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Abstract

W Our environment contains regularities distributed in space
and time that can be detected by way of statistical learning.
This unsupervised learning occurs without intent or awareness,
but little is known about how it relates to other types of learn-
ing, how it affects perceptual processing, and how quickly it can
occur. Here we use fMRI during statistical learning to explore
these questions. Participants viewed statistically structured ver-
sus unstructured sequences of shapes while performing a task
unrelated to the structure. Robust neural responses to statisti-
cal structure were observed, and these responses were notable
in four ways: First, responses to structure were observed in the
striatum and medial temporal lobe, suggesting that statistical

INTRODUCTION

Our sensory environments are full of regularities distrib-
uted in space and time. For example, the syllable /sci/ is
more likely to be followed by /ence/ than by /on/ in
English speech; a microwave is more likely to be found
near a stove than a furnace; and passing through a metal
detector precedes getting on an airplane but not enter-
ing a shower. By being sensitive to this structure, we can
acquire higher-order primitives—words, scene schemas,
and event scripts.

However, such relationships are embedded within
complex and continuous environments. Statistical learn-
ing is a way of acquiring structure in such situations, re-
sulting in segmented “units.” In the auditory domain, for
example, preverbal infants who are exposed to a con-
tinuous pseudospeech stream for 2 min can learn that
some syllables are more likely to co-occur than others,
providing a bootstrapping mechanism by which “words”
can be identified (e.g., Saffran, Aslin, & Newport, 1996).
In the visual domain, adult observers are sensitive to
contingencies between shapes in temporal sequences
(e.g., Turk-Browne, Jungé, & Scholl, 2005; Fiser & Aslin,
2002) and spatial configurations (e.g., Fiser & Aslin, 2001,
Chun & Jiang, 1999). Such statistical learning may help
define visual “objects” in time and/or space (Turk-
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learning may be related to other forms of associative learning and
relational memory. Second, statistical regularities yielded greater
activation in category-specific visual regions (object-selective lat-
eral occipital cortex and word-selective ventral occipito-temporal
cortex), demonstrating that these regions are sensitive to infor-
mation distributed in time. Third, evidence of learning emerged
early during familiarization, showing that statistical learning can
operate very quickly and with little exposure. Finally, neural sig-
natures of learning were dissociable from subsequent explicit
familiarity, suggesting that learning can occur in the absence of
awareness. Overall, our findings help elucidate the underlying
nature of statistical learning.

Browne & Scholl, in press) and at multiple levels of com-
plexity: binding features within objects (Turk-Browne,
Isola, Scholl, & Treat, 2008), grouping objects into hier-
archies (e.g., Orban, Fiser, Aslin, & Lengyel, 2008; Fiser
& Aslin, 2005), and abstracting exemplars to categories
(Brady & Oliva, 2008).

Studies of statistical learning have explored its power
and flexibility, demonstrating for example that it can occur
in multiple sensory modalities (Conway & Christiansen,
2005, 2006), in complex dynamic displays (Fiser, Scholl,
& Aslin, 2007), over nonadjacent syllables (Pacton &
Perruchet, 2008; Newport & Aslin, 2004), despite cover
tasks (Turk-Browne et al., 2005), and without conscious
awareness of the regularities (Turk-Browne et al., 2005;
Saffran, Newport, Aslin, Tunick, & Barrueco, 1997). Less
is understood, however, about the underlying perceptual
and cognitive processes that contribute to statistical learn-
ing. Indeed, statistical learning is often discussed as a dis-
tinct category of learning (see Perruchet & Pacton, 2006)
but may in fact have roots in other forms of learning and
memory. Here we assessed these processes incidentally
by measuring visual statistical learning with fMRI, without
requiring the measurement of explicit knowledge in a
separate behavioral post-test, which is the typical measure
of statistical learning.

To our knowledge, there has been no investigation
focused on the neural foundations of visual statistical
learning of this sort. In the auditory domain, one study
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has examined the neural basis of how statistical and
prosodic cues are integrated during word segmentation
(McNealy, Mazziotta, & Dapretto, 2006), and another
study has examined the time course of learning with
ERPs and their relationship to familiarity (Abla, Katahira, &
Okanoya, 2008). There have also been studies of the
neural basis of other forms of learning, including artificial
grammar learning (AGL; e.g., Skosnik et al., 2002), classifi-
cation learning (e.g., Poldrack et al., 2001), and motor se-
quence learning (e.g., Toni, Krams, Turner, & Passingham,
1998; Grafton, Hazeltine, & Ivry, 1995). Thus, one goal of
the present study is to empirically examine how these
other forms of learning relate to statistical learning (for a
theoretical discussion, see Perruchet & Pacton, 2006). Note,
however, that statistical learning can be distinguished from
these other forms of learning in at least two ways: (1) the
output of statistical learning consists of stimulus-specific
associations rather than abstract rules, probabilistic cate-
gory labels, or motor programs; and (2) these associations
create discrete units out of an otherwise undifferentiable
input stream (i.e., regularities are demarcated only by
statistics)—as opposed to AGL in which words are explic-
itly segmented, or classification learning in which associa-
tions are formed over cues and outcomes in discrete trials.

Much of the interest in statistical learning derives from
its implicit nature: It can occur without intent or even
knowledge that there are underlying regularities (Turk-
Browne et al., 2005; Saffran et al., 1997). Indeed, a mech-
anism that relied on deliberate inference would be ill
suited for learning at early stages of development—or
perhaps at any stage, given the great number of potential
regularities in the environment to assimilate. Neverthe-
less, studies of statistical learning have sometimes found
it difficult to isolate implicit contributions, especially be-
cause most (adult) studies involve passive viewing dur-
ing learning and explicit familiarity judgments at test (e.g.,
Turk-Browne et al., 2008; Fiser & Aslin, 2002). Such mea-
sures are conventional largely for historical reasons: This
incarnation of statistical learning evolved from studies of
infant cognition, wherein testing often occurs after a pe-
riod of familiarization (e.g., Saffran et al., 1996) or habit-
uation (e.g., Kirkham, Slemmer, & Johnson, 2002). Even
many behavioral “implicit” measures (e.g., Turk-Browne
& Scholl, in press; Turk-Browne et al., 2005) require a
separate task at test (cf. Baker, Olson, & Behrmann,
2004). With neuroimaging, in contrast, we can explore
the learning process itself, while observers are engaged in
an orthogonal task.

We presented observers with short blocks of novel
shapes appearing one at a time in a continuous stream.
Structured blocks contained deterministic subsequences
of shapes that only existed in terms of the higher tran-
sitional probabilities between shapes within a subse-
quence than between shapes spanning two different
subsequences. Random blocks lacked this structure but
were otherwise identical. Thus, any difference between
these block types observed with fMRI must reflect sensi-

tivity to the statistical structure. We explored four ques-
tions: (1) How does statistical learning relate to other
forms of learning and memory? (2) What are the con-
sequences of statistical learning for visual processing?
(3) How fast and efficient is statistical learning? (4) What
is the relationship between incidental statistical learn-
ing and subsequent explicit familiarity? In the context of
our study, we operationalized these questions by exam-
ining, respectively, the extent to which statistical learn-
ing is mediated by the same brain systems as other forms
of learning and memory, whether statistical learning
modulates processing in category-specific ventral visual
regions, how quickly sensitivity to structure can be ob-
served, and whether neural evidence of learning can be
dissociated from familiarity judgments.

METHODS
Participants

Sixteen naive observers (nine females; mean age =
23 years) participated in one fMRI session for monetary
compensation. All were right-handed with normal or
corrected-to-normal vision.

Stimuli

The stimuli consisted of 12 glyphs from the Sabaean
alphabet (an ancient Semitic language) and 12 glyphs
from the Ndjuka syllabary (a creole from Suriname). Im-
ages of glyphs were generated from fonts downloaded
at www.omniglot.com. For each observer, the 24 glyphs
were randomly assigned without replacement to either
the structured set or the random set. The use of two
alphabets helped increase shape discriminability, and
the fact that structured and random sets randomly con-
tained items from both alphabets helped prevent ob-
servers from treating the sets as categorically distinct.
Each glyph subtended roughly 6.8°, appearing in black
on a medium gray background (Figure 1A). A small blue
dot was superimposed on the screen throughout each
block to help observers stay fixated.

Similar to previous studies of statistical learning (e.g.,
Fiser & Aslin, 2002; Saffran et al., 1996), the structured
blocks were constructed by assigning without replace-
ment each of the 12 glyphs in the structured set to one
of four “triplets”: a subsequence of three glyphs that
always appeared in the same order (Figure 1B). Each
block consisted of one presentation of each triplet (Fig-
ure 1D). The order of triplets in each block was ran-
domized but was not repeated in later blocks.

The use of deterministic triplets adds positional struc-
ture to the blocks: For example, the first glyph in a
triplet only appeared in positions 1/4/7/10. Indeed, se-
quence learning can be supported by both item-to-item
and item-to-position associations (e.g., Young, 1968).
To control for this, the (pseudo)random blocks were
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Figure 1. Stimuli and design. (A) Sample display of one glyph. (B) Twelve randomly assigned glyphs in four “triplets.” (C) The remaining
12 glyphs in three “position sets.” (D) Example structured block containing one presentation of each triplet in random order. (E) Example

random block with glyphs constrained to certain positions.

constructed by assigning without replacement the 12 glyphs
in the random set to one of four position sets (Fig-
ure 1C). That is, each glyph appeared once per block
and only ever in positions 1/4/7/10, 2/5/8/11, or 3/6/9/12
(Figure 1E). In addition, because every glyph appeared
once in each structured or random block, items near
the end of blocks were more predictable if observers
learned the stimulus sets; however, this was equally
true for both block types. Thus, other than the lack of
triplets, the random blocks were identical to the struc-
tured blocks in all respects (including overall novelty
of individual glyphs and positional structure)—and be-
cause the assignment of glyphs to sets was randomized,
any systematic neural differences between block types
must therefore reflect sensitivity to the differential tran-
sitional probabilities.

Foil stimuli in a behavioral familiarity post-test were
constructed from the structured set to mimic prior
studies of statistical learning (e.g., Turk-Browne et al.,
2005; Fiser & Aslin, 2002): Each of the 12 glyphs was
assigned without replacement to one of four new “foil”
subsequences. Every foil was constructed of one glyph
from each position set (e.g., 1/5/9) and thus could only
be distinguished from the triplets because the transi-
tional probabilities between foil glyphs were zero based
on the familiarization.

Procedure

As their task, observers used a button box to respond
to “jiggles” (rapid motion of the current glyph to the
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left and right of fixation for 200 msec). Jiggle targets
occurred once or twice per block at random intervals
and an equal number of times in the two block types.
There was a short practice run with unstructured blocks
of line drawings during which observers practiced the
task.

After anatomical scans, observers completed one run
of the jiggle task containing structured and random
blocks of glyphs. Due to technical difficulties, button re-
sponses from two participants were not recorded, but
visual inspection revealed that they were performing
the task. During analysis, jiggle detection response times
more than three standard deviations greater than the
mean were excluded as outliers (resulting in the removal
of 1.8% of responses). There were twelve 16-sec blocks
of each type, presented in an alternating manner for
a total of 24 blocks. Typical statistical learning experi-
ments use a continuous familiarization phase without
blocks and do not contain a random control condition;
rather, learning is assessed off-line after familiarization
by testing regularities from familiarization against recom-
binations of the same elements. Our study, however,
used an alternating structured/random block design
due to practical challenges in interpreting fMRI data;
in particular, comparisons between conditions that
are spread across runs (or even that occur at different
points within one run) can be easily confounded by
head motion, signal drift, and/or changes in arousal. Al-
though the block structure provided a form of segmen-
tation that could facilitate learning, any learning related
to the boundaries between blocks per se would have
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existed in the random blocks as well due to the posi-
tional constraints.

Block order (i.e., whether the run began with a struc-
tured or random block) was counterbalanced across ob-
servers. In each block, the fixation dot appeared 1 sec
prior to the first glyph, and then each of the 12 glyphs
was presented for 800 msec followed by a 200-msec ISI.
Each 12-sec block was followed by a 4-sec rest period. A
short interblock interval was used to make the transition
between blocks relatively seamless, hence minimizing
the likelihood that subjects would become aware of the
two stimulus sets. Although this interval did not allow
the fMRI signal to return completely to baseline, it was
sufficient for our analysis because we focused on de-
tecting a difference between conditions rather than es-
timating the hemodynamic response relative to a rest
baseline. This single experimental run lasted approxi-
mately as long as the familiarization periods in typical
visual statistical learning experiments (e.g., Fiser & Aslin,
2002), although triplets were only repeated half as many
times due to the intermixed random blocks. Either be-
fore or after this run, half of the participants also com-
pleted one run of a different experiment (not reported
here).

After the learning run, observers also completed a
surprise familiarity test in the scanner. Similar to previ-
ous studies, this test involved 16 two-alternative forced-
choice trials in which each triplet from the structured
blocks was pitted against each foil sequence once (thus
equating the frequencies of triplets and foils at test).
Each glyph was presented in the same manner as during
learning, with a 1-sec pause between the alternatives.
Whether the triplet or the foil was presented first was
randomized across trials. Observers used a keypress to
indicate which alternative was more familiar.

After the test phase, observers completed a localizer
run of the jiggle task containing four categories of stim-
uli in separate blocks: the glyphs from the learning run,
line drawings of objects, grayscale faces, and four-letter
English words (as used in Baker et al., 2007). There were
eight 16-sec blocks of each category; stimuli were pre-
sented in the same manner as before but in random
sequences.

Observers were asked five questions outside the scan-
ner: (1) What do you think the experiment was about?
(2) Did you use any particular strategy? (3) How do
you think you did in the test phase? (4) Have you en-
countered an experiment like this before? (5) Did you
notice any repeating patterns during the glyph jiggle
task? These questions helped assess the implicitness of
learning.

Image Acquisition

Neuroimaging data were collected on a 3T Siemens
Trio scanner using a standard head coil. Functional data

were acquired with a T2*-weighted gradient-echo, EPI
sequence (TE = 25 msec; TR = 2000 msec; FA = 90°%;
matrix = 64 x 64) with 34 axial slices (3.5-mm isotro-
pic voxels). For the learning run, 200 volumes were ac-
quired; for the localizer run, 264 volumes were acquired.
Two T1l-weighted anatomical sequences were acquired
for coregistration.

Preprocessing

The first four volumes of each functional run were dis-
carded. Using Brain Voyager QX (Brain Innovation), data
were then corrected for slice acquisition time, corrected
for head motion, spatially smoothed (8-mm FWHM
kernel), detrended, high-pass filtered with 128-sec pe-
riod cutoff, normalized into Talairach space (Talairach
& Tournoux, 1988), and interpolated to 3-mm isotropic
voxels.

Data Analysis

To explore how neural responses differed for structured
and random blocks, we used a general linear model
treating block type as a fixed variable and subject as a
random variable. The first block of each type was ex-
cluded from analysis because structure exists only inso-
far as the temporal patterns repeat across blocks; thus,
differences between the first block of each type (be-
fore any triplets had been repeated) are not meaningful.
Each block type was then entered as a separate regres-
sor: A 12-sec boxcar function was defined for each of
the remaining blocks of that type and convolved with a
hemodynamic response function. As covariates of no in-
terest, six regressors for each dimension of head move-
ment were also included. This model estimated the
contribution of each block type to the BOLD response
in every voxel for each subject. The resulting beta val-
ues for the two conditions were compared across sub-
jects using paired ¢ tests. Voxels were judged to show a
reliable difference for the contrast of structured versus
random if the associated ¢ value reached significance at
p < .001 (two-tailed), and the voxel was part of a clus-
ter of at least five contiguous voxels that all individually
reached this significance level. Using the cluster-size
threshold plug-in for BrainVoyager, which takes into ac-
count spatial smoothness (based on Forman et al., 1995),
10,000 Monte Carlo simulations revealed that the true
corrected alpha associated with this significance level and
cluster threshold is p < .001.

Three other analyses were conducted to further ex-
plore the difference between structured and random
blocks. First, to examine whether statistical structure
modulated activity in ventral visual cortex, we compared
BOLD responses for structured versus random blocks
within two a priori ROIs from the localizer: bilateral
object-selective lateral occipital cortex (LOC) and left
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word-selective ventral occipito-temporal cortex (VOTC).
To define these regions in each subject, a multiple re-
gression analysis similar to the one described above
was used in which a different predictor was specified
for each category. To localize the LOC, line drawings
were contrasted against words and faces; to localize
the VOTC, words were contrasted against faces and line
drawings. In each region, the voxel with the greatest
¢ value in an anatomically restricted search was selected
as the center of a 4-mm sphere ROI if it reached at least
p < .001. Responses were collapsed across peaks in
bilateral dorsal and ventral aspects of LOC; however,
the VOTC ROI was restricted to the left hemisphere.
The LOC ROI could be defined in 15/16 observers,
and the left VOTC ROI could be defined in 11/16 ob-
servers. This ROI-based approach was used in addition
to the whole-brain analysis described above for two rea-
sons: (1) the precise location of these functional ROIs
is variable across subjects, and (2) these regions provide
probes of category-specific visual processing in the ven-
tral stream.

Second, to examine the speed of statistical learning,
we created new predictors that estimated responses
to pairs of blocks: For each condition, one regressor
was defined for the hemodynamic response functions
of blocks 1-2 (Epoch 1), blocks 3-4 (Epoch 2), etc.,
resulting in 12 regressors (structured, random X six
epochs). Groupings of two blocks were selected as
a compromise to minimize the noise associated with
modeling a small number of time points while maxi-
mizing our resolution for detecting when the two con-
ditions diverged.

Finally, we explored the relationship between the neu-
ral measure of statistical learning and the subsequent
familiarity judgments. This relationship was assessed in
two ways. First, we entered subsequent familiarity scores
as a covariate in our model. In particular, in each voxel,
the accuracy of familiarity judgments during the first half
of the test phase was correlated with the magnitude of
the difference between structured and random blocks;
the covariate was obtained from the first half of the test
because a significant effect was only observed during this
phase (see below). Second, to examine whether neural
evidence of statistical learning can be observed without
familiarity, we obtained separate contrast maps for each
subject (for the contrast of structured vs. random) and
performed a one-sample # test of those subjects who
performed at or below chance during the first half of
the test (7 of 16). (Note that although deviation below
chance could reflect some effect of learning, we could
not assess the reliability of individual subject scores. Re-
gardless, at a minimum, these subjects did not exhibit
stronger familiarity with triplets than foils and thus would
have been considered “nonlearners” in typical behavioral
studies.) The strict threshold from our primary analysis
was used for both of these analyses (cluster threshold
corrected, p < .001).
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RESULTS
Behavior
Cover Task

Performance on the jiggle task was very good over-
all (mean accuracy = 99.4%; mean response time =
446 msec) and did not differ between the structured
and random blocks either in terms of accuracy, ¢(13) =
1.38, p = .19, d = 0.37, or response time, ¢ < 1. This
further confirms that the conditions were equated in all
respects other than the presence of triplets in the struc-
tured blocks. Thus, any neural differences must reflect
sensitivity to these regularities.

Familiarity Test

Preference for triplets in the familiarity test was weak
(56%) and approached significance relative to chance,
t(15) = 1.69, p = .11, d = 0.42. A more reliable effect
was observed in the first half of the test phase (61%),
t(15) = 2.15, p < .05, d = 0.54. The early part of the
test phase may provide a better measure of familiarity
of triplets from structured blocks because the same
foils were repeated four times over the course of the
test phase (to equate the frequency of triplets and
foils at test) and thus would have become increasingly
familiar. This fragile behavioral effect may be attrib-
utable to differences between the current study and
previous studies, including that the structured blocks
were interleaved with noise blocks (see Jungé, Scholl,
& Chun, 2007); twice as many stimuli were used;
and the jiggle task diverted attention away from the
structure. Regardless, the robust neural effects de-
scribed below provide an additional measure of statisti-
cal learning.

Debriefing

All participants were naive about the purpose of the
study. In addition, 14/16 participants reported no aware-
ness of any sequential patterns during learning even
after being told about how the blocks were constructed.
The two remaining participants claimed to have no-
ticed some pairs (rather than triplets), but both par-
ticipants performed below chance in the first half of
the test phase. Thus, statistical learning operated with-
out participants’ awareness of the underlying structure
between glyphs during the jiggle task (see also Turk-
Browne et al., 2005; Saffran et al., 1997). In addition,
observers’ reported confidence about their performance
during the familiarity test was low overall, and there
was no obvious relationship between these reports
and test accuracy: When asked to describe their per-
formance, the only three observers with accuracies at
or above 75% responded “ok,” “guessing mostly,” and
“terrible.”
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Whole-Brain Analysis

To examine the neural correlates of statistical learning,
we performed a voxel-wise contrast of structured versus
random blocks. Several brain regions survived our sta-
tistical threshold (cluster threshold corrected, p < .001),
showing enhanced responses to structured relative to
random blocks (see Table 1). Of particular interest for
assessing the relationship between statistical learning and
other forms of learning and memory, responses to statis-
tical structure were observed in the right striatum (cau-
date body; Figure 2A) and the right medial temporal lobe

Table 1. Structured > Random

(hippocampus; Figure 2B) during learning. No regions ex-
hibited the reverse pattern of random > structured."

ROI Analysis

The effect of statistical structure in visual cortex was ex-
plored by comparing responses for structured versus ran-
dom blocks in our LOC and VOTC ROIs (Figure 3B).
Both regions exhibited stronger responses to structured
than random blocks [LOC: ¢(14) = 3.33, p = .005,d =
0.86; VOTC: 1(10) = 2.44, p = .04, d = 0.73].

Region Hemisphere BA y z Extent Peak t Epoch

Limbic/Subcortical

Hippocampus 27 —26 —4 13 5.84 3

Caudate 8 3 8 14 4.83 2

Parahippocampal gyrus R 30 11 —42 —4 5 4.49 3

Frontal

Medial/middle frontal gyrus R 6 19 2 46 52 5.55 2
R 8 11 38 36 16 5.35 *

Precentral gyrus R 6 43 -3 34 60 5.25 2
L 6 =33 —4 34 15 5.46 2

Insula R 13 38 10 14 8 5.02 2

Middle frontal gyrus R 9 28 22 32 8 4.73 5

Temporal

Superior temporal gyrus R 38 56 10 —-19 17 5.59 2

Middle temporal gyrus R 21 64 -8 —12 10 5.38 4
R 37 46 —62 2 8 4.51 2

Fusiform gyrus L 37 —47 —45 —10 10 4.94 2

Parietal

Precuneus R 7 19 —66 50 12 5.32 2

19 —26 =75 32 25 6.00 *

Inferior parietal lobule R 40 37 =53 33 27 5.72 4

Occipital

Cuneus R 19 26 —84 27 11 4.87 2

18 —17 =77 16 10 5.32 2

Regions exhibiting stronger responses to structured versus random blocks (z = 16; p < .001; extent = five voxels; cluster threshold corrected, p <
.001). BA, Brodmann’s area; x/y/z, cluster center-of-gravity coordinates in Talairach space (Talairach & Tournoux, 1988); extent, number of
suprathreshold voxels in the cluster; peak 7, maximum statistic within cluster; epoch, point during run when evidence of learning first emerged

(p < .05).

*Pairwise comparison between structured and random blocks did not reach significance in any individual epoch, but the difference was significant

collapsed across epoch (p < .001).
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Figure 2. Learning regions.
The right caudate (A) and
the right hippocampus (B)
exhibited stronger responses
to structured versus random
blocks. Activations are
overlaid onto the average

of all subjects structural T1
scans and smoothed for
display purposes.

R y=-27

Z=+7

Epoch Analysis

To explore the efficiency of learning in the brain regions
that showed whole-brain sensitivity to statistical struc-
ture, we assessed when the difference between struc-
tured and random blocks first emerged during learning.
In particular, we defined epoch predictors using a mov-
ing window of two blocks: Epoch 1 modeled Blocks 1
and 2 of each condition, Epoch 2 modeled Blocks 3 and
4 of each condition, etc. Although the fact that these

regions all exhibited a main effect of structured > ran-
dom (collapsing over time) ensures that this difference
would be observed eventually, this analysis nevertheless
helps us determine how many triplet presentations are
necessary to obtain such robust differences. Reassur-
ingly, none of the regions exhibited a difference be-
tween structured and random blocks in Epoch 1 (ps >
.15). However, significant differences (ps < .05) emerged
beginning in Epoch 2. As can be seen in Table 1, some
regions showed differences early (e.g., Epoch 2, in the

Figure 3. Visual regions.
(A) Example of ventral A
object-selective and word-
selective regions defined in
each individual based on a
separate localizer scan (some
individuals visible as red
spheres on average T1 scan).
(B) BOLD responses for the Object-
structured and the random selective
blocks extracted from each LOC
individual’s ROIs. Error bars
reflect within-subject standard
errors of the differences
between structured and z=+1
random blocks in each
region.
Word-
selective
VOTC
z=-8

B

[ structured [B] Random
0.8+

*

0.7

% signal change

0.3+

0.2-

0.1-

% signal change

* p< .05
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caudate and medial frontal gyrus) and some not until
later (e.g., Epoch 4, in the middle temporal gyrus and
inferior parietal lobule).

Relationship to Familiarity

To examine the relationship between neural and behav-
ioral measures of learning, we correlated each observer’s
familiarity with the difference in activation between the
structured and the random conditions in every voxel.
The resulting » map was then thresholded (cluster thresh-
old corrected, p < .001), revealing one region of the left
frontal cortex (precentral gyrus/inferior frontal gyrus;
Brodmann’s area 6/9; the center of gravity of the cluster
in Talairach coordinates: —57, 3, 27), where greater en-
hancement for structured versus random was associated
with greater subsequent familiarity (» = 0.81, p = .0001).

To explore whether neural evidence of learning can
be observed without familiarity, we also contrasted struc-
tured versus random blocks in the whole brain, excluding
all subjects who performed above chance in the familiar-
ity test. Notwithstanding the reduction in power associ-
ated with performing a random-effects analysis in seven
observers, three regions exhibited a robust difference, in-
cluding the original caudate region (cluster threshold cor-
rected, p < .001; Table 2).

DISCUSSION

This study provides an initial exploration of the neural
basis of visual statistical learning, using a design that has
been employed in many behavioral studies. Our results
have several implications:

Statistical Learning and Other Forms of Learning
and Memory

The type of statistical learning explored in this study—
learning of higher-order perceptual units—has often
been treated as a distinct phenomenon (see Perruchet
& Pacton, 2006). However, the extraction of regularities
is an important component of other types of learning,
including classification learning of associations between
cues and outcomes (e.g., Knowlton, Squire, & Gluck,
1994), motor learning of sequences of manual responses

Table 2. Unfamiliar Group

(e.g., Nissen & Bullemer, 1987), and rule learning of gen-
erative grammars (e.g., Reber, 1967). Attempts have
been made to relate these forms of learning to each
other by appealing to the overlap in their neural bases—
especially overlapping involvement of the striatal memory
system (e.g., Poldrack et al., 2001; Knowlton, Mangels,
& Squire, 1996). Although we cannot establish the ne-
cessity of the striatum for statistical learning from a
correlational measure such as fMRI, our results suggest
that the striatum may also be involved in statistical learn-
ing. In fact, the striatal region that activated to struc-
tured sequences in our study (the right caudate) is
involved in many forms of implicit learning in humans
(e.g., Seger & Cincotta, 2005; Lieberman, Chang, Chiao,
Bookheimer, & Knowlton, 2004; Bischoff-Grethe, Martin,
Mao, & Berns, 2001; Rauch et al., 1997) and animals (e.g.,
Winocur & Eskes, 1998; Packard, Hirsh, & White, 1989).

Our results also demonstrate that the medial-temporal
lobe memory system may be involved in statistical learn-
ing. The involvement of the hippocampus may further
help relate statistical learning to other forms of learn-
ing, including contextual learning (e.g., Chun & Phelps,
1999; cf. Manns & Squire, 2001), category learning (e.g.,
Cincotta & Seger, 2007), sequence learning (e.g., Ergorul
& Eichenbaum, 2006; Schendan, Searl, Melrose, & Stern,
2003; Fortin, Agster, & Eichenbaum, 2002), and relational
binding (e.g., Prince, Daselaar, & Cabeza, 2005; Mitchell,
Johnson, Raye, & D’Esposito, 2000; Ryan, Althoff, Whitlow,
& Cohen, 2000).

The involvement of both the caudate and the hippo-
campus in statistical learning raises the interesting possi-
bility that parallel representations may be formed during
statistical learning. One potentially relevant distinction is
that striatal- and medial temporal lobe-mediated learn-
ing differ with respect to the flexibility of the resulting
representations (see Johnson, van der Meer, & Redish,
2007): Learning involving the hippocampus may be more
abstract and may generalize to new retrieval contexts,
whereas learning involving the caudate may be specific
and require exact replication of the encoding context for
learning to be expressed. This distinction is apparent in
animal studies of navigation in which the hippocampus
is necessary for learning the spatial locations of rewards
whereas the caudate is necessary for learning stimulus-
response associations (e.g., Packard & McGaugh, 1990).
Analogous effects have been observed in a human fMRI

Region Hemisphere BA X y z Extent Peak t
Medial frontal gyrus R 10 4 52 7 5 13.96
Posterior cingulate cortex R 30/31 31 —64 12 9 12.08
Caudate R 10 3 16 7 9.60

Regions exhibiting stronger responses to structured versus random blocks in subjects that exhibited no subsequent familiarity (7 = 7; p < .001;

extent = five voxels).
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study of navigation in which wayfinding—generating novel
routes based on free exploration of a virtual environ-
ment—involved the hippocampus while following a
familiar route involved the caudate (Hartley, Maguire,
Spiers, & Burgess, 2003). The flexibility distinction is also
present in human studies of visual associative learning,
in which elderly participants with hippocampal atrophy
fail transfer tests of learning whereas Parkinson’s patients
with basal ganglia dysfunction do not (Myers et al., 2003).
Suggestively, in a different study of sequential visual sta-
tistical learning, we have found behavioral evidence
of parallel abstract (order-invariant) and specific (order-
specific) representations (Turk-Browne & Scholl, in press).

Statistical Learning and Perception

In addition to examining processes related to the de-
tection and the extraction of perceptual regularities, we
also assessed effects of statistical learning in visual cor-
tex using a functional localizer. The two regions we
identified are known to be highly selective for particu-
lar categories of visual stimuli—shapes/objects in the
LOC (e.g., Malach et al., 1995) and characters/words in
the VOTC (e.g., Baker et al., 2007)—and in terms of
static visual stimulation, the structured and the random
blocks in our study were perfectly equated. However,
both regions responded more strongly in the presence
of statistical structure, which existed only in terms of
the distribution of glyphs within blocks. It is worth not-
ing that this effect is surprising precisely because these
are canonical “object” areas, where one might not ex-
pect sensitivity to ostensibly nonvisual distributed infor-
mation. These results are consistent with the possibility
that the human ventral stream may be selective for
statistical information in perceptual input, akin to asso-
ciative representations in monkey IT (e.g., Messinger,
Squire, Zola, & Albright, 2001; Miyashita, 1993) and P-1
or P-2 learning in the MEM model of memory (Johnson
& Hirst, 1993). Alternatively, greater responses to struc-
tured stimuli in perceptual areas may reflect attentional
enhancement, possibly resulting from the downstream
recognition of regularities. Any such effect must never-
theless be a consequence of statistical learning because
the two block types only differed with respect to tran-
sitional probabilities. Moreover, because observers did
not become consciously awareness of the structure, any
preferential processing of the structured blocks was not
voluntary.

Efficient Statistical Learning

Previous studies have been unable to examine the speed
of statistical learning because they mostly relied on off-
line tests of learning after a preset (and largely arbitrary)
amount of familiarization. No study, to our knowledge,
has systematically varied the amount of familiarization
to determine how quickly statistical learning can occur.
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One study used ERP as an on-line measure of auditory
statistical learning (Abla et al., 2008). In this study, evi-
dence of learning was examined over thirds of the fa-
miliarization stream, and one subset of the participants
showed evidence of learning in the first third of famil-
iarization. However, each third contained 40 presenta-
tions of every auditory regularity, and thus this finding
provides a rather coarse estimate of efficiency. In con-
trast, we examined learning-related changes within the
first dozen presentations of each visual regularity.

Our findings thus highlight the utility of fMRI as an
incidental measure, able to provide an index of learning
in progress with relatively high resolution. And surpris-
ingly, neural evidence of statistical learning appeared
very quickly: In some regions, reliable differences were
observed in the second epoch, encompassing the third
and the fourth blocks of each type, hence the third and
the fourth presentation of each triplet. Because observ-
ers were naive about the length of our regularities, this
may be the minimal number of blocks necessary for each
triplet to appear variably with respect to the other trip-
lets. On the other hand, learning-related neural changes
may have begun as early as the second presentation but
might not have been reliably detected until the second
epoch due to power limitations (e.g., number of partic-
ipants, limits of fMRI). Nevertheless, robust evidence of
learning was observed very early, although participants
were performing an orthogonal task and were largely
unaware of the structure.

Varieties of Statistical Learning: Implicit Neural
Responses versus Explicit Familiarity Judgments

We observed clear neural evidence of statistical learning
that was substantially more robust than the conventional
behavioral familiarity measure. This greater sensitivity of
the neural measure is important because it highlights
that learning was largely implicit. Specifically, participants
reported no awareness of the structure during debrief-
ing, and the neural evidence of learning was accompa-
nied by weak explicit familiarity. One region of left frontal
cortex did strongly correlate with familiarity across ob-
servers but did not overlap with the regions showing
an overall effect of statistical structure.

Neural measures are especially useful in this context
because they can reveal evidence of learning that has
not or will not be manifested in behavior (e.g., McNealy
et al., 2006; Landau, Schumacher, Garavan, Druzgal, &
D’Esposito, 2004). In our case, a subset of observers
who exhibited no subsequent familiarity with the regu-
larities still showed a robust difference between struc-
tured and random blocks in the striatum. Because the
two block types were completely balanced for the
novelty and block positions of individual glyphs, this
difference must reflect learning of the transitional prob-
abilities in the structured blocks. Typically, these ob-
servers would be categorized as “nonlearners,” but this
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may be an unfair characterization given our results. In-
stead, the typical behavioral identification of learners
versus nonlearners may reflect a stable individual dif-
ference either in the “rate” of learning (with explicit
familiarity reflecting a later stage of the learning pro-
cess) or in the “mode” of learning: Some observers may
learn more implicitly (resulting in strong activation of
the caudate), whereas others may learn in a manner that
is more conducive to explicit familiarity (resulting in
activation of regions supporting such processing).

Similar individual differences in statistical learning
have been reported previously. For example, in the
ERP study discussed earlier (Abla et al., 2008), partici-
pants were divided into “high,” “middle,” and “low
learners” based on subsequent familiarity. Although
high and middle learners differed in terms of familiarity
(by definition), similarly robust learning-related ERP
changes were observed in both groups. However, these
changes were observed only in the first third of famil-
iarization for high learners and only in the final third of
familiarization for middle learners, again demonstrat-
ing that lower familiarity does not necessarily imply less
learning per se. Our results provide even stronger evi-
dence for this claim because robust neural evidence of
learning was observed in participants who expressed no
familiarity whatsoever. In sum, implicit measures of on-
line learning can be both more sensitive and provide
richer detail about the learning process itself than ex-
plicit measures taken later.

Conclusions

Collectively, these results emphasize both the power of
statistical learning and its integration with other cog-
nitive processes. The neural responses observed here
provide clear evidence that statistical learning can occur
implicitly and quickly, and that neuroimaging may be
an especially sensitive technique for exploring such
processing. The particular brain regions that reflected
this learning help tie statistical learning to other forms of
learning and perceptual processing.
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Note

1. The repetition of visual information typically causes the
attenuation of evoked responses in selective ventral occipital

and temporal regions (for a review, see Grill-Spector, Henson,
& Martin, 2006). The failure to observe attenuated responses
for repeated sequences (i.e., random > structured) may thus
be related to the fact that individual glyphs in both structured
and random blocks were repeated several times such that visual-
evoked responses were fully adapted (see Reber, Gitelman,
Parrish, & Mesulam, 2005). Nevertheless, the interplay between
repetition attenuation for items versus associations deserves
more consideration (cf. Kohler, Danckert, Gati, & Menon, 2005).
Moreover, despite the lack of a decrease for structured versus
random blocks overall, learning-related decreases may still have
occurred for structured blocks later versus earlier during learn-
ing. Given the challenges discussed earlier in making compar-
isons between conditions occurring at different points in an
fMRI session, we chose a contemporaneous baseline task. As a
result, it remains possible that both structured and random re-
sponses may have decreased over time, with a more precipi-
tous decline in the random condition.
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