumps
have to pump all these in�ux Na+ out of membrane again
to maintain resting potential and electric neutrality, so one-
third of number of Na+ is the number of ATP molecules
consumed. 
en, the number of moles of ATP is 4.94 ×
10−12mol. In �nal, the energy supply to a neuron by ATP
during one action potential is 2.468 × 10−7 J (every mole
of ATP releases 50 kJ free energy). Meanwhile, integrating
the total power with respect to time (the area below green
line in Figure 5), we obtain the consumed electric power,
which is 1.879 × 10−7 J in this case. 
us, it can be concluded
that, during action potential, electric power consumed by ion
channels is approximately 76% of the energy supplied by ATP
at the same time. 
is is the energy e�ciency of a neuron
during suprathreshold activity.

3.2. Ion Currents and Energy during Subthreshold Activity. In
this section, we will examine the subthreshold current and
energy properties of a neuron when stimulus is weak and
no action potential was �red. As stimulus current strength is

2.5 �A/cm2 and lasts 3ms, the membrane potential is shown
in Figure 10, which rises to 5mV �rst and then drops to a
resting level. Similar to Figure 3, Na+ current is shown as
an absolute value in Figure 11 for comparison. 
e meaning
of colored lines is the same as before. 
e strength of the
two ion currents is almost the same order of magnitude
as stimulus and leakage currents, which is clearly di�erent
from the �ring state (Figure 3). Another di�erence is Na+

current is weaker than K+ for the entire time-period for
the comparison of Figure 3, in which the two curves cross
each other several times. However, their waveforms overlap.

e synchronicity is −0.90 and phase di�erence is 154.16∘,
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Figure 10: Subthreshold membrane potential.
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Figure 11: Subthreshold currents of di�erent ions.

meaning that the antiphase is deduced a little. Net current is
depicted in Figure 12, the curve is smoother, and the negative
peak disappeared compared with Figure 4. 
is is because
Na+ channel is not fully open and Na+ current is not strong
enough. Similarity, the peak occurs aer 5ms, which is the
moment that Na+ and K+ current have decayed. 
e integral
of this net current shows the net positive electric charge
crossing out of the membrane during this action potential

is 7.52 nC/cm2. Notice that 2.5 �A/cm2 of stimulus current

lasts 3ms and 7.5 nC/cm2 positive charge is injected into
the cell membrane. 
ey are still the same, basically. 
is
suggests that during subthreshold activity the cell maintains
electric neutrality at suprathreshold.
e ionmigration across
the membrane during subthreshold activity also serves to
neutralize the external stimulus charge injected into the cell.

Figure 13 shows the electric power consumption of a
neuron during subthreshold activity. Meanings of colors are
same as Figure 5.
e di�erences are the fact that Na+ channel
power is higher than K+ all the time and occupies most
of the total power. 
e strengths of stimulus and leakage
currents are the same order of magnitude as ion currents.

e synchronicity of power �(�) is 0.96, and phase di�erence
Ψ(�) is 16.26∘, suggesting that changing trends of these two
ion powers are similar. Ignoring current directions, we can
see that at �ring state current synchronicity is higher than
power (�() = −0.987, �(�) = 0.782), but, at subthreshold,
it is just the opposite (�() = −0.90, �(�) = 0.96). 
e
di�erences between current and power synchronicities are
greater in the �ring state than at subthreshold. 
e peak
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Figure 12: Subthreshold net current.
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Figure 13: Energy consumption of each ion channel (subthreshold).

value of Na+ power is four times of K+, which is only 66%
during action potential, suggesting further that Na+ channel
uses most of the electric energy during subthreshold activity.
Figure 14 shows the power ratio of Na+ over K+, which is
above the equality blue line all the time comparing with
Figure 6 with four intersections. 
is proves again that the
Na+ channel dominates the energy usage at subthreshold.
However, Figure 11 suggests that K+ consumes less energy,
and K+ currents are stronger than Na+ all the time. It
is another interesting feature of the subthreshold activity.
A strong current consumes less energy; this may be the
e�ect of Nernst potential and voltage-gated channel. Power
percentages of two channels are illustrated in Figure 15. Na+

power percentage is higher than 40% all the time while that
of K+ is lower than 35%. It is clearly di�erent from Figure 7.

e sum of power percentages of Na+ and K+ is shown
in Figure 16; the power stays above 70%. 
e rapid drop
in Figure 8 never occurs. “Blasting fuse” e�ect of stimulus
current does not occur either (Figure 17). Over time, the ratio
of total power over stimulus power increases, suggesting that
the more stimulus energy is provided to a neuron, the more
electric power can be stimulated. However, the maximum of
the ratio is <6, much less than the value of several hundred of
thousand in Figure 9.

By the ion-counting method which integrates Na+ cur-
rent we can get to 48.1 nC (per cm2) of positive electric
charge �ow into the cell membrane in the form of Na+

during subthreshold activity. 
ese are 3.0 × 1011 of Na+
ions; then the number of moles of ATP is 1.66 × 10−13mol.
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Figure 14: Power ratio of Na+ and K+ channels (subthreshold).
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Figure 15: Power ratios of Na+ and K+ over total (subthreshold).
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Figure 16: Sum ofNa+ andK+ power over total power (suprathresh-
old).

Total power over stimulus power

5 10 15 20 25 300

Time (ms)

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

P
o

w
er

 r
at

io
 (

to
ta

l/
st

im
u

lu
s)

Figure 17: Ratio of total power and stimulus power (subthreshold).



8 Neural Plasticity

Energy e�ciency as a function of stimulus current
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Figure 18: Energy e�ciency as function of stimulus current stren-
gth.
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Figure 19: Energy e�ciency as function of stimulus current dura-
tion.

Finally, the energy supply to a neuron by ATP is 8.31 × 10−9 J.
Meanwhile, integrating the total power with respect to time
we will get the consumed electric power, which is 8.75 ×
10−9 J.
is is more energy than the ATP supplied.
e energy
e�ciency is 105.3%. 
is is an anomaly during subthreshold
activity that energy consumption is larger than energy supply.
It can be explained that aer stimulus current arrived and
membrane potential �uctuate subthreshold, ion channels
overdra energy supply by ATP in advance during limited
time for electric activity, which causes metabolic energy
debt. Aerward, ATP should be consumed to repay the
energy debt even during resting potential. However, a neuron
receives stimulus randomly at any moment, so the energy
debt remains. 
is may reveal the energy �ow direction
supplied to Na+/K+ pump by ATP on the ion and energy
metabolism level. Part of this energy is used for repaying the
energy debt, which is consumed in advance. 
is means a
neuron consumes more energy than we anticipated during
subthreshold activity.

3.3. Comprehensive Analysis. Furthermore, we adjusted the
strength and duration of the stimulus currents detect the
change in energy e�ciency. Figure 18 shows the change in
energy e�ciency as a stimulus strength grows, while duration
stays in 3ms. It is the same in Figure 19, but the stimulus
current keeps in 2.5 �A and duration grows. 
ese two
�gures have the following common features: (1) the trends

are similar. Energy e�ciency suddenly drops in the middle
of the �gures. 
is is the sign of switch from subthreshold
to suprathreshold activity. (2)
e �gures decrease before the
sudden drop and barely change aer that. 
is is because
membrane potential, ion currents vary a lot subthreshold
while the action potential is identical. (3) Energy e�ciencies
are all above 100% subthreshold and remain approximately
76% suprathreshold.

4. Discussion

Based on the H-H model, we have studied currents and
energy features of a neuron during di�erent activity states
with di�erent stimulus. Regarding the neuron as a system
with energy exchange with the environment, we distin-
guished, de�ned, and calculated the energy supply and energy
consumption of a neuron. 
en, the synchronicities of ion
currents and ion channel power were de�ned. Furthermore,
we studied the features and di�erences of ion currents and
ion channel power at di�erent neural activity states and found
the following conclusions: All the ion migration across the
membrane serves to neutralize the external stimulus charge
injected into the cell during both sub- and suprathreshold
activities. During suprathreshold activity, the strength rela-
tionship of Na+ and K+ currents �uctuates a great deal, while
during subthreshold activity Na+ current is weaker than K+

all the time. 
e power relationship of these two channels
�uctuates the suprathreshold and peak value of Na+ as 66%
of K+. With subthreshold activity, Na+ power is stronger than
K+ the entire time and the peak value is four times that
of K+. Current synchronicity of these two ion channels is
higher in suprathreshold than subthreshold activity, while
power synchronicity is just the opposite. 
ese two channels
occupy most of the electric energy in both cases, but power
ratio of Na+ is always larger than K+ at subthreshold state.
Stimulus current shows a “blasting fuse” e�ect at both states,
but the power ratio is much larger in suprathreshold case
than the other. It is a very important feature that energy
e�ciency in subthreshold activity is close to or even more
than 100%, which suggests that ion channels usually consume
more energy than we thought and get into energy debt.
Meanwhile, energy e�ciency during an action potential
is keeping around 76%. 
is essential di�erence could be
regarded as the criterion of switch between subthreshold and
suprathreshold activity; it can be observed from the energy
e�ciency �gures that the e�ciencies are divided into two
groups automatically; the switch between two states can be
easily found. In subthreshold activity, the more energy is
injected by stimulus current, the lower energy e�ciency is.
However, the e�ciency at �ring state is stable.


e calculation suggested that the energy e�ciency
during an action potential is about 76%. 
is is consistent
with published research by Attwell and Laughlin [26]. 
eir
research revealed that 75% of energy expenditure in grey
matter is devoted to signaling. Since action potential is the
basis for signaling, our result perfectly matches their data.
Research byPartadiredja et al. shows that a typical diameter of

an axon is 10−4mm [30]. Axon length is approximately 1mm.


us, the surface of an axon is about 3.14 × 10−6 cm2. Our
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Figure 20: Global energy �ow of neurons and synapse.

calculation shows that 4.94 × 10−12mol of ATP is consumed
per cm2 during an AP (action potential). So the total number
ATPmolecules cost to transmit anAP along the axon is about

9 × 106. 
is is close to the estimation made by Laughlin et
al. that the metabolic cost for sensory information in insect

retinas is 7 × 106 ATP molecules per bit [25].

e total energy cost of one pump cycle, which pumps

3 Na+ ions out of the cell and two potassium ions in, can
be estimated to be 0.37 eV [31]. During an AP, based on our

calculation, in order to pump out the 8.918 × 1012 of Na+
ions which �ow into the membrane, 2.468 × 10−7 J energy
is consumed. It is easy to get that every 3 Na+ consumed
0.519 eV energy. 
e results are perfectly supported by pub-
lished researches, both theoretical and experimental.


e amount of free energy released by per mole of ATP
may vary in di�erent situations, and this parameter value
could perturb the calculation of energy e�ciency. However,
the distinct contrast of e�ciency between the two states
is certain. Neural subthreshold activity could overdra the
metabolic energy released by ATP; there may be some other
unknown energy processes, except in ion channel consump-
tion. How these unknown processes in�uence subthreshold
energy debt should be further studied.

Neural activity andneural plasticity are the keys to solving
the coding and decoding problems of neural information.
Unfortunately, research techniques such as phase coding,
frequency coding, and group coding have di�erent kind of
limitations and di�culties; there is still no complete theory
for neural coding and decoding to direct the research of
global brain activities. Under this circumstance, energy cod-
ing may be an alternative. Neuron and synaptic connection
are the basic elements of neural system. So the energy
properties of both neuron and synapsis should be studied.
Andonly if the neural activity is thoroughly investigated, then
the energy of synapsis and neural plasticity can be studied.

In this paper, we carefully revealed the energy properties
of neural activity. It is the foundation of the further study of

energy of synapsis and neural network. Neural energy and
neural plasticity are closely related.

First, the synapse contributes energy to neural activity. It
could be represented by the stimulus current in the model.
Research has shown that some production of energy at
the synaptic site is necessary for the neuron to keep its
signaling [32]. 
ere is biological evidence that links the
generation of metabolic energy to the in�ow of glucose
through the membrane to produce ATP. Both facts could be
reconciled assuming that the electrical energy produced at
the synaptic site is conveniently transformed and reabsorbed
by the neuron through its membrane for the generation of
new spikes. A schema of the global energy �ow of both
neurons and synapse is provided in Figure 20 [32]. Energy
of the synapse contributes signi�cantly to the signaling and
coding. As a result, neural plasticity links the neural energy
to information signaling and transmission.

Second, synapse strength could be changed by neural
energy. Neural plasticity is the basic mechanism of cognitive
function of brain. 
e role of neural plasticity in energy
coding method and how the neural energy a�ects synapse
connections should be studied. In another work, we have
proposed a synapse model to describe the strength change of
synapse connection in energy level [33].

 �!��� = ∫
∞

0
[# (�)� (�) #� (� − �)

+ # (� − �)� (−�) #� (�)] ��.
(12)


is is a Hebbian learning rule in energy form. #(�) and#�(�) are the power of neurons � and % at moment �;  is a
constant and �(�) is a time window. It has been proven to
be e�ective towards the construction of a neural network in
energy form to solve certain cognitive problems [33].

Finally, to reveal the relationship of neural energy and
neural plasticity is an important topic. 
e functional con-
nection of brain area is de�ned by the simultaneous brain
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activity, which is observed by fMRI experimentally. And
fMRI is based on the measurement of BOLD signal, which is
essentially a re�ection of neural energy. 
us, the theoretical
research of neural energy bene�ts the study of synaptic
connection of neurons.

To conclude, neural energy is closely related to neural
plasticity. Synapse contributes energy to neural activity, and
the activity energy of pre- and postsynaptic neurons changes
the connection strength. Furthermore, a better understand-
ing of neural energy will potentially support the research of
functional brain connections.

Energy coding is a new coding method proposed from
the perspective of global brain activity. 
e most important
property of this method is linear additivity [19]. Almost
every known process in nature can be seen as a certain
kind of energy transformation or transmission. So can neural
activity. However, countless neural processes are consuming
energy. 
e linear additivity of the energy coding method
may provide a possibility to obtain energy properties of global
brain activity. Energy supply and consumption of a single
neuron have been considered in this research. Combined
with a proper synapsis energy consumption, more complex
neural network energy properties can be studied. Under cer-
tain circumstances, the neural network energy should exhibit
emerging properties, which contain more information about
the neural system in the activemode and in neural coding. To
conclude, energy method has a great potential, which could
bring new surprises to the research of neural information
coding and decoding.
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