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Abstract
Deep reinforcement learning methods attain

super-human performance in a wide range of en-

vironments. Such methods are grossly inefficient,

often taking orders of magnitudes more data than

humans to achieve reasonable performance. We

propose Neural Episodic Control: a deep rein-

forcement learning agent that is able to rapidly

assimilate new experiences and act upon them.

Our agent uses a semi-tabular representation of

the value function: a buffer of past experience con-

taining slowly changing state representations and

rapidly updated estimates of the value function.

We show across a wide range of environments

that our agent learns significantly faster than other

state-of-the-art, general purpose deep reinforce-

ment learning agents.

1. Introduction
Deep reinforcement learning agents have achieved state-of-

the-art results in a variety of complex environments (Mnih

et al., 2015; 2016), often surpassing human perfor-

mance (Silver et al., 2016). Although the final performance

of these agents is impressive, these techniques usually re-

quire several orders of magnitude more interactions with

their environment than a human in order to reach an equiv-

alent level of expected performance. For example, in the

Atari 2600 set of environments (Bellemare et al., 2013),

deep Q-networks (Mnih et al., 2016) require more than 200

hours of gameplay in order to achieve scores similar to those

a human player achieves after two hours (Lake et al., 2016).

The glacial learning speed of deep reinforcement learning

has several plausible explanations and in this work we focus

on addressing these:

1. Stochastic gradient descent optimisation requires the use

of small learning rates. Due to the global approximation

nature of neural networks, high learning rates cause catas-

trophic interference (McCloskey & Cohen, 1989). Low
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learning rates mean that experience can only be incorpo-

rated into a neural network slowly.

2. Environments with a sparse reward signal can be difficult

for a neural network to model as there may be very few

instances where the reward is non-zero. This can be viewed

as a form of class imbalance where low-reward samples

outnumber high-reward samples by an unknown number.

Consequently, the neural network disproportionately under-

performs at predicting larger rewards, making it difficult for

an agent to take the most rewarding actions.

3. Reward signal propagation by value-bootstrapping tech-

niques, such as Q-learning, results in reward information

being propagated one step at a time through the history of

previous interactions with the environment. This can be

fairly efficient if updates happen in reverse order in which

the transitions occur. However, in order to train on uncorre-

lated minibatches DQN-style, algorithms train on randomly

selected transitions, and, in order to further stabilise training,

require the use of a slowly updating target network further

slowing down reward propagation.

In this work we shall focus on addressing the three con-

cerns listed above; we must note, however, that other recent

advances in exploration (Osband et al., 2016), hierarchical

reinforcement learning (Vezhnevets et al., 2016) and trans-

fer learning (Rusu et al., 2016; Fernando et al., 2017) also

make substantial contributions to improving data efficiency

in deep reinforcement learning over baseline agents.

In this paper we propose Neural Episodic Control (NEC),

a method which tackles the limitations of deep reinforce-

ment learning listed above and demonstrates dramatic im-

provements on the speed of learning for a wide range of

environments. Critically, our agent is able to rapidly latch

onto highly successful strategies as soon as they are expe-

rienced, instead of waiting for many steps of optimisation

(e.g., stochastic gradient descent) as is the case with DQN

(Mnih et al., 2015) and A3C (Mnih et al., 2016).

Our work is in part inspired by the hypothesised role of the

Hippocampus in decision making (Lengyel & Dayan, 2007;

Blundell et al., 2016) and also by recent work on one-shot

learning (Vinyals et al., 2016) and learning to remember

rare events with neural networks (Kaiser et al., 2016). Our

agent uses a semi-tabular representation of its experience

of the environment possessing several of the features of

episodic memory such as long term memory, sequentiality,
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and context-based lookups. The semi-tabular representation

is an append-only memory that binds slow-changing keys

to fast updating values and uses a context-based lookup on

the keys to retrieve useful values during action selection

by the agent. Thus the agent’s memory operates in much

the same way that traditional table-based RL methods map

from state and action to value estimates. A unique aspect

of the memory in contrast to other neural memory architec-

tures for reinforcement learning (explained in more detail in

Section 3) is that the values retrieved from the memory can

be updated much faster than the rest of the deep neural net-

work. This helps alleviate the typically slow weight updates

of stochastic gradient descent applied to the whole network

and is reminiscent of work on fast weights (Ba et al., 2016;

Hinton & Plaut, 1987), although the architecture we present

is quite different. Another unique aspect of the memory

is that unlike other memory architectures such as LSTM

and the differentiable neural computer (DNC; Graves et al.,

2016), our architecture does not try to learn when to write to

memory, as this can be slow to learn and take a significant

amount of time. Instead, we elect to write all experiences to

the memory, and allow it to grow very large compared to ex-

isting memory architectures (in contrast to Oh et al. (2015);

Graves et al. (2016) where the memory is wiped at the end

of each episode). Reading from this large memory is made

efficient using kd-tree based nearest neighbour algorithm

(Bentley, 1975).

The remainder of the paper is organised as follows: in Sec-

tion 2 we review deep reinforcement learning, in Section 3

the Neural Episodic Control algorithm is described, in Sec-

tion 4 we report experimental results in the Atari Learning

Environment, in Section 5 we discuss other methods that use

memory for reinforcement learning, and finally in Section 6

we outline future work and summarise the main advantages

of the NEC algorithm.

2. Deep Reinforcement Learning
The action-value function of a reinforcement learning

agent (Sutton & Barto, 1998) is defined as Qπ(s, a) =
Eπ [

∑
t γ

trt | s, a], where a is the initial action taken by

the agent in the initial state s and the expectation denotes

that the policy π is followed thereafter. The discount fac-

tor γ ∈ (0, 1) trades off favouring short vs. long term

rewards.

Deep Q-Network agents (DQN; Mnih et al., 2015) use Q-

learning (Watkins & Dayan, 1992) to learn a value function

Q(st, at) to rank which action at is best to take in each

state st at step t. The agent then executes an ǫ-greedy policy

based upon this value function to trade-off exploration and

exploitation: with probability ǫ the agent picks an action

uniformly at random, otherwise it picks the action at =
argmaxa Q(st, a).
In DQN, the action-value function Q(st, at) is parame-

terised by a convolutional neural network that takes a 2D

pixel representation of the state st as input, and outputs

a vector containing the value of each action at that state.

When the agent observes a transition, DQN stores the

(st, at, rt, st+1) tuple in a replay buffer, the contents of

which are used for training. This neural network is trained

by minimizing the squared error between the network’s out-

put and the Q-learning target yt = rt + γmaxa Q̃(st+1, a),
for a subset of transitions sampled at random from the replay

buffer. The target network Q̃(st+1, a) is an older version of

the value network that is updated periodically. The use of

a target network and uncorrelated samples from the replay

buffer are critical for stable training.

A number of extensions have been proposed that improve

DQN. Double DQN (Van Hasselt et al., 2016) reduces bias

on the target calculation. Prioritised Replay (Schaul et al.,

2015b) further improves Double DQN by optimising the

replay strategy. Several authors have proposed methods of

improving reward propagation and the back up mechanism

of Q learning (Harutyunyan et al., 2016; Munos et al., 2016;

He et al., 2016) by incorporating on-policy rewards or by

adding constraints to the optimisation. Q∗(λ) (Harutyunyan

et al., 2016) and Retrace(λ) (Munos et al., 2016) change

the form of the Q-learning target to incorporate on-policy

samples and fluidly switch between on-policy learning and

off-policy learning. Munos et al. (2016) show that by incor-

porating on-policy samples allows an agent to learn faster

in Atari environments, indicating that reward propagation

is indeed a bottleneck to efficiency in deep reinforcement

learning.

A3C (Mnih et al., 2016) is another well known deep re-

inforcement learning algorithm that is very different from

DQN. It is based upon a policy gradient, and learns both a

policy and its associated value function, which is learned

entirely on-policy (similar to the λ = 1 case of Q(λ)). Inter-

estingly, Mnih et al. (2016) also added an LSTM memory

to the otherwise convolutional neural network architecture

to give the agent a notion of memory, although this did not

have significant impact on the performance on Atari games.

3. Neural Episodic Control
Our agent consists of three components: a convolutional neu-

ral network that processes pixel images s, a set of memory

modules (one per action), and a final network that converts

read-outs from the action memories into Q(s, a) values. For

the convolutional neural network we use the same architec-

ture as DQN (Mnih et al., 2015).

3.1. Differentiable Neural Dictionary

For each action a ∈ A, NEC has a simple memory module

Ma = (Ka, Va), where Ka and Va are dynamically sized

arrays of vectors, each containing the same number of vec-

tors. The memory module acts as an arbitrary association

from keys to corresponding values, much like the dictionary

data type found in programs. Thus we refer to this kind of



Neural Episodic Control

memory module as a differentiable neural dictionary (DND).

There are two operations possible on a DND: lookup and

write, as depicted in Figure 1. Performing a lookup on a

DND maps a key h to an output value o:

o =
∑

i

wivi, (1)

where vi is the ith element of the array Va and

wi = k(h, hi)/
∑

j

k(h, hj), (2)

where hi is the ith element of the array Ka and k(x, y) is

a kernel between vectors x and y, e.g., Gaussian kernel.

Thus the output of a lookup in a DND is a weighted sum

of the values in the memory, whose weights are given by

normalised kernels between the lookup key and the corre-

sponding key in memory. To make queries into very large

memories scalable we shall make two approximations in

practice: firstly, we shall limit (1) to the top p-nearest neigh-

bours (typically p = 50). Secondly, we use an approximate

nearest neighbours algorithm to perform the lookups, based

upon kd-trees (Bentley, 1975).

After a DND is queried, a new key-value pair is written into

the memory. The key written corresponds to the key that

was looked up. The associated value is application-specific

(below we specify the update for the NEC agent). Writes to

a DND are append-only: keys and values are written to the

memory by appending them onto the end of the arrays Ka

and Va respectively. If a key already exists in the memory,

then its corresponding value is updated, rather than being

duplicated.

Note that a DND is a differentiable version of the memory

module described in Blundell et al. (2016). It is also a gen-

eralisation to the memory and lookup schemes described in

Vinyals et al. (2016); Kaiser et al. (2016) for classification.

3.2. Agent Architecture

Figure 2 shows a DND as part of the NEC agent for a single

action, whilst Algorithm 1 describes the general outline of

the NEC algorithm. The pixel state s is processed by a

convolutional neural network to produce a key h. The key

h is then used to lookup a value from the DND, yielding

weights wi in the process for each element of the memory

arrays. Finally, the output is a weighted sum of the values

in the DND. The values in the DND, in the case of an

NEC agent, are the Q values corresponding to the state that

originally resulted in the corresponding key-value pair to

be written to the memory. Thus this architecture produces

an estimate of Q(s, a) for a single given action a. The

architecture is replicated once for each action a the agent

can take, with the convolutional part of the network shared

among each separate DND Ma. The NEC agent acts by

taking the action with the highest Q-value estimate at each

time step. In practice, we use ǫ-greedy policy during training

with a low ǫ.

Algorithm 1 Neural Episodic Control

D: replay memory.

Ma: a DND for each action a.

N : horizon for N -step Q estimate.

for each episode do

for t = 1, 2, . . . , T do

Receive observation st from environment with em-

bedding h.

Estimate Q(st, a) for each action a via (1) from Ma

at ← ǫ-greedy policy based on Q(st, a)
Take action at, receive reward rt+1

Append (h,Q(N)(st, at)) to Mat
.

Append (st, at, Q
(N)(st, at)) to D.

Train on a random minibatch from D.

end for

end for

3.3. Adding (s, a) pairs to memory

As an NEC agent acts, it continually adds new key-value

pairs to its memory. Keys are appended to the memory of

the corresponding action, taking the value of the query key

h encoded by the convolutional neural network. We now

turn to the question of an appropriate corresponding value.

In Blundell et al. (2016), Monte Carlo returns were written

to memory. We found that a mixture of Monte Carlo returns

(on-policy) and off-policy backups worked better and so for

NEC we elect to use N -step Q-learning as in Mnih et al.

(2016) (see also Watkins, 1989; Peng & Williams, 1996).

This adds the following N on-policy rewards and bootstraps

the sum of discounted rewards for the rest of the trajectory,

off-policy. The N -step Q-value estimate is then

Q(N)(st, a) =

N−1∑

j=0

γjrt+j + γN max
a′

Q(st+N , a′) . (3)

The bootstrap term of (3), maxa′ Q(st+N , a′) is found by

querying all memories Ma for each action a and taking the

highest estimated Q-value returned. Note that the earliest

such values can be added to memory is N steps after a

particular (s, a) pair occurs.

When a state-action value is already present in a DND (i.e

the key h corresponding to the visited state is already in

Ka), the corresponding value present in Va, Qi, is updated

in the same way as the classic tabular Q-learning algorithm:

Qi ← Qi + α(Q(N)(s, a)−Qi) . (4)

where α is the learning rate of the Q update. If the state is

not already present Q(N)(st, a) is appended to Va and h is

appended to Ka. Note that our agent learns the value func-

tion in much the same way that a classic tabular Q-learning

agent does, except that the Q-table grows with time. We

found that α could take on a high value, allowing repeatedly

visited states with a stable representation to rapidly update
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Writing Lookup

Figure 1. Illustration of operations on a Differentiable Neural Dictionary.

their value function estimate. Additionally, batching up

memory updates (e.g., after each episode) helps with com-

putational performance. We overwrite the item that has least

recently been a neighbour when we reach the memory’s

maximum capacity.

3.4. Learning

Agent parameters are updated by minimising the L2 loss

between the predicted Q value for a given action and the

Q(N) estimate on randomly sampled mini-batches from a

replay buffer. In particular, we store tuples (st, at, Rt) in

the replay buffer, where N is the horizon of the N -step Q

rule, and Rt = Q(N)(st, a) plays the role of the target net-

work seen in DQN (our replay buffer is significantly smaller

than DQN’s). These (st, at, Rt)-tuples are then sampled

uniformly at random to form minibatches for training. Note

that the architecture in Figure 2 is entirely differentiable and

so we can minimize this loss by gradient descent. Backprop-

agation updates the weights and biases of the convolutional

embedding network and the keys and values of each action-

specific memory using gradients of this loss, using a lower

learning rate than is used for updating pairs after queries.

4. Experiments
We investigated whether neural episodic control allows for

more data efficient learning in practice in complex domains.

As a problem domain we chose the Atari Learning Environ-

ment(ALE; Bellemare et al., 2013). We tested our method

on the 57 Atari games used by Schaul et al. (2015a), which

form an interesting set of tasks as they contain diverse chal-

lenges such as sparse rewards and vastly different magni-

tudes of scores across games. Most common algorithms

applied in these domains, such as variants of DQN and A3C,

require in the thousands of hours of in-game time, i.e. they

are data inefficient.

We consider 5 variants of A3C and DQN as baselines

as well as MFEC (Blundell et al., 2016). We compare

to the basic implementations of A3C (Mnih et al., 2016)

and DQN (Mnih et al., 2015). We also compare to two

algorithms incorporating λ returns (Sutton, 1988) aiming

at more data efficiency by faster propagation of credit as-

signments, namely Q∗(λ) (Harutyunyan et al., 2016) and

Retrace(λ) (Munos et al., 2016). We also compare to DQN

with Prioritised Replay, which improves data efficiency by

replaying more salient transitions more frequently. We did

not directly compare to DRQN (Hausknecht & Stone, 2015)

nor FRMQN (Oh et al., 2016) as results were not available

for all Atari games. Note that in the case of DRQN, reported

performance is lower than that of Prioritised Replay.

All algorithms were trained using discount rate γ = 0.99,

except MFEC that uses γ = 1. In our implementation

of MFEC we used random projections as an embedding

function, since in the original publication it obtained better

performance on the Atari games tested.

In terms of hyperparameters for NEC, we chose the same

convolutional architecture as DQN, and store up to 5 ×
105 memories per action. We used the RMSProp algo-

rithm (Tieleman & Hinton, 2012) for gradient descent train-

ing. We apply the same preprocessing steps as (Mnih et al.,

2015), including repeating each action four times. For the

N -step Q estimates we picked a horizon of N = 100. Our

replay buffer stores the only last 105 states (as opposed to

106 for DQN) observed and their N -step Q estimates. We

do one replay update for every 16 observed frames with a

minibatch of size 32. We set the number of nearest neigh-

bours p = 50 in all our experiments. For the kernel function

we chose a function that interpolates between the mean

for short distances and weighted inverse distance for large

distances, more precisely:

k(h, hi) =
1

‖h− hi‖22 + δ
. (5)

Intuitively, when all neighbours are far away we want to

avoid putting all weight onto one data point. A Gaussian

kernel, for example, would exponentially suppress all neigh-

bours except for the closest one. The kernel we chose has

the advantage of having heavy tails. This makes the algo-

rithm more robust and we found it to be less sensitive to
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Figure 2. Architecture of episodic memory module for a single action a. Pixels representing the current state enter through a convolutional

neural network on the bottom left and an estimate of Q(s, a) exits top right. Gradients flow through the entire architecture.

kernel hyperparameters. We set δ = 10−3. In order to

determine whether an key corresponding to a given state is

already present in the table we store a hash of the observa-

tion for each state and check whether the hash is present

when inserting.

In order to tune the remaining hyperparameters (SGD

learning-rate, fast-update learning-rate α in Equation 4, di-

mensionality of the embeddings, Q(N) in Equation 3, and ǫ-
greedy exploration-rate) we ran a hyperparameter sweep on

six games: Beam Rider, Breakout, Pong, Q*Bert, Seaquest

and Space Invaders. We picked the hyperparameter values

that performed best on the median for this subset of games (a

common cross validation procedure described by Bellemare

et al. (2013), and adhered to by Mnih et al. (2015)).

Data efficiency results are summarised in Table 1. In the

small data regime (less than 20 million frames) NEC clearly

outperforms all other algorithms. The difference is espe-

cially pronounced before 5 million frames have been ob-

served. Only at 40 million frames does DQN with Priori-

tised Replay outperform NEC on average; note that this

corresponds to 185 hours of gameplay.

In order to provide a more detailed picture of NEC’s per-

formance, Figures 3 to 7 show learning curves on 6 games

(Alien, Bowling, Boxing, Frostbite, HERO, Ms. Pac-Man,

Pong), where several stereotypical cases of NEC’s perfor-

mance can be observed 1. All learning curves show the

average performance over 5 different initial random seeds.

We evaluate MFEC and NEC every 200.000 frames, and the

other algorithms are evaluated every million steps.

Across most games, NEC is significantly faster at learning

in the initial phase (see also Table 1), only comparable to

MFEC, which also uses an episodic-like Q-function.

NEC also outperforms MFEC on average (see Table 2).

In contrast with MFEC, NEC uses the reward signal to

learn an embedding adequate for value interpolation. This

difference is especially significant in games where a few

pixels determine the value of each action. The simpler

version of MFEC uses an approximation to L2 distances

1Videos and complementary graphical material can be found
at https://sites.google.com/view/necicml

in pixel-space by means of random projections, and cannot

focus on the small but most relevant details. Another version

of MFEC calculated distances on the latent representation of

a variational autoencoder (Kingma & Welling, 2013) trained

to model frames. This latent representation does not depend

on rewards and will be subject to irrelevant details like, for

example, the display of the current score.

A3C, DQN and related algorithms require rewards to be

clipped to the range [−1, 1] for training stability2(Mnih

et al., 2015). NEC and MFEC do not require reward clip-

ping, which results in qualitative changes in behaviour and

better performance relative to other algorithms on games

requiring clipping (Bowling, Frostbite, H.E.R.O., Ms. Pac-

Man, and Alien out of the seven shown).

Figure 3. Learning curve on Bowling.

Alien and Ms. Pac-Man both involve controlling a char-

acter, where there is an easy way to collect small rewards

by collecting items of which there are plenty, while avoid-

ing enemies, which are invulnerable to the agent. On the

other hand the agent can pick up a special item making ene-

mies vulnerable, allowing the agent to attack them and get

significantly larger rewards than from collecting the small

rewards. Agents trained using existing parametric methods

tend to show little interest in this as clipping implies there

2See Pop–Art (van Hasselt et al., 2016) for a DQN-like algo-
rithm that does not require reward-clipping. NEC also outperforms
Pop–Art.

https://sites.google.com/view/necicml
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Frames Nature DQN Q∗(λ) Retrace(λ) Prioritised Replay A3C NEC MFEC

1M -0.7% -0.8% -0.4% -2.4% 0.4% 16.7% 12.8%

2M 0.0% 0.1% 0.2% 0.0% 0.9% 27.8% 16.7%

4M 2.4% 1.8% 3.3% 2.7% 1.9% 36.0% 26.6%

10M 15.7% 13.0% 17.3% 22.4% 3.6% 54.6% 45.4%

20M 26.8% 26.9% 30.4% 38.6% 7.9% 72.0% 55.9%

40M 52.7% 59.6% 60.5% 89.0% 18.4% 83.3% 61.9%

Table 1. Median across games of human-normalised scores for several algorithms at different points in training

Frames Nature DQN Q∗(λ) Retrace(λ) Prioritised Replay A3C NEC MFEC

1M -10.5% -11.7% -10.5% -14.4% 5.2% 45.6% 28.4%

2M -5.8% -7.5% -5.4% -5.4% 8.0% 58.3% 39.4%

4M 8.8% 6.2% 6.2% 10.2% 11.8% 73.3% 53.4%

10M 51.3% 46.3% 52.7% 71.5% 22.3% 99.8% 85.0%

20M 94.5% 135.4% 273.7% 165.2% 59.7% 121.5% 113.6%

40M 151.2% 440.9% 386.5% 332.3% 255.4% 144.8% 142.2%

Table 2. Mean human-normalised scores for several algorithms at different points in training

Figure 4. Learning curve on Frostbite.

is no difference between large and small rewards. There-

fore, as NEC does not need reward clipping, it can strongly

outperform other algorithms, since NEC is maximising the

non-clipped score (the true score). This can also be seen

when observing the agents play: parametric methods will

tend to collect small rewards, while NEC will try to actively

make the enemies vulnerable and attack them to get large

rewards.

NEC also outperforms the other algorithms on Pong and

Boxing where reward clipping does not affect any of the

algorithms as all original rewards are in the range [−1, 1];
as can be expected, NEC does not outperform others in

terms of maximally achieved score, but it is vastly more

data efficient.

In Figure 10 we show a chart of human-normalised scores

across all 57 Atari games at 10 million frames comparing to

Prioritised Replay and MFEC. The human normalised score

is computed as (sAgent−sRandom)/(sHuman−sRandom),
where sRandom denotes the score achieved by an agent

picking actions uniformly at random. We rank the games

Figure 5. Learning curve on H.E.R.O.

independently for each algorithm, and on the y-axis the

deciles are shown.

We can see that NEC gets to a human level performance in

about 25% of the games within 10 million frames. As we

can see NEC outperforms MFEC and Prioritised Replay.

5. Related work
There has been much recent work on memory architec-

tures for neural networks (LSTM; Hochreiter & Schmidhu-

ber, 1997), DNC (Graves et al., 2016), memory networks

(Sukhbaatar et al., 2015; Miller et al., 2016)). Recurrent neu-

ral network representations of memory (LSTMs and DNCs)

are trained by truncated backpropagation through time, and

are subject to the same slow learning of non-recurrent neural

networks.

Some of these models have been adapted to their use in RL

agents (LSTMs; Bakker et al., 2003; Hausknecht & Stone,

2015), DNCs (Graves et al., 2016), memory networks (Oh

et al., 2016). However, the contents of these memories is
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Figure 6. Learning curve on Ms. Pac-Man.

Figure 7. Learning curve on Alien.

typically reset at the beginning of every episode. This is ap-

propriate when the goal of the memory is tracking previous

observations in order to maximise rewards in partially ob-

servable or non-Markovian environments. Therefore, these

implementations can be thought of as a type of working

memory, and solve a different problem than the one ad-

dressed in this work.

RNNs can learn to quickly write highly rewarding states into

memory and may even be able to learn entire reinforcement

learning algorithms (Wang et al., 2016; Duan et al., 2016).

However, doing so can take an arbitrarily long time and the

learning time likely scales strongly with the complexity of

the task.

The work of Oh et al. (2016) is also reminiscent of the ideas

presented here. They introduced (FR)MQN, an adaptation

of memory networks used in the top layers of a Q-network.

Kaiser et al. (2016) introduced a differentiable layer of key-

value pairs that can be plugged into a neural network. This

layer uses cosine similarity to calculate a weighted average

of the values associated with the k most similar memories.

Their use of a moving average update rule is reminiscent of

the one presented in Section 3. The authors reported results

on a set of supervised tasks, however they did not consider

applications to reinforcement learning. Other deep RL meth-

ods keep a history of previous experience. Indeed, DQN

itself has an elementary form of memory: the replay buffer

Figure 8. Learning curve on Pong.

Figure 9. Learning curve on Boxing.

central to its stable training can be viewed as a memory

that is frequently replayed to distil the contents into DQN’s

value network. Kumaran et al. (2016) suggest that training

on replayed experiences from the replay buffer in DQN is

similar to the replay of experiences from episodic mem-

ory during sleep in animals. DQN’s replay buffer differs

from most other work on memory for deep reinforcement

learning in its sheer scale: it is common for DQN’s replay

buffer to hold millions of (s, a, r, s′) tuples. The use of lo-

cal regression techniques for Q-function approximation has

been suggested before: Santamarı́a et al. (1997) proposed

the use of k-nearest-neighbours regression with a heuris-

tic for adding memories based on the distance to previous

memories. Munos & Moore (1998) proposed barycentric

interpolators to model the value function and proved their

convergence to the optimal value function under mild con-

ditions, but no empirical results were presented. Gabel &

Riedmiller (2005) also suggested the use of local regression,

under the paradigm of case-based-reasoning that included

heuristics for the deletion of stored cases. Blundell et al.

(2016, MFEC) recently used local regression for Q-function

estimation using the mean of the k-nearest neighbours, ex-

cept in the case of an exact match of the query point, in

which case the stored value was returned. They also pro-

pose the use of the latent variable obtained from a variational

autoencoder (Rezende et al., 2014) as an embedding space,
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Figure 10. Human-normalised scores of games, independently

ranked per algorithm; labels on y-axis denote quantiles.

but showed random projections often obtained better results.

In contrast with the ideas presented here, none of the local-

regression work aforementioned uses the reward signal to

learn an embedding space of covariates in which to perform

the local-regression. We learn this embedding space using

temporal-difference learning; a crucial difference, as we

showed in the experimental comparison to MFEC.

6. Discussion
We have proposed Neural Episodic Control (NEC): a deep

reinforcement learning agent that learns significantly faster

than other baseline agents on a wide range of Atari 2600

games. At the core of NEC is a memory structure: a Differ-

entiable Neural Dictionary (DND), one for each potential

action. NEC inserts recent state representations paired with

corresponding value functions into the appropriate DND.

Our experiments show that NEC requires an order of mag-

nitude fewer interactions with the environment than agents

previously proposed for data efficiency, such as Prioritised

Replay (Schaul et al., 2015b) and Retrace(λ) (Munos et al.,

2016). We speculate that NEC learns faster through a com-

bination of three features of the agent: the memory archi-

tecture (DND), the use of N -step Q estimates, and a state

representation provided by a convolutional neural network.

The memory architecture, DND, rapidly integrates recent

experience—state representations and corresponding value

estimates—allowing this information to be quickly mod-

ify future behaviour. Such memories persist across many

episodes, and we use a fast approximate nearest neighbour

algorithm (kd-trees) to ensure that they can be efficiently

accessed. Estimating Q-values by using the N -step Q value

function interpolates between Monte Carlo value estimates

and backed up off-policy estimates. Monte Carlo value es-

timates reflect the rewards an agent is actually receiving,

whilst backed up off-policy estimates should be more rep-

resentative of the value function at the optimal policy, but

evolve much slower. By using both estimates, NEC can

trade-off between these two estimation procedures and their

relative strengths and weaknesses (speed of reward propa-

gation vs optimality). Finally, by having a slow changing,

stable representation provided by a convolutional neural

network, keys stored in the DND remain relative stable.

Our work suggests that non-parametric methods are a

promising addition to the deep reinforcement learning tool-

box, especially where data efficiency is paramount. In our

experiments we saw that at the beginning of learning NEC

outperforms other agents in terms of learning speed. We

saw that later in learning Prioritised Replay has higher per-

formance than NEC. We leave it to future work to further

improve NEC so that its long term final performance is sig-

nificantly superior to parametric agents. Another avenue of

further research would be to apply the method discussed in

this paper to a wider range of tasks such as visually more

complex 3D worlds or real world tasks where data efficiency

is of great importance.
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