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Abstract 

It has been proposed that people can generate probabilistic predictions at multiple levels of 

representation during language comprehension. We used Magnetoencephalography (MEG) and 

Electroencephalography (EEG), in combination with Representational Similarity Analysis (RSA), 

to seek neural evidence for the prediction of animacy features. In two studies, MEG and EEG 

activity was measured as human participants (both sexes) read three-sentence scenarios. Verbs in 

the final sentences constrained for either animate or inanimate semantic features of upcoming 

nouns, and the broader discourse context constrained for either a specific noun or for multiple 

nouns belonging to the same animacy category. We quantified the similarity between spatial 

patterns of brain activity following the verbs until just before the presentation of the nouns. The 

MEG and EEG datasets revealed converging evidence that the similarity between spatial patterns 

of neural activity following animate constraining verbs was greater than following inanimate 

constraining verbs. This effect could not be explained by lexical-semantic processing of the 

verbs themselves. We therefore suggest that it reflected the inherent difference in the semantic 

similarity structure of the predicted animate and inanimate nouns. Moreover, the effect was 

present regardless of whether a specific word could be predicted, providing strong evidence for 

the prediction of coarse-grained semantic features that goes beyond the prediction of individual 

words. 

This paper was submitted for peer review on 07/19/2019. Based on our past 

experience, we expect that it will change significantly from this date until the time 

it is published, based on our reviewers’ comments, comments of colleagues, and 

additional work by the authors. Thus, although we provide the manuscript for open 

access at this early stage, we ask interested readers to bear in mind that this 

version is NOT final, and, to check back to find the latest version. We will provide 

the final peer-reviewed version of the manuscript on our website once it is 

accepted for publication. 
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Significance statement 

Language inputs unfold very quickly during real-time communication. By predicting ahead we 

can give our brains a “head-start”, so that language comprehension is faster and more efficient. 

While most contexts do not constrain strongly for a specific word, they do allow us to predict 

some upcoming information. For example, following the context, "they cautioned the…”, we can 

predict that the next word will be animate rather than inanimate (we can caution a person, but not 

an object). Here we used EEG and MEG techniques to show that the brain is able to use these 

contextual constraints to predict the animacy of upcoming words during sentence comprehension, 

and that these predictions are associated with specific spatial patterns of neural activity. 
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Introduction 

Probabilistic prediction is proposed to be a fundamental computational principle 

underlying language comprehension (Kuperberg and Jager, 2016). Evidence for this hypothesis 

comes from the detection of anticipatory neural activity prior to the appearance of strongly 

predicted incoming words (e.g. Wicha et al., 2004; Wang et al., 2018). In natural language, 

however, contexts that predict specific words appear relatively infrequently (Luke and 

Christianson, 2016). Therefore, for prediction to play a major role in language processing, 

comprehenders must be able to use contextual constraints to predict features that characterize 

multiple upcoming inputs. Here, we ask whether comprehenders can use the constraints of verbs 

to predict semantic features associated with the animacy of upcoming nouns during discourse 

comprehension. 

The ability to distinguish between animate and inanimate entities is fundamental to 

human cognition (Caramazza and Shelton, 1998; Nairne et al., 2017) and to the structure of 

language (Dahl, 2008). Verbs can constrain for the animacy of their arguments (McCawley, 1968; 

Jackendoff, 1993), and these constraints can lead to anticipatory behavior during online language 

comprehension (Altmann and Kamide, 1999). Moreover, a larger event-related potential (ERP) 

response (the N400) is evoked by nouns that mismatch (versus match) these animacy constraints 

(Paczynski and Kuperberg, 2011, 2012; Szewczyk and Schriefers, 2011), and neural effects to 

mismatching inputs can be detected even before the animacy features of upcoming arguments 

become available (Szewczyk and Schriefers, 2013). Here, we sought direct neural evidence for 

the prediction of animacy features in the absence of any bottom-up input by exploiting the 

inherent difference in the semantic similarity structure of animate and inanimate nouns. 
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Animate entities share more co-occurring semantic features, which are more strongly 

intercorrelated, than inanimate entities (McRae et al., 1997; Zannino et al., 2006). For example, 

the animate words, “swimmer” and “pilot”, share more co-occurring semantic features (e.g. <can 

move>, <can breathe>, <sentient>) than the inanimate words, “paper” and “water”, which have 

more distinct features (e.g. <thin> for “paper”, <drinkable> for “water”). Modeling work using 

both connectionist (Rogers and McClelland, 2008) and Bayesian (Kemp and Tenenbaum, 2008) 

frameworks shows that patterns of covariation amongst internal representations of concepts can 

account for the emergence of categorical taxonomic structure. Therefore, these differences in the 

semantic similarity of  animate and inanimate entities can also explain why the overall category, 

<Inanimate>, subsumes a larger number of subordinate semantic categories (e.g. <vegetables>, 

<furniture>, <tools>) than the overall category, <Animate> (Garrard et al., 2001). 

In the brain, semantic features are thought to be represented within widely distributed 

networks (Martin, 2016; Huth et al., 2016). Thus, differences between animate and inanimate 

concepts in their internal semantic similarity structures can give rise to differences in similarity 

amongst the spatial patterns of neural activity associated with their processing. These differences 

can explain specific patterns of category-specific deficits in patients with non-focal 

neuropathologies (Devlin et al., 1998; Tyler and Moss, 2001). They can also be detected using 

Representational Similarity Analysis (RSA) (Kriegeskorte et al., 2008a). 

RSA has been used to discriminate between animate and inanimate entities with fMRI 

(Kriegeskorte et al., 2008b) and with MEG/EEG (Cichy et al., 2014; Cichy and Pantazis, 2017). 

MEG/EEG activity, measured at the scalp surface, contains rich spatial information about 

underlying representationally-specific patterns of neural activity, and it has the temporal 

resolution to track how similarities amongst these patterns change over time (Stokes et al., 2015). 
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Here, we used RSA in combination with MEG and EEG to ask whether comprehenders can use 

the animacy constraints of verbs to predict the semantic features associated with the animacy of 

upcoming nouns. If this is the case, the similarity in spatial patterns should be greater following 

animate constraining than inanimate constraining verbs, reflecting the greater intercorrelation 

amongst predicted animate than predicted inanimate semantic features of the upcoming noun. 

Moreover, if these animacy predictions are generated irrespective of being able to predict 

specific words, this effect should be equally large following low discourse constraint and high 

discourse constraint contexts. 

Materials & Methods 

Overall structure of experiments and analysis approach 

 We carried out two studies using the same experimental design and overlapping sets of 

stimuli. In the first study, we collected MEG and EEG data simultaneously in 32 participants. In 

the second study, we collected EEG data in 40 different participants. We analyzed the MEG data 

and the EEG data separately. For the EEG analysis, we used the EEG data from participants in 

both the first and second studies to maximize statistical power (n=72). 

 In this Methods section, we first introduce the experimental design and stimuli, which 

were used in both the first MEG-EEG study and the second EEG-only study. Second, we 

describe the participants and overall procedures in each of the two studies. Third, we report 

MEG data acquisition and preprocessing (for the first MEG-EEG study), and EEG data 

acquisition and preprocessing (for both the first MEG-EEG study and the second EEG-only 

study). Fourth, we describe the spatial similarity analysis, which was the same for the MEG and 

the EEG datasets. We also describe an analysis of the evoked responses produced by the verb — 
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event-related fields (ERFs) for the MEG data and ERPs for the EEG data — which was carried 

out to constrain our interpretation of the spatial similarity findings.  

Experimental design and stimuli 

Experimental design 

In both the MEG-EEG study and the EEG-only study, stimuli were three-sentence 

scenarios (Table 1). The first two sentences introduced a discourse context, and the final 

sentence began with an adjunct phrase of 1-4 words, followed by a pronominal subject that 

referred back to a protagonist introduced in the first two sentences, followed by a verb. 

Following the verb, there was a determiner, a direct object noun, and then three additional words 

to complete the sentence. The verb in the third sentence, which we refer to as the critical verb, 

varied in whether it constrained for an animate direct object noun (animate constraining: 50%, 

e.g. “cautioned the…”) or an inanimate direct object noun (inanimate constraining: 50%, e.g. 

“unfolded the…”). In addition, the lexical constraint of full discourse context (the combination 

of the first two sentences and the first few words of the third sentence, including the verb and the 

determiner) varied such that it predicted a single word (high discourse constraint: 50%, e.g. “The 

lifeguards received a report of sharks right near the beach. Their immediate concern was to 

prevent any incidents in the sea. Hence, they cautioned the…”), or for no specific single word 

(low discourse constraint, e.g. “Eric and Grant received the news late in the day. They mulled 

over the information, and decided it was better to act sooner rather than later. Hence, they 

cautioned the…”). This crossing of Verb animacy constraint (animate constraining, inanimate 

constraining), and Discourse constraint (high discourse constraint, low discourse constraint) 

gave rise to the four conditions relevant to the present study.  
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Following the verb, the direct object noun either confirmed (e.g. “trainees”) or violated 

(e.g. “drawers”) the verb’s animacy constraint, rendering the scenarios either plausible or 

anomalous. In this manuscript, however, our focus was on the neural activity associated with the 

prediction of the upcoming noun, and so we report activity following the onset of the verb until 

just before the onset of the direct object noun. A full analysis of activity produced by the 

following nouns in both the MEG and EEG datasets (spatial similarity patterns as well as evoked 

responses), together with a detailed discussion of the relationships between these measures, will 

be reported in a separate paper (Wang and Kuperberg, Unpublished). 

*Insert Table 1 here* 

 

Construction of scenarios 

In order to construct these scenarios, we began with a large set of preferentially transitive 

verbs. We established their animacy constraints as well as their lexical constraints in minimal 

contexts by carrying out an offline cloze norming study, described below. Then, on the basis of 

these norms, we selected a subset of animate and inanimate constraining verbs, which, in these 

minimal contexts, did not constrain strongly for a specific upcoming noun. For each verb, we 

then wrote discourse scenarios, and for each scenario, we quantified the constraints of the entire 

discourse context (the first two sentences plus the third sentence until after the determiner) with a 

second cloze norming study, described below. 

Cloze norming studies 

In both cloze norming studies, participants were recruited through Amazon Mechanical 

Turk. They were asked to complete each context with the first word that came to mind (Taylor, 
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1953) and, in an extension of the standard cloze procedure, to then provide two additional words 

that could complete the sentence (see Schwanenflugel and LaCount, 1988; Federmeier et al., 

2007). Responses were excluded in any participant who indicated that the first language they 

learned was anything other than English, or if they reported any psychiatric or neurological 

disorders. Responses were also excluded in any participants who failed to follow instructions 

(“catch” questions were used as periodic attention checks). 

Cloze norming study 1: To select a set of verbs based on their animacy and lexical constraints in 

minimal contexts 

 We began with a set of 617 transitively-biased verbs, compiled from various sources 

including Levin (1993) and materials from previous studies conducted in our laboratory 

(Paczynski and Kuperberg, 2011, 2012). Verbs with log Hyperspace Analogue to Language 

(HAL) frequency (Lund and Burgess, 1996) of two standard deviations below the mean (based 

on English Lexicon Project database: Balota et al., 2007) were excluded. For each verb, we 

constructed a simple active, past tense sentence stem that consisted of only a proper name, the 

verb, and a determiner (e.g., “Harry cautioned the…”). These sentences were divided into six 

lists in order to decrease the time demands on any individual participant during cloze norming. 

Between 89 and 106 participants (depending on list) who met inclusionary criteria provided 

completions for each verb. 

 For each verb, we identified the best completion of the sentence context (i.e. the most 

common first noun produced across all participants), and, based on the animacy of these nouns, 

we categorized the verb as either animate constraining or inanimate constraining. We also 

tallied the number of participants who produced this best completion in order to calculate the 

lexical constraint of the verbs for specific upcoming nouns in these minimal contexts. To 
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generate the final set of discourse stimuli, we selected 175 verbs (88 animate constraining and 

87 inanimate constraining), all with lexical constraints of lower than 24%. 

Cloze norming study 2: To establish the constraint of the entire discourse contexts for upcoming 

nouns 

For each of the animate constraining and inanimate constraining verbs, we wrote two 

types of two-sentence contexts. These contexts, in combination with the first few words of the 

third sentence, the verb, and the determiner, aimed either to constrain for either a single 

upcoming word (high discourse constraint) or for multiple possible upcoming words (low 

discourse constraint). We then carried out a second cloze norming study of these discourse 

contexts to quantify their discourse constraints. The high discourse constraint and low discourse 

constraint contexts were pseudorandomly divided into two lists such that each list contained only 

one of the two types of discourse contexts associated with each verb. The two lists were then 

divided into thirds to decrease time demands on any individual participant during cloze norming. 

Between 51 and 69 participants who met inclusionary criteria provided completions for each 

scenario.  

We found that, following both the animate constraining and the inanimate constraining 

verbs, over 99% of the completions produced were nouns. Similar to the first cloze norming 

study, the lexical constraint of each discourse context was calculated by tallying the number of 

participants who produced the most common completion in each discourse context. The mean 

lexical constraint of the high discourse constraint contexts was 67.80% (SD: 15.00%) and the 

mean lexical constraint of the low discourse constraint context was 21.56% (SD: 12.00%), and 

this differed significantly between the two conditions, t(698) = 45.01, p < .001.  
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Distribution of stimuli into lists 

 The stimuli were then divided into lists, with each list containing (approximately) 50% 

animate constraining verbs and 50% inanimate constraining verbs, distributed evenly across the 

high discourse constraint and the low discourse constraint contexts. The lists were constructed 

so that the same verb was not combined with the same discourse context more than once, but so 

that, across lists, all critical verbs were combined with both high discourse constraint and low 

discourse constraint contexts. Although the present study focuses on activity prior to the onset of 

the direct object noun, we constructed scenarios so that the subsequent direct object noun either 

confirmed the animacy constraints of the verb (and so the scenario was plausible) or violated the 

animacy constraints of the verb (and so the scenario was anomalous). The lists were constructed 

so that each participant viewed 50% plausible scenarios (one quarter of these plausible scenarios 

contained lexically predictable nouns following high discourse constraint contexts), and 50% 

anomalous scenarios. Thus, a scenario was just as likely to be plausible following a high 

discourse constraint context as following a low discourse constraint context.  

 In the first MEG-EEG study, the stimuli constituted 700 scenarios, which were divided 

into four lists, with each list containing 200 scenarios. Within each list, 101 scenarios contained 

animate constraining verbs and 99 scenarios contained inanimate constraining verbs. Since there 

were 175 unique verbs in total (88 animate constraining and 87 inanimate constraining), this 

meant that a small number of verbs in the third sentence were repeated: 13 out of 101 animate 

constraining verbs and 12 out of 99 inanimate constraining verbs. 

 In the second EEG-only study, we included a subset of 600 scenarios, which were 

divided into five lists. Each list contained 160 scenarios, with no verb being repeated in any of 

the lists (80 unique animate constraining and 80 unique inanimate constraining verbs). A 
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detailed description of the precise counterbalancing scheme can be found in Kuperberg et al. 

(2019). 

Quantification of the semantic and lexical similarity structures of the verbs 

Semantic similarity structure of the animate constraining and the inanimate constraining verbs 

In order to be able to infer that any difference in the similarity of the spatial pattern of 

neural activity following the animate and inanimate constraining verbs was due to the prediction 

of animacy features associated with the upcoming nouns for which they constrained, it was 

important to verify that the two groups of verbs did not differ markedly in other aspects of their 

internal semantic similarity structure. In particular, it was important to verify that the animate 

constraining verbs were not more similar to each other than the inanimate constraining verbs. Of 

course, some aspects of verb meaning are inherently tied to the meaning of the arguments for 

which they constrain (McCawley, 1968; Jackendoff, 1993), and the goal of the present study was 

to ask whether these types of constraints were used to predict upcoming animacy features as the 

sentences unfolded in real time. However, many other aspects of a verb’s meaning are not 

directly linked to the meaning of their arguments, and it was important to check that these other 

features of the verbs didn’t covary with their animacy constraints. For example, the two animate 

constraining verbs, “cautioned” and “alarmed”, are more similar to each other than the two 

inanimate constraining verbs, “folded” and “distributed”, not only because they both constrain 

for upcoming animate features, but also because both their meanings are specific instances of the 

broad meaning of “warn”. 

In order to quantify these other components of verb meaning, we used WordNet, an 

English lexical database that groups words together based on their semantic relations (Miller et 

al., 1990), and that has been integrated in the Natural Language Toolkit (NLTK) (Loper and Bird, 
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2002). In WordNet, verbs are organized into hierarchies based on their semantic relations 

(Fellbaum, 1990), such as specificity in manner (e.g. walking – strolling), entailments (e.g. 

snoring – sleeping), causation (e.g. drop – break) and antonymy (e.g. coming – going). By 

examining the hierarchical structure of this network, the semantic similarity between different 

verbs can be quantified. 

When examining the WordNet hierarchy for a given word, it is important to first consider 

its precise meaning in context — its so-called sense. For instance, the verb, “caution”, has at 

least two senses, including (a) “warn strongly; put on guard”, denoted in WordNet as 

Synset(‘caution.v.01’), and (b) “the trait of being cautious; being attentive to possible danger”, 

denoted as Synset(‘caution.n.01’). Therefore, for each of our critical verbs, a native English 

speaker manually identified its sense within each discourse context. For example, the sense of 

the verb “cautioned” within the example scenario shown in Table 1 (“The lifeguards received a 

report of sharks right near the beach. Their immediate concern was to prevent any incidents in 

the sea. Hence, they cautioned …”) was classified as Synset(‘caution.v.01’). In total, across the 

entire stimulus set, we identified 250 unique verb senses (113 animate constraining, 137 

inanimate constraining). 

We then calculated semantic similarity values between all possible pairs of verb senses 

within the sets of animate constraining and inanimate constraining verbs. As a measure of 

semantic similarity, we used a path-based approach described by Wu & Palmer (Wu and Palmer, 

1994), which is known to correlate with human ratings of semantic similarity (Slimani, 2013). 

Wu & Palmer similarity values range between 0 and 1, with values approaching 0 indicating low 

similarity, and a value of 1 indicating identical concepts. We stored these pairwise Wu-Palmer 

semantic similarity values in a 250 by 250 symmetric semantic similarity matrix, with rows and 
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columns indexing the individual verbs’ senses, see Figure 1A. Examination of this matrix did not 

reveal any clear difference in the internal semantic similarity structure between the animate 

constraining verbs (top-left: semantic similarity values for verb senses, 1 to 113: 113*112/2 = 

6328 pairs) and the inanimate constraining verbs (bottom-right: semantic similarity values for 

verb senses, 114 to 250: 137*136/2 = 9316 pairs). 

To test this statistically, we carried out a permutation-based statistical test on these 

pairwise similarity values, after excluding the values of 1s along the diagonal line. We extracted 

the Wu & Palmer semantic similarity values for each possible pair of animate constraining verbs 

(113*112/2 = 6328 values) and took the mean value, and we did the same for each possible pair 

of inanimate constraining verbs (137*136/2 = 9316 values). We then took the difference in these 

means as our test statistic. After that, we randomly re-assigned the similarity values across the 

two groups of verbs, and re-calculated the mean difference between the two groups. We took the 

mean difference value for each randomization (1000 times) to build a null distribution. If the 

observed test statistic fell within the highest or lowest 2.5% of this distribution, it was considered 

to be significant. This test showed that the semantic similarity among the animate constraining 

verbs (mean +/- SD = 0.24 +/- 0.09) was very slightly lower than that among the inanimate 

constraining verbs (mean +/- SD = 0.26 +/- 0.08), p = .04. 

*Insert Figure 1 here* 

 

Lexical similarity structure of the animate constraining and the inanimate constraining verbs 

We also verified that the two groups of verbs did not differ in various aspects of their 

internal lexical similarity structures. To do this, we extracted the following lexical properties of 
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each verb: length (i.e. number of letters), orthographic Levenshtein distance (OLD20, Balota et 

al., 2007) and log frequency (based on the SUBTLEX database Brysbaert and New, 2009). For 

each of these lexical variables, we calculated the absolute difference for each possible pair of 

animate constraining (88*87/2 = 3828 values) and inanimate constraining verbs (87*86/2 = 

3741 values). As described above, we then calculated the mean value in each group and took the 

difference in these means as our test statistic, and tested for differences in the lexical similarity 

structure between the two groups of verbs using a permutation test (1000 permutations). This test 

showed that the internal similarity structures, based on length, orthographic neighborhood and 

the frequency, were matched between the animate constraining and inanimate constraining 

verbs, all ps > .07. 

Quantification of the semantic and lexical similarity structures of the predicted nouns 

Semantic similarity structure of animate and inanimate nouns constrained for by the verbs 

Our main hypothesis rested on the assumption that the predicted animate nouns would be 

more semantically similar to each other than the predicted inanimate nouns. Obviously, we had 

no way of knowing precisely what nouns each participant would predict during the experiment 

itself, particularly in the low constraint discourse contexts. Therefore, as proxy for these 

semantic predictions, we took 350 (50%) of the animate and inanimate direct object nouns that 

participants actually viewed — those that confirmed the animacy constraints of the verbs, 

rendering the scenarios plausible — and quantified their semantic similarity structures. We again 

used WordNet in which the meaning relationships of nouns, such as super-subordinate relations 

(e.g. furniture – chair) and part-whole relations (e.g. chair – backrest), are organized in a 

hierarchical network (Miller, 1990). We again quantified their semantic similarity using Wu-

Palmer semantic similarity values (Wu and Palmer, 1994). 
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Just as described above for the verbs, we first manually identified the sense of each noun 

within its preceding context for all 350 plausible scenarios (175 animate nouns, 175 inanimate 

nouns), resulting in 244 unique senses for the nouns (116 animate nouns, 128 inanimate nouns). 

We stored the Wu-Palmer semantic similarity values (Wu and Palmer, 1994) for all possible 

pairs of the nouns’ senses in a 244 by 244 matrix, see Figure 1B. The similarity values shown at 

the top-left of the matrix represent the pairwise Wu-Palmer semantic similarity values for all 

pairs of animate nouns (nouns 1 to 116: 116*115/2 = 6670 pairs), and the similarity values 

shown at the bottom-right of the matrix represent the pairwise semantic similarity values for all 

pairs of inanimate nouns (nouns 117 to 244: 128*127/2 = 8128 pairs). This matrix suggests that 

the pairwise Wu-Palmer semantic similarity values for the animate nouns were indeed larger 

than those for the inanimate nouns. A permutation-based statistical test (1000 permutations, 

carried out as described above) confirmed this observation (animate nouns: mean +/- SD = 0.49 

+/- 0.20; inanimate nouns: mean +/- SD = 0.29 +/- 0.19, p = .001). 

Lexical similarity structure of the animate and inanimate nouns constrained for by their 

preceding verbs 

Finally, it was important to check that any differences in similarity between the neural 

patterns of activity produced by predicted animate and inanimate nouns were not driven by 

differences in the similarity of their lexical features rather than of their semantic features. Again, 

we had no way of knowing precisely what nouns each participant would predict during the 

experiment itself. However, we knew that 100 scenarios had high discourse constraints and were 

followed by predicted nouns. Therefore, as a proxy for any lexical-level predictions, we 

extracted the lexical properties of the predicted nouns that followed these high discourse 

constraint contexts (the most commonly produced nouns in the second cloze norming study 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 4, 2020. ; https://doi.org/10.1101/709394doi: bioRxiv preprint 

https://doi.org/10.1101/709394


18 

 

described above): length (number of letters), orthographic Levenshtein distance (OLD20, Balota 

et al., 2007) and log frequency (Brysbaert and New, 2009). For each of these variables, we again 

calculated the absolute difference values between each possible pair of predicted animate nouns 

(50*49/2 = 1225 values) and predicted inanimate nouns (50*49/2 = 1225 values). Then we 

calculated the mean value in each group and took the difference as our test statistic, and tested 

for any difference in the lexical similarity structure between the two groups of nouns using the 

permutation test described above (1000 permutations). This test revealed no statistically 

significant differences for word length, frequency or orthographic neighborhood (all ps > .15). 

Participants 

The first MEG-EEG dataset was acquired at Massachusetts General Hospital. Written 

consent was obtained from all participants following the guidelines of the Massachusetts General 

Hospital Institutional Review Board. Thirty-three participants initially participated, but we 

subsequently excluded the data of one participant because of technical problems. This left a final 

dataset of 32 participants (16 females, mean age: 23.4 years; range 18-35 years). 

The second EEG-only dataset was acquired at Tufts university. Participants gave 

informed consent following procedures approved by the Tufts University Social, Behavioral, and 

Educational Research Institutional Review Board. Data were collected from 40 participants (19 

females, mean age: 21.5 years; range 18-32 years).  

In both experiments, all participants were right-handed as assessed using the modified 

Edinburgh Handedness Inventory (Oldfield, 1971; White and Ashton, 1976). All had normal or 

corrected-to-normal vision and were native speakers of English with no additional language 
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exposure before the age of 5. Participants were not taking psychoactive medication, and were 

screened to exclude the presence of psychiatric and neurological disorders. 

Overall procedure 

In both studies, stimuli were presented using PsychoPy 1.83 software (Peirce, 2007) and 

projected on to a screen in white Arial font on a black background, with a size that was one-tenth 

of the screen height. The first two sentences were each presented as a whole (each for 3900ms, 

100ms interstimulus interval, ISI), followed by an intra-trial fixation (white “++++”), which was 

presented for 550ms, followed by a 100ms ISI. The third sentence, which contained the animate 

constraining or inanimate constraining verb, was presented word by word (each word for 450ms, 

100ms ISI). The final word of the third sentence was followed by a pink “?” (1400ms, 100ms 

ISI). This cued participants to press one of two buttons with their left hand to indicate whether 

each discourse scenario “made sense” or not (response fingers were counterbalanced across 

participants). In addition, after a proportion of trials (24/200 in the MEG-EEG study; 32/160 in 

the EEG-only study; semi-randomly distributed across runs), a comprehension question, 

referring to the immediately previous scenario, appeared on the screen (1900ms, 100ms ISI). 

Participants were asked to respond yes or no based on the scenario they just read. This 

encouraged them to attend to and comprehend the scenarios as a whole, rather than focusing only 

on the third sentence. Following each trial, a blank screen was presented with a variable duration 

that ranged from 100 to 500ms. This was then followed by a green fixation (++++) for a duration 

of 900ms followed by an ISI of 100ms. Participants were encouraged to blink during the green 

fixation period. 

In both studies, stimuli were presented over several runs (in the MEG-EEG study, 200 

scenarios presented over eight runs, each with 25 scenarios; in the EEG-only study, 160 
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scenarios presented over four runs, each with 40 scenarios). Runs were presented in random 

order in each participant. Before the onset of each study, a practice session was conducted to 

familiarize participants with the stimulus presentation and the judgment tasks. 

MEG data acquisition and preprocessing  

MEG data acquisition 

In the first MEG-EEG study, MEG data were acquired together with EEG data (the EEG 

setup is described below). Participants sat inside a magnetically shielded room (IMEDCO AG, 

Switzerland), and MEG data were acquired with a Neuromag VectorView system (Elekta-

Neuromag Oy, Finland) with 306 sensors (102 triplets, each comprising two orthogonal planar 

gradiometers and one magnetometer). Signals were digitized at 1000Hz, with an online bandpass 

filter of 0.03 - 300Hz. To monitor for blinks and eye movements, Electrooculography (EOG) 

data were collected with bipolar recordings: vertical EOG electrodes were placed above and 

below the left eye, and horizontal EOG electrodes were placed on the outer canthus of each eye. 

To monitor for cardiac artifact, electrocardiogram (ECG) data were collected, also with bipolar 

recordings: ECG electrodes were placed a few centimeters under the left and right 

collarbones. At both EOG and ECG sites, impedances were kept at less than 30 kΩ. To record 

the head position relative to the MEG sensor array, the locations of three fiduciary points (nasion 

and two auricular), four head position indicator coils, all EEG electrodes, and at least 100 

additional points were digitized using a 3Space Fastrak Polhemus digitizer, integrated with the 

Vectorview system. Before each run, we used the four head position indicator coils to monitor 

the position and orientation of the head with respect to the MEG sensor array. 
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MEG data preprocessing 

MEG data were preprocessed using version 2.7.4 of the Minimum Norms Estimates 

(MNE) software package in Python (Gramfort et al., 2014). In each participant, in each run, 

MEG sensors with excessive noise were visually identified and removed from further analysis. 

This resulted in the removal of seven (on average) out of the 306 MEG sensors. Eye-movement 

and blink artifacts were automatically removed using the algorithms recommended by Gramfort 

et al. (2013). Signal-Space Projection (SSP) correction (Uusitalo and Ilmoniemi, 1997) was used 

to correct for ECG artifact. Then, after applying a bandpass filter at 0.1 to 30Hz, we segmented 

data into -100 to 2100ms epochs (relative to verb onset). Epochs in which the range of 

amplitudes exceeded pre-specified cutoff thresholds (4e-10 T/m for gradiometers and 4e-12 T for 

magnetometers) were removed. The data of bad MEG sensors were interpolated using spherical 

spline interpolation (Perrin et al., 1989). Our epoch of interest for analysis was from -100 to 

1100ms, relative to verb onset. On average, 85 artifact-free trials remained following the animate 

constraining verbs and 83 trials remained following the inanimate constraining verbs, with no 

statistically significant difference between the two groups: F(1,31) = 3.94, p = .06, η2 = 0.11. 

EEG data acquisition and preprocessing 

EEG data acquisition 

The first EEG dataset was acquired simultaneously with the MEG data using a 70-

electrode MEG-compatible scalp electrode system (BrainProducts, München). The EEG signals 

were digitized at 1000Hz, with an online bandpass filter of 0.03 - 300Hz. The second EEG 

dataset was recorded using a Biosemi Active-Two acquisition system from 32 active electrodes 

in a modified 10/20 system montage. Signals were digitized at 512Hz, with a bandpass of DC - 
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104Hz, and EEG electrodes were referenced offline to the average of the left and right mastoid 

electrodes. Impedances were kept at < 30kΩ at all scalp sites for both studies. 

EEG data preprocessing 

Both EEG datasets were preprocessed using the Fieldtrip software package, an open-

source Matlab toolbox (Oostenveld et al., 2011). For spatial similarity analysis, we planned to 

combine all participants in the two EEG datasets to maximize power. Therefore, given that the 

two datasets were acquired with different online filtering settings (0.03 - 300Hz vs. DC - 

104Hz), we applied an offline low-pass filter of 30Hz to the first EEG dataset, and an offline 

band-pass filter of 0.1 - 30Hz to the second EEG dataset. In addition, because the two datasets 

were acquired with different sampling rates (1000Hz vs. 512Hz), we down-sampled both 

datasets to 500Hz. 

Each individual’s EEG data was segmented into epochs. We identified and removed, on 

average, seven bad EEG electrodes out of the 70 electrodes in the first EEG dataset, whereas no 

bad electrodes were identified or removed in the second EEG dataset. We applied an 

Independent Component Analysis (ICA; Bell and Sejnowski, 1997; Jung et al., 2000) and 

removed components associated with eye movement from the EEG signal. We then inspected 

the data visually and removed any remaining artifacts. The data of the seven bad EEG 

electrodes in the first dataset were then interpolated using spherical spline interpolation (Perrin 

et al., 1989). 

On average, slightly more artifact-free trials remained following the animate 

constraining (81 trials on average) than the inanimate constraining verbs (79 trials on average), 

F(1,71) = 9.12, p = .004, η2 = 0.114. 
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Spatial similarity analysis of both MEG and EEG data 

We used the same method of carrying out the spatial similarity analysis for the MEG and 

the EEG data, using MATLAB 2014b (MathWorks) with custom-written scripts. A schematic 

illustration of our spatial similarity stream is shown in Figure 2. Note that this approach is 

somewhat different from classic RSA streams, which ask the question of whether dissimilarities 

amongst items along a particular dimension (in the present study, animacy) can be used to 

discriminate dissimilarity patterns of neural activity based on that dimension (Kriegeskorte et al., 

2008a). For this study, we were not only interested in whether and when it was possible to 

discriminate between predicted animate and inanimate nouns based on neural activity; we were 

also interested in whether the similarity amongst patterns of brain activity associated with 

predicted animate nouns was greater than the similarity amongst patterns of activity associated 

with predicted inanimate nouns. We therefore computed average spatial similarity values at each 

time point following the animate constraining and the inanimate constraining verbs separately in 

each individual participant. Specifically, in each participant, for each trial, and at each time point, 

we extracted a vector of data that represented the spatial pattern of neural activity across all 

channels (MEG: 306 sensors; EEG dataset from the first study: 70 electrodes; EEG dataset from 

the second study: 32 electrodes). At each time point, t, we quantified the similarity between the 

spatial pattern of neural activity following all possible pairs of animate constraining verbs (e.g. 

between A-S1 and A-S2, between A-S1 and A-Sn, in Figure 2) and all possible pairs of 

inanimate constraining verbs (e.g. between B-S1 and B-S2, between B-S1 and B-Sn in Figure 2) 

by calculating a Pearson’s r value between the spatial vectors. These pairwise correlation R-

values were used to construct spatial similarity matrices at each time point, corresponding to the 

spatial similarity patterns of neural activity following the animate constraining verbs (the left 
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matrix in Figure 2) and the inanimate constraining verbs (the right matrix in Figure 2). We then 

averaged the N*(N-1)/2 off-diagonal elements of these matrices to compute an averaged R-value 

at each time point in each participant. 

To visualize our data, we averaged these similarity values across all participants in the 

MEG dataset (n=32) and across all participants in the two EEG datasets (n=72) at each 

consecutive time point following the animate constraining verbs (the solid red line in Figure 2) 

and the inanimate constraining verbs (the dotted blue line in Figure 2). This yielded a ‘grand-

average’ spatial similarity time series for each condition, which allowed us to visualize the 

timing and directionality of any differences between the two conditions. This visualization is 

analogous to traditional visualizations of grand-average evoked responses, and so it also helped 

us to directly compare the time course of the spatial similarity values with the evoked responses 

produced by the verbs. 

For statistical analysis, we took the average spatial similarity values in each participant as 

the dependent measure and asked whether and when there were significant differences in the 

spatial similarity patterns of neural activity following the animate constraining and the inanimate 

constraining verbs. For the EEG spatial similarity analysis, we used the spatial similarity values 

of all 72 individuals in both EEG datasets to increase statistical power (we subsequently tested 

whether the two EEG datasets showed a statistically significant difference for the reported effect, 

see Results). We used cluster-based permutation tests to control for multiple comparisons across 

multiple time points (Maris and Oostenveld, 2007). Specifically, at each time point from the 

onset of the verb (t = 0) until before the direct object noun actually appeared (t = 1100ms), we 

carried out a paired t-test (550 tests in total). Adjacent data points that exceeded a preset 

uncorrected p-value threshold of .05 were considered temporal clusters. The individual t-
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statistics within each cluster were summed to yield a cluster-level test statistic — the cluster 

mass statistic. We then randomly re-assigned the spatial similarity R-values across the two 

conditions (i.e. animate constraining and inanimate constraining verbs) at each time point within 

each participant, and calculated cluster-level statistics as described above. This was repeated 

10000 times. For each randomization, we took the largest cluster mass statistic (i.e. the summed t 

values), and, in this way, built a null distribution for the cluster mass statistic. We then compared 

our observed cluster-level test statistic against this null distribution. Any temporal clusters falling 

within the highest or lowest 2.5% of the distribution were considered significant. 

*Insert Figure 2 here* 

 

Analysis of the evoked responses of both MEG and EEG data 

In order to constrain our interpretation of the similarity values, and in particular to verify 

our assumption that any differences in spatial similarity following the animate constraining 

versus the inanimate constraining verbs reflected the pre-activation of predicted animacy 

features of the upcoming noun, rather than lexico-semantic processing of the verbs themselves, 

we examined the evoked responses produced by the two types of verbs. We carried out a classic 

ERF analysis on the MEG data and an ERP analysis on the EEG data using the Fieldtrip software 

package (Oostenveld et al., 2011). For both the ERF and ERP analyses, we time-locked 

responses to verb onset, using a -100 - 0ms baseline, and we calculated evoked responses 

separately for the animate constraining and inanimate constraining verbs, collapsed across the 

high and low constraint discourse contexts, at each site in each participant. For the MEG data 

analysis, we used data from only the gradiometer sensors, combining these two sensors at each 

site by calculating the root mean square of the values. 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 4, 2020. ; https://doi.org/10.1101/709394doi: bioRxiv preprint 

https://doi.org/10.1101/709394


26 

 

To test for any differences in the ERFs/ERPs evoked by the animate constraining and 

inanimate constraining verbs, we again used cluster-based permutation tests using the Fieldtrip 

software package (Oostenveld, et al., 2011) to account for multiple comparisons over time points 

and channels (Maris & Oostenveld, 2007). The tests followed the same steps as described above, 

except that we carried out dependent-samples t-tests at each time point within the full 0-1100ms 

time window at each of the 102 MEG sensor sites and at each of the 32 EEG electrode sites 

(those that were used in both the MEG-EEG and EEG-only studies). All spatially and temporally 

adjacent data samples that exceeded a preset uncorrected significance threshold of 5% were 

taken as a spatiotemporal cluster, and individual t-statistics within each cluster were summed to 

yield cluster-level test statistics. These cluster-level test statistics were then compared against the 

null distribution that was built based on 1000 randomizations. Any spatiotemporal clusters 

falling within the highest or lowest 2.5th percentile were considered significant. To quantify the 

temporal extent of any significant clusters, we identified the first and last time points that 

revealed significant effects on at least three channels. 

Results 

Spatial similarity results 

Spatial similarity results of the MEG data 

Figure 3A, left, shows the group-averaged (32 participants) MEG time series of spatial 

similarity values following the animate constraining and the inanimate constraining verbs. This 

reveals a sharp increase in the overall degree of spatial similarity beginning at ~50ms after verb 

onset, peaking twice between 100 and 200ms, and then decreasing with a third relatively broader 

peak between 300 - 400ms following verb onset. After that, the spatial similarity values decrease 
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throughout the duration of the verb. A similar, rapid increase in the spatial similarity values can 

be seen following the onset of the determiner, which followed the verb at 550ms. This peaked at 

~150ms and ~225ms following determiner onset before gradually decreasing again. These 

overall increases in spatial similarity values are likely to reflect the MEG equivalents of the 

N1/P2 and N400 evoked responses produced by the verb, and the N1/P2 produced by the 

determiner (which did not produce a large N400, as shown in Figure 4). 

*Insert Figure 3 here* 

 

Of most relevance to the questions addressed in this study, from around the time of verb 

offset (450ms after verb onset), the spatial similarity patterns appeared to diverge such that the 

spatial patterns of neural activity were more similar following the animate constraining than the 

inanimate constraining verbs. This difference continued into the interstimulus interval (100ms), 

disappearing at ~50ms following the onset of the determiner (i.e. lasting from ~450 to ~600ms 

after verb onset). A cluster-based permutation test (Maris and Oostenveld, 2007) across the 

entire epoch (0 - 1100ms) confirmed a significant difference in spatial similarity (p = .0073), 

with a cluster between 529 - 599ms following verb onset (although note that this is likely to 

underestimate of the true extent of the effect, see Maris and Oostenveld, 2007). As shown in 

Figure 3A, right, 26 of the 32 participants had larger spatial similarity values (averaged across 

the 500 - 600ms time window following verb onset) following the animate constraining than the 

inanimate constraining verbs.  

We also compared the ERFs of the two conditions to determine whether the larger spatial 

similarities following the animate constraining versus inanimate constraining verbs could be 

explained by differences in the ERFs evoked by these verbs. As shown in Figure 4, if anything, 
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the ERF evoked by the inanimate constraining verbs appeared to be larger than that evoked by 

the animate constraining verbs within the N400 time window, and a cluster-based permutation 

test over the entire epoch failed to reveal a significant ERF effect (p = .49). 

*Insert Figure 4 here* 

 

We then asked whether this spatial similarity effect was modulated by overall discourse 

constraint — that is, whether it depended on being able to predict a specific upcoming lexical 

item. In minimal contexts, all verbs had relatively low lexical constraints (< 24%, as verified by 

our first cloze norming study). However, by design, and as verified by our second cloze norming 

study, 50% of the animate constraining and 50% of the inanimate constraining verbs appeared 

in discourse contexts that, in conjunction with the verb, constrained strongly for a specific 

upcoming noun (high discourse constraint; mean constraint: 68% +/- 15%), while 50% of the 

animate constraining and 50% of the inanimate constraining verbs appeared in discourse 

contexts that did not constrain strongly for a specific noun (low discourse constraint; mean 

constraint: 22% +/- 12%). As shown in Figure 3B, the spatial similarity effect appeared to be 

equally large following the high discourse constraint (Figure 3B: left) and the low discourse 

constraint contexts (Figure 3B: right). To statistically quantify this, we averaged the spatial 

similarity values between 500 - 600ms relative to verb onset (when the effect was maximal) 

separately for each of the four conditions and used these values as the dependent measure in a 

repeated measures ANOVA in which Verb animacy constraint (animate constraining, inanimate 

constraining) and Discourse constraint (high discourse constraint, low discourse constraint) 

served as within-subjects factors. This analysis confirmed a main effect of Verb animacy 

constraint (F(1,31) = 12.05, p = .002, η2 = 0.28), but failed to reveal either an interaction between 
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Verb animacy constraint and Discourse constraint (F(1,31) = 0.20, p = .66, η2 = 0.01), or a main 

effect of Discourse constraint (F(1,31) = 2.43, p = .13, η2 = 0.07). 

 

Spatial similarity results of the EEG data 

Figure 5A (left) presents the group-averaged EEG time series of spatial similarity values 

following animate constraining and inanimate constraining verbs (averaged across participants 

from both EEG datasets: 72 in total). Similar to MEG, the overall spatial similarity appeared to 

increase rapidly from ~50ms after verb onset, with two sharp peaks at ~100ms and ~200ms post 

verb onset, and then a relatively lower and broader peak between 300 - 400ms following verb 

onset. Following the onset of the determiner, we observed a similar rapid increase, with three 

sharp peaks at ~50ms, ~175ms and ~200ms post determiner onset, but no obvious peak between 

300 - 400ms.  Once again, these overall increases in similarity values appeared to mirror the 

evoked responses elicited by the verbs and the following determiners, shown at two 

representative electrode sites in Figure 6. 

*Insert Figure 5 here* 

 

Again, of most theoretical interest was whether the spatial similarity pattern of neural 

activity differed following the animate constraining versus the inanimate constraining verbs. As 

shown in Figure 5 (left), similar to MEG, there did indeed appear to be a difference, with larger 

spatial similarity values following the animate constraining than following the inanimate 

constraining verbs from ~400ms after verb onset. This effect again continued into the 

interstimulus interval, lasting until around 100ms after determiner onset. A cluster-based 

permutation test (Maris and Oostenveld, 2007) across the entire epoch (from 0 to 1100ms 
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relative to the onset of verbs) confirmed this difference, revealing two significant clusters 

between 420 - 512ms, p = .024, and between 530 - 636ms, p = .0003 relative to the verb onset. 

Two thirds of participants showed greater spatial similarity values following the animate 

constraining than the inanimate constraining verbs within the 450 - 650ms time window (see 

Figure 5A, right).  

Once again, we compared the ERPs of the two conditions to determine whether the 

spatial similarity effect could be explained by the evoked responses to the verbs (Figure 6). 

Although there was an ERP difference between the animate constraining and inanimate 

constraining verbs (p = .002, with a cluster between 308 - 1066ms), this effect had a different 

time course and went in the opposite direction to the spatial similarity effect: inanimate 

constraining verbs evoked a larger (more negative) response than the animate constraining verbs 

at frontal-central EEG channels — an effect that was likely driven by the greater concreteness of 

the inanimate constraining verbs (mean: 3.33; SD: 0.72; based on Brysbaert et al., 2014) than the 

animate constraining verbs (mean: 2.67; SD: 0.73), t(173) = 5.98, p < .001), see Holcomb et al., 

(1999) and Barber et al., (2013). Importantly, the similarity structure of the concreteness values 

(as tested on the item pairwise difference values) was matched between the two groups of verbs 

(p = .94).  

*Insert Figure 6 here* 

 

Just as for the MEG dataset, we also asked whether the spatial similarity effect was 

modulated by the lexical constraint of the broader discourse context. We calculated the spatial 

similarity time series separately for the animate constraining and inanimate constraining verbs 

in the high discourse constraint and the low discourse constraint contexts (see Figure 5B). Then, 
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in each condition, we averaged the spatial similarity values between 450-650ms (where the 

spatial similarity effect was maximal), and entered the averaged values into a repeated-measures 

ANOVA. Again, this analysis confirmed the main effect of Verb animacy constraint (F(1,71) = 

23.65, p < .001, η2 = 0.25), but showed no interaction between Verb animacy constraint and 

Discourse constraint (F(1,71) = 0.42, p = .52, η2 = 0.01), and no main effect of Discourse 

constraint (F(1,71) = 0.22, p = .64, η2 = 0.003). 

We also asked whether the observed spatial similarity effect differed between the two 

EEG datasets by carrying out an additional ANOVA with spatial similarity values averaged 

between 450 - 650ms as the dependent measure. In this analysis, Dataset (dataset 1, dataset 2) 

was a between-subject factor, while Verb animacy constraint (animate constraining, inanimate 

constraining) and Discourse constraint (high discourse constraint, low discourse constraint) 

were within-subjects factors. This analysis revealed a significant main effect of Verb animacy 

constraint (F(1,70) = 22.28, p < .001, η2 = 0.24) as well as a significant interaction between 

Dataset and Verb animacy constraint (F(1,70) = 5.15, p = .026, η2 = 0.07). Follow-up analyses in 

each dataset separately showed a near-significant main effect of Verb animacy constraint in the 

first dataset, F(1,31) = 3.58, p = .068, η2 = 0.10, and a more robust main effect of Verb animacy in 

the second dataset, F(1,39) = 22.99, p < .001, η2 = 0.37. No other interactions were found. 

Summary 

In both the MEG and the EEG datasets, the timing of the overall spatial similarity values 

(regardless of condition) appeared to broadly mirror the timing of the evoked responses produced 

by the verb and the following determiner. This is not surprising. As stimulus-evoked activity 

flows across the cortex, it activates different regions at different latencies, producing a 

dynamically changing magnetic or electrical field that is detected by MEG or EEG channels at 
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the scalp surface. A large stimulus-induced ERF/ERP will be observed at a given latency 

because, across multiple trials, stimulus-induced neural activity at this latency will be more 

consistent in both its phase and in the group of channels to which it projects, compared to at rest. 

Spatial similarity values are likely to be largest when ERF/ERP components are largest because, 

across trials, the same underlying stimulus-induced activity will result in a particular spatial 

pattern of activity (detected across all channels) that will be more similar to each other than at 

rest when no evoked activity is present. For example, a large P1 component will reflect the fact 

that, across many light flashes, at 100ms, activity from the occipital cortex will be consistent in 

its phase and in the subset of channels to which it projects maximally, and this will coincide with 

a large overall spatial similarity value at 100ms because the overall spatial pattern of activity 

(more activity at posterior than anterior channels) produced by each flash of light will be more 

similar to one another than the spatial patterns observed at rest. 

Of most theoretical interest was the greater similarity amongst spatial patterns of neural 

activity following the animate constraining than following the inanimate constraining verbs in 

both the MEG and EEG datasets. In both datasets, this effect was significant between 500 - 

600ms after verb onset. It cannot be explained by differences in ERFs/ERPs across conditions, 

and it began after the peak of N400 component evoked by the verb, and after the overall spatial 

similarity values had begun to decrease. These observations support our interpretation that it 

reflected anticipatory activity for the upcoming noun that was not directly linked to bottom-up 

activity evoked by the verb itself. 

The strikingly convergent findings across the EEG and MEG RSA analyses are consistent 

with a recent study that used RSA together with both EEG and MEG to decode visual 

representations of living versus non-living objects (Cichy and Pantazis, 2017). MEG and EEG 
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are sensitive to neural activity from different underlying sources (e.g. MEG is most sensitive to 

activity originating within sulci, while EEG is sensitive to activity originating in both sulci and 

gyri). However, both methods are able to detect post-synaptic activity produced by pyramidal 

cells within highly distributed cortical locations, giving rise to spatial patterns of activity on the 

surface of the scalp. Our findings suggest that, with both techniques, RSA was able to capture 

differences between our experimental conditions in the similarity amongst these spatial patterns. 

It is particularly encouraging that, just as in the study described by Cichy and Pantazis (2017), 

we showed that EEG RSA was able to discriminate between the animate and inanimate 

conditions, despite the fact that the EEG signal is more smeared at the surface of the scalp than 

MEG (Hämäläinen et al., 1993), and that we used fewer channels to collect our EEG data (in the 

first MEG-EEG study: 70 electrodes; in the second EEG-only study: 32 electrodes) than our 

MEG data in the first study (306 sensors). 

Behavioral findings 

We did not acquire behavioral data on the verb itself. However, in both experiments, at 

the end of each scenario, participants made acceptability judgments, with acceptability 

determined by whether the direct object noun matched or violated the animacy constraints of the 

verb. In the MEG-EEG study, participants made correct judgments in 84.09% of scenarios on 

average (SD: 7.32%), with no differences between scenarios that contained animate constraining 

and inanimate constraining verbs (t(31) = 1.60, p = .12). In the EEG-only study, participants made 

correct judgments in 89.17% of scenarios on average (SD: 5.26%), again with no differences 

between scenarios containing animate constraining and inanimate constraining verbs (t(31) = 

0.71, p = .48). 
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In addition to making acceptability judgments after each scenario, participants also 

responded to Yes/No questions that followed a subset of scenarios. In the MEG-EEG study, on 

average, 76.56% of the 24 comprehension questions were answered correctly (SD: 16.18%), and 

in the EEG-only study, 84.94% of the 32 comprehension questions were answered correctly (SD: 

6.75%). These findings indicate that participants attended to the context information within the 

discourse scenarios, rather than only to the final sentences. 

Discussion 

We conducted a spatial similarity analysis on MEG and EEG data to ask whether 

comprehenders use the semantic constraints of verbs to predict the animacy of upcoming nouns 

during sentence comprehension. Our findings were robust and strikingly convergent across the 

MEG (n=32) and EEG (n=72) datasets. The spatial pattern of neural activity following animate 

constraining verbs was significantly more similar than following inanimate constraining verbs. 

This effect started to emerge at around 450ms (EEG)/500ms (MEG) following verb onset — past 

the peak of the evoked N400 produced by the verb. It is therefore unlikely to have reflected 

differences in lexico-semantic processing of the verb itself. It also cannot be explained by 

differences between the animate constraining and inanimate constraining verbs in aspects of 

their semantic and/or lexical similarity structures that were unrelated to their following 

arguments, as these were matched across conditions (see Methods).  

In general, verbs that constrain for animate direct object nouns also constrain for fewer 

types of thematic/syntactic structures than verbs that constrain for inanimate nouns (Kipper et al., 

2006). Therefore, in theory, the differences in spatial similarity following the animate 

constraining versus inanimate constraining verbs could have reflected differences in the 

syntactic similarity structure of the predicted upcoming inputs. In this study, however, all the 
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verbs had a transitive bias, and they all appeared in the same subject-verb-noun syntactic 

structure. We therefore think that, just as in the second cloze-norming study, comprehenders 

predicted direct object nouns in all sentences, and that the spatial similarity effect was driven by 

differences in the semantic similarity structure of the predicted animate and inanimate upcoming 

nouns. 

 There has been much debate about how we are able to make categorical distinctions 

based on animacy. One set of proposals assumes that animate and inanimate concepts are 

encoded within distinct neural systems that are separated based on either categorical domain 

(animacy, e.g. Caramazza and Shelton, 1998) or modality (perceptual features for animate 

concepts and functional properties for inanimate concepts; e.g. Warrington and Shallice, 1984). 

These accounts are supported by functional neuroimaging and EEG studies reporting spatially 

distinct patterns of neural activity in response to animate versus inanimate stimuli (e.g. Martin et 

al., 1996; Sitnikova et al., 2006). However, the neuroanatomical location of this activity tends to 

be quite inconsistent across studies (Tyler and Moss, 2001). Moreover, these types of 

‘localization’ accounts cannot explain how animacy-based categorization deficits arise in 

patients with non-focal neuropathologies such as Alzheimer’s disease (e.g. Gonnerman et al., 

1997). 

An alternative explanation is that, instead of reflecting distinct localizable stores of 

knowledge, the animate-inanimate distinction emerges implicitly from differences in the degree 

of similarity amongst the sets of distributed semantic features/attributes that characterize animate 

and inanimate concepts, which are represented across widespread regions of the cortex (Devlin et 

al., 1998; Taylor et al., 2011). Highly distributed patterns of cortical activity give rise to distinct 

spatial patterns of electrical and magnetic activity detected by EEG/MEG channels at the surface 
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of the scalp. The greater intercorrelation amongst the semantic properties that characterize 

animate concepts than inanimate concepts will therefore be reflected by a greater intercorrelation 

amongst the spatial patterns of EEG/MEG activity associated with their processing. These 

differences can be detected using RSA (Cichy et al., 2014; Stokes et al., 2015), and it is precisely 

this sensitivity to spatial similarity structure that, in previous studies, allowed animacy to be 

decoded from spatial patterns of EEG/MEG activity produced by bottom-up linguistic (Sudre et 

al., 2012) and non-linguistic (Carlson et al., 2013; Cichy et al., 2014; Cichy and Pantazis, 2017; 

Khaligh-Razavi et al., 2018) inputs. Here, we show for the first time that RSA can be used in 

combination with EEG/MEG to detect distinct spatial similarity patterns during language 

comprehension before new bottom-up inputs become available, reflecting the pre-activation of 

animacy-linked semantic features. 

The prediction of upcoming animacy features was not dependent on the prediction of a 

specific word 

 While in previous work, we have combined MEG and RSA to show anticipatory neural 

activity associated with the prediction of specific upcoming individual words (Wang et al., 2018), 

the present findings provide neural evidence for the pre-activation of semantic features that 

characterize whole sets of words. We further showed that predicting these broad sets of semantic 

features did not depend on being able to predict a single word: the spatial similarly effect was 

just as large following low constraint as following high constraint discourse contexts. 

 This finding has important theoretical implications. It has sometimes been argued that, 

because most words are not highly predictable on the basis of their prior contexts, predictive 

processing is unlikely to play a major role in language comprehension. Implicit in this argument 

is the assumption that we are only able to predict upcoming lexical items. We and others, 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 4, 2020. ; https://doi.org/10.1101/709394doi: bioRxiv preprint 

https://doi.org/10.1101/709394


37 

 

however, have argued that comprehenders are able to predict upcoming information, with 

various degrees of certainty, at multiple levels and grains of representation (e.g. Altmann and 

Mirković, 2009; Kuperberg and Jaeger, 2016). The present findings show that, despite not being 

able to predict upcoming words, the constraints of the verb provided enough information for 

comprehenders to predict upcoming semantic features that distinguished between upcoming 

animate and inanimate items (see also Szewczyk and Schriefers, 2013). More generally, by 

showing that the combination of RSA with EEG/MEG can detect pre-activated semantic 

representations in the absence of new bottom-up inputs, our findings suggest that this 

combination can be used to examine whether we predict finer-grained semantic categories during 

language comprehension. For example, following the contexts, “Her favorite vegetable is …” 

and “The carpenter is making a …”, it will be interesting to determine whether we pre-activate 

distinct patterns of neural activity that correspond to the predicted <vegetables> and <furniture> 

categories respectively — categories that are known to have distinct semantic similarity 

structures (Cree and McRae, 2003), which can be decoded from brain activity (Kriegeskorte et 

al., 2008b). 

The time course of the prediction effect 

As noted above, the spatial similarity effect began past the stage at which comprehenders 

are likely to have accessed other lexico-semantic features of the verb, and well before the 

argument actually appeared. We suggest that this was the first time point at which 

comprehenders were able to infer the full high-level event structure (e.g. <Agent cautioned 

animate noun>), and that they used this structure to generate top-down predictions of the 

semantic features linked to the animacy of upcoming arguments (Kuperberg and Jaeger, 2016; 

Kuperberg et al., 2019). 
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Despite its early onset, the spatial similarity effect lasted for only around 150ms 

(MEG)/200ms (EEG). This is consistent with a recent MEG-RSA study in which we used a 

different paradigm in a different language (Chinese) to capture the prediction of specific 

individual words (Wang et al., 2018). These types of short-lived prediction effects might seem 

surprising if one assumes that pre-activated mental representations are necessarily accompanied 

by sustained detectable neural activity. However, evidence from intracranial recordings of local 

neural activity (Mongillo et al., 2008; Stokes et al., 2013; Lundqvist et al., 2016; Bastos et al., 

2018; Lundqvist et al., 2018b), and from noninvasive EEG and fMRI recordings of global brain 

activity (Sprague et al., 2016; Wolff et al., 2017), suggests that, instead of being persistent, 

neural activity over delays can be relatively sparse, especially when other information is 

concurrently activated from long term memory (Kaminski et al., 2017). During these delays, 

anticipated information remains accessible, but it can only be detected when perturbed or 

“pinged”, e.g. by a targeted pulse of transcranial magnetic stimulation (Rose et al., 2016), or by 

new bottom-up input (Wolff et al., 2017). This has led to the hypothesis that anticipated 

information is held in an “activity silent” state (Stokes, 2015; Lundqvist et al., 2018a), becoming 

available only when it is task relevant (Sprague et al., 2016; Lundqvist et al., 2018b). 

Extrapolating to the present findings, we speculate that, despite the absence of a spatial 

similarity effect immediately preceding the noun, the predicted animacy-linked semantic features 

were nonetheless available to facilitate semantic processing of the incoming noun when it 

appeared. And, indeed, as in many previous studies (e.g. Paczynski and Kuperberg, 2011, 2012; 

Szewczyk and Schriefers, 2011; Kuperberg, et al., 2019), the evoked N400 response on the 

subsequent noun was reduced when its animacy features matched (versus mismatched) the 

animacy constraints of the preceding verb. Moreover, a spatial similarity analysis on the 
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subsequent noun confirmed that the spatial pattern of neural activity was more similar to 

plausible animate than inanimate nouns (Wang and Kuperberg, Unpublished). 

In sum, we provide direct neural evidence for the prediction of animacy-linked semantic 

features during the comprehension of short discourse scenarios. These findings pave the way 

towards combining RSA with EEG/MEG to yield insights into the nature and specificity of 

prediction, and its neural instantiation, during language comprehension. 
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Figure legends 

Figure 1. Pairwise Wu & Palmer similarity values for the senses of (A) animate constraining and 

inanimate constraining verbs, and (B) nouns that confirmed these animacy constraints. The 

range of these Wu & Palmer similarity values is between 0 and 1, with values approaching 0 

indicating low similarity, and a value of 1 indicating identical concepts. (A) Pairwise Wu-Palmer 

semantic similarity values of the verbs are shown in a 250 by 250 symmetric semantic similarity 

matrix, with rows and columns indexing the individual verbs’ senses (animate constraining 

verbs: from 1 to 113; inanimate constraining verbs: from 114 to 250). The pairwise Wu-Palmer 

semantic similarity values of the animate constraining verbs (values at the top-left of the matrix) 

were smaller than those of the inanimate constraining verbs (values at the bottom-right of the 

matrix): p = .04 (1000 permutations). (B) Pairwise Wu-Palmer semantic similarity values of the 

nouns are shown in a 244 by 244 symmetric semantic similarity matrix, with rows and columns 

indexing the individual nouns’ senses (animate nouns: from 1 to 116; inanimate nouns: from 117 

to 244). The pairwise Wu-Palmer semantic similarity values of the animate nouns (values at the 

top-left of the matrix) were larger than those of the inanimate nouns (values at the bottom-right 

of the matrix): p = .001 (1000 permutations). 

 

Figure 2. A schematic illustration of the spatial Representational Similarity Analysis in the 

present study. First, in each participant, for each trial, and at each time point, t, a vector of data 

was extracted across all MEG/EEG sites to represent the spatial pattern of neural activity 

produced at that time point. Second, at each time point, t, the similarity between the spatial 

pattern of neural activity produced by all possible pairs of trials of condition A (e.g. between A-

S1 and A-S2, between A-S1 and A-Sn within the left side of the box) and all possible pairs of 
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trials of condition B (e.g. between B-S1 and B-S2, between B-S1 and B-Sn within the right side 

of the box) was quantified by calculating the Pearson’s r values between the spatial vectors. 

These pairwise correlation R-values were used to construct spatial similarity matrices at each 

time point, corresponding to the spatial similarity patterns of neural activity produced in 

condition A (the left matrix) and condition B (the right matrix). Third, the N*(N-1)/2 off-

diagonal elements of these matrices were averaged to compute an averaged R-value at each time 

point that corresponded to the average spatial similarity pattern produced by each of the two 

conditions. These average values at each consecutive time point yielded two time-series of 

spatial similarity R-values in each participant, reflecting the temporal dynamics of the spatial 

similarity of brain activity produced in conditions A (red solid line) and condition B (blue dotted 

line). 

 

Figure 3. Results of the spatial similarity analysis of the MEG data (the first study, 32 

participants). (A) Left: Group-averaged time series of spatial similarity values following animate 

constraining verbs (red solid line) and following inanimate constraining verbs (blue dotted line), 

from verb onset at 0ms to noun onset at 1100ms. The duration of the verbs (0 - 450ms) and the 

subsequent determiners (550 - 1000ms) are marked with grey bars on the x-axis. The spatial 

pattern of neural activity was more similar following the animate constraining than the 

inanimate constraining verbs between 529 - 599ms following verb onset (p = .0073, 10000 

permutations); the significant cluster is highlighted by a black line over the time series. Right: A 

scatter plot of the averaged R-values per participant across the 500 - 600ms time window 

following verb onset. This shows that 26 of the 32 participants had R-values above the diagonal 

line, i.e. larger spatial similarity values following the animate constraining than the inanimate 
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constraining verbs. (B) Group-averaged time series of the spatial similarity values following the 

animate constraining (red solid line) verbs and following the inanimate constraining verbs (blue 

dotted line) in the high discourse constraint scenarios that constrained strongly for a specific 

upcoming noun (left) and the low discourse constraint scenarios that did not constrain strongly 

for a specific noun (right). The spatial similarity effect was equally large following the two types 

of discourse constraint contexts, as indicated by the absence of an interaction between Verb 

animacy constraint and Discourse constraint (F(1,31) = 0.20, p = .66, η2 = 0.01), for the averaged 

spatial similarity values between 500 - 600ms following verb onset.  

 

Figure 4. Grand-average event-related fields (ERFs) of the MEG data (n=32), time-locked to 

verb onset. ERFs following the onset of animate constraining and inanimate constraining verbs 

are shown at two representative MEG sensor sites (combined across two gradiometer sensors at 

each site) — (A) a left occipital sensor site (MEG1932+1933), and (B) a left temporal site 

(MEG1512+1513). Each of these sites is highlighted with a white cross on the topographic map 

(C). As shown in (A), following both the onset of the verb and the onset of the determiner (650 - 

750ms after verb onset), the left occipital sensor shows clear stimulus-driven evoked responses 

between 100 - 200ms time window (the MEG equivalent of the N1/P2 component). As shown in 

(B), following the onset of the verb (but not the determiner), the left temporal sensor shows a 

strong evoked response between 300 - 500ms time window (the MEG equivalent of the N400 

component). (C) The topographic distribution of the ERF difference within the 300 - 500ms time 

window. There was no significant ERF difference between the two conditions (p = .49) based on 

a cluster-based permutation test over the entire time window. 
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Figure 5. Results of the spatial similarity analysis of the EEG data (combined across the two 

EEG datasets, 72 participants). (A) Left: Group-averaged time series of spatial similarity values 

following animate constraining verbs (red solid line) and following inanimate constraining 

verbs (blue dotted line), from verb onset at 0ms to noun onset at 1100ms. The duration of the 

verbs (0 - 450ms) and the subsequent determiners (550 - 1000ms) are marked with grey bars on 

the x-axis. The spatial pattern of neural activity was more similar following the animate 

constraining than the inanimate constraining verbs between 420 - 512ms (p = .024) and between 

530 - 636ms (p = .0003) following verb onset (10000 times permutations); the significant cluster 

is highlighted by a black line over the time series. Right: A scatter plot of the averaged R-values 

per participant across the 500 - 600ms time window following verb onset. This shows that two 

thirds of participants had R-values above the diagonal line, i.e. larger spatial similarity values 

following the animate constraining than the inanimate constraining verbs. (B) Group-averaged 

time series of spatial similarity values following animate constraining (red solid line) and 

inanimate constraining (blue dotted line) in the high discourse constraint scenarios that 

constrained strongly for a specific word (left) and the low discourse constraint scenarios that did 

not constrain strongly for a specific noun (right). The spatial similarity effect was equally large 

following the two types of discourse constraint contexts, as indicated by the absence of an 

interaction between Verb animacy constraint and Discourse constraint (F(1,71) = 0.42, p = .52, η2 

= 0.01) for the averaged spatial similarity values between 450 - 650ms following verb onset. 

 

Figure 6. Grand-average event-related potentials (ERPs) of the EEG data (n=72), time-locked to 

verb onset. ERPs following the onset of animate constraining and inanimate constraining verbs 

are shown at two representative electrodes — (A) a midline posterior electrode Oz, and (B) a 
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midline central electrode Cz. As shown in (A), there were strong stimulus-evoked responses that 

peaked at ~50ms and ~100ms following the onset of both the verb and the determiner (at 

~600ms and ~650ms following verb onset) — the C1 and P1 components that are classically 

evoked by visual inputs. As shown in (B), there were strong evoked responses that peaked at 

100ms (the N1 component), at 200ms (the P2 component) following both the verb and 

determiner (i.e. at 650ms and 750ms relative to verb onset). Following the verb but not the 

determiner, the N400 component was observed, peaking at 400ms. (C) The topographic 

distribution of the ERP difference within the time window where a significant difference was 

found (p = .002, between 308 - 1066ms) based on a cluster-based permutation test over the entire 

time window. The ERPs evoked by the inanimate constraining verbs were larger (more negative) 

than that evoked by the animate constraining verbs at frontal-central EEG electrodes. The 

electrodes that showed significant differences between the two conditions within the 308 - 

1066ms time window are indicated with black asterisks on the topographic map.  
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Table 

Table 1. Examples of the four experimental conditions. 

 
Note: Discourse scenarios were created around animate constraining and inanimate constraining verbs 

(“cautioned” and “unfolded”; underlined here but not in the experiment itself). The sentences continued 

with object nouns plus three additional words, as indicated by the three dots.  

*The lexical constraint of the discourse context was operationalized as the percentage of participants who 

produced the best completion in a cloze study (see main text). Mean values are shown with standard 

deviations in parentheses. 
 

 

 

Verb animacy 

constraint 

Discourse 

constraint 
Example 

*Lexical 

constraint of 

discourse 

context 

Animate 

constraining  

 

High 

discourse 

constraint 

The lifeguards received a report of sharks right 

near the beach. Their immediate concern was to 
prevent any incidents in the sea. Hence, they 

cautioned the ... 

65% (15%) 
 

Low 

discourse 

constraint 

Eric and Grant received the news late in the 

day. They mulled over the information, and 
decided it was better to act sooner rather than 

later. Hence, they cautioned the ... 

19% (11%) 

Inanimate 

constraining  

High 

discourse 

constraint 

Judith was working on the origami project for her 

office fundraiser. She was starting to get frustrated 

because it was her third attempt at making a crane. 
Nevertheless, she unfolded the … 

71% (14%) 

Low 
discourse 

constraint 

Judith was nearing the end of her rope. She didn't 
think she could keep going. Nevertheless, she 

unfolded the … 

24% (13%) 
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