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Abstract

Traditional face editing methods often require a num-

ber of sophisticated and task specific algorithms to be ap-

plied one after the other — a process that is tedious, frag-

ile, and computationally intensive. In this paper, we pro-

pose an end-to-end generative adversarial network that in-

fers a face-specific disentangled representation of intrinsic

face properties, including shape (i.e. normals), albedo, and

lighting, and an alpha matte. We show that this network

can be trained on “in-the-wild” images by incorporating an

in-network physically-based image formation module and

appropriate loss functions. Our disentangling latent repre-

sentation allows for semantically relevant edits, where one

aspect of facial appearance can be manipulated while keep-

ing orthogonal properties fixed, and we demonstrate its use

for a number of facial editing applications.

1. Introduction

Understanding and manipulating face images in-the-wild

is of great interest to the vision and graphics community,

and as a result, has been extensively studied in previous

work. This ranges from techniques to relight portraits [34],

to edit or exaggerate expressions [36], and even drive fa-

cial performance [31]. Many of these methods start by

explicitly reconstructing face attributes like geometry, tex-

ture, and illumination, and then edit these attributes to edit

the image. However, reconstructing these attributes is a

challenging and often ill-posed task; previous techniques

deal with this by either assuming richer data (e.g., RGBD

video streams) or a strong prior on the reconstruction that

is adapted to the particular editing task that they seek to

solve (e.g., low-dimensional geometry [6]). As a result,

these techniques tend to be both costly and not generalize

well to the large variations in facial identity and appearance

that exist in images-in-the-wild.

In this work, our goal is to learn a compact, meaning-

ful manifold of facial appearance, and enable face edits by

walking along paths on this manifold. The remarkable suc-

(a) input (b) recon (c) albedo (d) normal (e) shading

(f) relit (g) smile (h) beard (i) eyewear (j) older
Figure 1. Given a face image (a), our network reconstructs the im-

age (b) with in-network learned albedo (c), normal (d), and shad-

ing(e). Using this network, we can manipulate face through light-

ing (f), expression (g), appearance (h), eyewear (i), and time (j).

cess of morphable face models [6] – where face geometry

and texture are represented using low-dimensional linear

manifolds – indicates that this is possible for facial appear-

ance. However, we would like to handle a much wider range

of manipulations including changes in viewpoint, lighting,

expression, and even higher-level attributes like facial hair

and age – aspects that cannot be represented using previ-

ous models. In addition, we would like to learn this model

without the need for expensive data capture [7].

To this end, we build on the success of deep learn-

ing – especially unsupervised autoencoder networks – to

learn “good” representations from large amounts of data [4].

Trivially applying such approaches to our problem leads to

representations that are not meaningful, making the subse-

quent editing challenging. However, we have (approximate)

models for facial appearance in terms of intrinsic face prop-

erties like geometry (surface normals), material properties

(diffuse albedo), and illumination. We leverage this by de-

signing the network to explicitly infer these properties and

introducing an in-network forward rendering model that re-

constructs the image from them. Merely introducing these

factors into the network is not sufficient; because of the ill-

posed nature of the inverse rendering problem, the learnt in-

trinsic properties can be arbitrary. We guide the network by

imposing priors on each of these intrinsic properties; these

include a morphable model-driven prior on the geometry,
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a Retinex-based [20] prior on the albedo, and an assump-

tion of low-frequency spherical harmonics-based lighting

model [25, 3]. By combining these constraints with adver-

sarial supervision on image reconstruction, and weak super-

vision on the inferred face intrinsic properties, our network

is able to learn disentangled representations of facial ap-

pearance.

Since we work with natural images, faces appear in front

of arbitrary backgrounds, where the physical constraints of

the face do not apply. Therefore, we also introduce a matte

layer to separate the foreground (i.e., the face) from the im-

age background. This enables us to provide optimal recon-

struction pathways in the network specifically designed for

faces, without distorting the background reconstruction.

Our network naturally exposes low-dimensional mani-

fold embeddings for each of the intrinsic properties, which

in turn enables direct and data-driven semantic editing from

a single input image. Specifically, we demonstrate direct

illumination editing with explicit spherical harmonics light-

ing built into the network, as well as latent space manifold

traversal for semantically meaningful expression edits such

as smiling, and more structurally global edits such as ag-

ing. We show that by constraining physical properties that

do not affect the target edits, we can achieve significantly

more realistic results compared to other learning-based face

editing approaches.

Our main contributions are: (1) We introduce an end-

to-end generative network specifically designed for the un-

derstanding and editing of face images in the wild; (2)

We encode the image formation and shading processes as

in-network layers enabling the disentangling in the the la-

tent space, of physically based rendering elements such as

shape, illumination, and albedo; (3) We introduce statisti-

cal loss functions (such as batchwise white shading (BWS)

corresponding to color consistency theory [20]) to improve

disentangling latent representations.

2. Related Work

Face Image Manipulation. Face modeling and edit-

ing is an extensively studied topic in vision and graphics.

Blanz and Vetter [6] showed that facial geometry and tex-

ture can be approximated by a low-dimensional morphable

face model. This model and its variants have been used for

a variety of tasks including relighting [34, 8], face attribute

editing [7], expression editing [5, 22], authoring facial per-

formances [32, 31], and aging [16]. Another class of tech-

niques uses coarse geometry estimates to drive image-based

editing tasks [36, 28, 14]. Each of these works develops

techniques that are specifically designed for their applica-

tion and often can not be generalized to other tasks. In con-

trast, our work aims to learn a general manifold for facial

appearance that can support all these tasks.

Intrinsic decompositions. Barrow and Tanenbaum [2]

proposed the concept of decomposing images into their

physical intrinsic components such as surface normals, sur-

face shading, etc. Barron and Mallik [1] extended this de-

composition assuming a Lambertian rendering model with

low-frequency illumination and made use of extensive pri-

ors on geometry, albedo, and illumination. This rendering

model has also been used in face relighting [34] and shape-

from-shading-based face reconstruction [15]. We use a sim-

ilar rendering model in our work, but learn a face-specific

appearance model by training a deep network with weak

supervision.

Neural Inverse Rendering. Generative network archi-

tectures have shown to be effective for image manipula-

tion. Kulkarni et al. [18] utilized a variational autoencoder

(VAE) [17] for synthesizing novel variations of the input

image where the objects pose and lighting conditions are

altered. Yang et al. [37] demonstrated novel view synthesis

for the object in a given image, where view specific prop-

erties were disentangled in latent space utilizing a recur-

rent network. In contrast, Tatarchenko et al. [30] used an

autoencoder style network for the same task, where trans-

formations were encoded through a secondary input stream

and mixed with the input image in the latent space. Re-

cently, Yan et al. [35] used a VAE variant and layered rep-

resentations to generate images with specific semantic at-

tributes. We adopt their background-foreground disentan-

gling scheme through an in-network matte layer.

Face Representation Learning. Face representation

learning is generally performed with a standard convolu-

tional neural network trained for a recognition or labeling

task [29, 24, 27]. Such approaches often need a signifi-

cantly large amount of data since the network is treated as a

black box. Synthetically boosting the dataset using normal-

izations and augmentations [29, 12, 13] has proven useful.

Most recently, Masi et al. [23] used face fitting using mor-

phable models similar to our approach, but used the result-

ing 3D faces to generate more data for traditional recogni-

tion network training. Even though such learned represen-

tations are powerful, especially in recognition, they are not

straight forward to utilize for face editing.

Recently, Gardner et al. [10] demonstrated face editing

through a standard recognition network. Since the network

does not have a natural generation pathway, they use a two

step optimization procedure (one in latent space, and one

at low level feature space) to reconstruct the edited image.

This, combined with the fact that they use a global latent

space, leads to unintended changes and artifacts. On the

other hand, our generative autoencoder style network al-

lows for a physically meaningful latent space disentangling,

thereby solving both problems: we constrain semantic ed-

its to their corresponding latent representation, and our de-

coder generates the editing result in a single forward pass.

We formulate the face generation process as an end-to-
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Figure 2. Network Architectures. The interchangeable modules (grey background-dashed boundary) highlight the difference between our

two proposed architectures: (a) Direct modeling of explicit normal (Ne) and albedo (Ae) maps. (b) Implicit coordinate system (UV ),

albedo (Ai) and normal (Ni) modeling to aid further disentangling in the face foreground.

end network where the face is physically grounded by ex-

plicit in-network representations of its shape, albedo, and

lighting. Fig. 2 shows the overall network structure. We

first introduce the foreground Shading Layer and the Im-

age Formation Layer (Sec. 2.1), followed by two alternative

in-network face representations (Fig. 2(a)-(b) and Sec. 2.2)

that are compatible with in-network image formation. Fi-

nally, we introduce in-network matting (Sec. 2.3) which fur-

ther disentangles the learning process of the foreground and

background for face images in the wild.

2.1. In-Network Physically-Based Face Rendering

From a graphics point of view, we assume a given face

image Ifg is the result of a rendering process, frendering

where the inputs are an albedo map Ae, a normal map Ne,

and illumination/lighting L:

Ifg = frendering(Ae, Ne, L) (1)

We assume Lambertian reflectance and adopt Retinex The-

ory [20] to separate the albedo (i.e. reflectance) from the

geometry and illumination:

Ifg = fimage-formation(Ae, Se) = Ae ⊙ Se (2)

in which ⊙ denotes the per-element product operation in the

image space, and Se represents a shading map rendered by

Ne and L:

Se = fshading(Ne, L) (3)

If Eqns. 2 and 3 are differentiable, they can be realized

as in-network layers in an autoencoder network (Fig. 2(a)).

This allows us to represent the image with disentangled la-

tent variables for physically meaningful factors in the image

formation process: the albedo latent variable ZAe
, the nor-

mals variable ZNe
and the lighting variable ZL. We show

that this is advantageous over the traditional approach of a

single latent variable that encodes the combined effect of all

image formation factors. Each of the latent variables allows

us access to a specific manifold, where semantically rele-

vant edits can be performed while keeping irrelevant latent

variables fixed. For instance, one can trivially perform im-

age relighting by only traversing the lighting manifold given

by ZL or changing only the albedo (e.g., to grow a beard)

by traversing ZAe
.

Computing shading from geometry (Ne) and illumina-

tion (L) is nontrivial under unconstrained conditions, and

might result in fshading(·, ·) being a discontinuous function in

a significantly large region of the space it represents. There-

fore, we further assume distant illumination, L, that is rep-

resented by spherical harmonics [25] s.t. the Lambertian

shading function, fshading(·, ·) has an analytical form and is

differentiable.

Following previous work [25, 3, 34, 1], lighting L is rep-

resented by a 9-dimensional spherical harmonics coefficient

vector. For a given pixel, i, with normal ni = [nx, ny, nz]
⊤,

the shading is rendered as:

Si
e = Se(ni, L) = [ni; 1]

⊤K[ni; 1] (4)

where

K =









c1L9 c1L5 c1L8 c2L4

c1L5 −c1L9 c1L6 c2L2

c1L8 c1L6 c3L7 c2L3

c2L4 c2L2 c2L3 c4L1 − c5L7









c1 = 0.429043 c2 = 0.511664

c3 = 0.743125 c4 = 0.886227 c5 = 0.247708

(5)
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We provide the formulas for the partial derivatives
∂Si

e

∂nx
,

∂Si
e

∂ny
,
∂Si

e

∂nz
and

∂Si
e

∂Lj
in the supplementary material. Us-

ing these two differential rendering modules fshading and

fimage-formation, we can now implement the rendering mod-

ules within the network as shown in Figure 2.

2.2. In-Network Face Representation

Explicit Representation. The formulation introduced in

the previous section requires the image formation and shad-

ing variables to be defined in the image coordinate sys-

tem. This can be achieved with an explicit per-pixel rep-

resentation of the face properties: Ne, Ae. Figure 2(a) de-

picts the module where the explicit normals and albedo are

represented by their latent variables ZNe
, ZAe

. Note that

the lighting, L, is independent of the face representation;

we represent it using spherical harmonics coefficients, i.e.,

ZL = L is directly used by the shading layer whose forward

process is given by Eqn. 4.

Implicit Representation. Even though the explicit rep-

resentation helps disentangle certain properties and relates

edits more intuitively to the latent variable manifolds (i.e.

relighting), it might not be satisfactory in some cases. For

instance, pose and expression edits might change both the

explicit per-pixel normals, as well as the per-pixel albedo

in the image space. We therefore introduce an implicit rep-

resentation, where the parametrization is over the face co-

ordinate system rather than the image coordinate system.

This will allow us to further constrain pose and expression

changes to the shape (i.e. normal) space only.

To address this, we introduce an alternative network ar-

chitecture where the explicit representation depicted in the

module in Fig. 2(a) is replaced with Fig. 2(b). Here, UV

represents the per-pixel face space uv-coordinates, Ni and

Ai represent the normal and albedo maps in the face uv-

coordinate system, and ZUV , ZNi
, and ZAi

represent the

corresponding latent variables respectively. This is akin

to the standard UV-mapping process in computer graphics.

Facial features are aligned in this space (eyes correspond to

eyes, mouths to mouths, etc.), and as a result the network

has to learn a smaller space of variation, leading to sharper,

more accurate reconstructions. Note that even though the

network only uses the explicit latent variables at test time,

we have auxiliary decoder stacks for all implicit variables to

encourage disentangling of these variables during training.

The implementation and training details will be explained

in Sec. 3.2.

2.3. In-Network Background Matting

To further encourage the physically based representa-

tions of albedo, normals and lighting to concentrate on the

face region, we disentangle the background from the fore-

ground with a matte layer similar to the work by Yan et

al. [35]. The matte layer computes the composite of the

foreground face onto the background:

Io = M ⊙ Ifg + (1−M)⊙ Ibg (6)

The matting layer also enables us to utilize efficient skip

layers where unpooling layers in the decoder stack can use

pooling switches from the corresponding encoder stack of

the input image (grey links from the input encoder to back-

ground and mask decoders in Figure 2). The skip connec-

tion between the encoder and the decoder, allow for the de-

tails of the background to be preserved to a greater extent.

Such skip connections bypass the bottleneck Z and there-

fore allow only partial information flow through Z during

training.

For the foreground face region we chose to “filter” all

the information through the bottleneck Z without any skip

connections in order to gain full control over the latent man-

ifolds for editing, at the expense of some detail loss.

3. Implementation

3.1. Network Architecture

The convolutional encoder stack (Fig. 2) is composed of

three convolutions with 32∗3×3, 64∗3×3 and 64∗3×3 filter

sets. Each convolution is followed by max-pooling and a

ReLU nonlinearity. We pad the filter responses after each

pooling layer so that the final output of the convolutional

stack is a set of filter responses with size 64 ∗ 8 × 8 for an

input image 3 ∗ 64× 64.

ZIi is a latent variable vector of 128 × 1 which is fully

connected to the last encoder stack downstream as well as

the individual latent variables for background Zbg , mask

Zm, light ZL, and the foreground representations. For the

explicit foreground representation, it is directly connected

to ZNe
and ZAe

(Fig. 2(a)), whereas for the implicit repre-

sentation it is connected to ZUV , ZNi
, and ZAi

(Fig. 2(b)).

All individual latent representations are 128× 1 vectors ex-

cept for ZL which represents the light L directly and is thus

a 27× 1 vector (three 9× 1 concatenated vectors represent-

ing the spherical harmonics of the RGB components).

All decoder stacks for upsampling per-pixel (explicit or

implicit) values are strictly symmetric to the encoder stack.

As described in Sec. 2.3, the decoder stacks for the mask

and background have skip connections to the input encoder

stack at corresponding layers. The implicit normals Ni and

implicit albedo Ai share weights in the decoder, since we

have supervision of the implicit normals only.

3.2. Training

We use “in-the-wild” face images for training. Hence,

we only have access to the image itself (denoted by I∗),

and do not have ground-truth data for either illumination,
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normal map, or the albedo. The main loss function is there-

fore on the reconstruction of the image Ii at the output Io:

Eo = Erecon + λadvEadv (7)

where Erecon = ||Ii − Io||
2. Eadv is given by the adver-

sarial loss, where a discriminative network is trained at the

same time to distinguish between the generated and real im-

ages [11]. Specifically, we use an energy-based method [38]

to incorporate the adversarial loss. In this approach an au-

toencoder is used as the discriminative network, D. The

adversarial loss for the generative network is defined as

Eadv = D(I ′), where I ′ is the reconstruction of the discrim-

inator input Io, hence D(.) is the L2 reconstruction loss of

the discriminator D. We train D to minimize the margin-

based reconstruction error proposed by [38],

Fully unsupervised training using only the reconstruc-

tion and adversarial loss on the output image will often re-

sult in semantically meaningless latent representations. The

network architecture itself cannot prevent degenerate solu-

tions, e.g. when Ae captures both albedo and shading infor-

mation while Se remains constant. Since each of the render-

ing elements has a specific physical meaning, and they are

explicitly encoded as intermediate layers in the network, we

introduce additional constraints through intermediate loss

functions to guide the training.

First, we introduce N̂ , a “pseudo ground-truth” of the

normal map Ne, to keep the normal map close to plausible

face normals during the training process. We estimate N̂ by

fitting coarse face geometry to every image in the training

set using a 3D Morphable Model [6]. We then introduce the

following objective to Ne:

Erecon-N = ||Ne − N̂ ||2 (8)

Similar to N̂ , we provide a L2 reconstruction loss w.r.t

L̂, on the lighting parameters ZL:

Erecon-L = ||ZL − L̂||2 (9)

where L̂ is computed from N̂ and the input image using

least square optimization and a constant albedo assump-

tion [33, 34].

Furthermore, following Retinex theory [20] which as-

sumes albedo to be piecewise constant and shading to be

smooth, we introduce an L1 smoothness loss on the gradi-

ents of the albedo, A:

Esmooth-A = ||∇Ae|| (10)

in which ∇ is the spatial image gradient operation. In ad-

dition, since the shading is assumed to vary smoothly, we

introduce an L2 smoothness loss on the gradients of the

shading, Se:

EsmoothS = ||∇Se||
2 (11)

For the implicit coordinate system (UV ) variant (Fig. 2-

(b)), we provide L2 supervisions to both UV and Ni:

EUV = ||UV − ÛV ||2 (12)

ENi
= ||Ni − N̂i||

2 (13)

ÛV and N̂i are obtained from the previously mentioned

Morphable Model, in which vertex-wise correspondence on

the 3D fit exists. We utilize the average shape of the Mor-

phable Model S̄ to construct a canonical coordinate map

(UV ) and surface normal map (Ni), and propagate it to each

shape estimation via this correspondence. More details of

this computation are presented in our supplemental docu-

ment.

Due to ambiguity in the magnitude of lighting, and there-

fore the intensity of shading (Eq. 2), it is necessary to in-

corporate constraints on the shading magnitude to prevent

the network from generating arbitrary bright/dark shading.

Moreover, since the illumination is separated in individual

colors Lr, Lg and Lb, we incorporate a constraint to pre-

vent the shading from being too strong in one color channel

vs. the others. To handle these ambiguities, we introduce a

Batch-wise White Shading (BWS) constraint on Se:

1

m

∑

i,j

sir(j) =
1

m

∑

i,j

sig(j) =
1

m

∑

i,j

sib(j) = c (14)

where sir(j) denotes the j-th pixel of the i-th example in the

first (red) channel of Se. sg and sb denote the second and

the third channel of shading respectively. m is the number

of pixels in a training batch. In all experiments c = 0.75.

Since N̂ obtained by the Morphable Model comes with

a region of interest only on the face surface, we use it as

the mask under which we compute all foreground losses.

In addition, this region of interest is also used as the mask

pseudo ground truth at training time for learning the matte

mask:

EM = ||M − M̂ ||2 (15)

in which M̂ represents the Morphable Model mask.

4. Experiments

We use the CelebA [21] dataset to train the network. For

each image in the dataset, we detect landmarks [26], and fit

a 3D Morphable Model [6, 36] to the face region to have a

rough estimation of the rendering elements (N̂ , L̂). These

estimates are used to set-up the various losses detailed in

the previous section. This data is subsequently used only

for the training of the network as previously described.

4.1. Baseline Comparisons

For comparison, we train an autoencoder B as a base-

line. The encoder and decoder of B is identical to the en-

coder and decoder for albedo in our architecture. To make
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baseline

our

recon

our

albedo
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shading

our

normal

3dMM

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Figure 3. Feed-forward reconstruction and normals, shading, albedo estimation. Compared to the baseline autoencoder (row 2), our recon-

struction (row 3) not only preserves the details of the background (1,2,4), but is also more robust to complex pose (3,4), illumination (5),

and identity (9,10), thanks to the layered representation and in-network rendering procedure. Moreover, our network contains components

that explicitly encode normals (row 4), shading/lighting (row 5), and albedo (row 6) for the foreground (face), which is helpful for the

understanding and manipulation of face images. In the last row we show the normal estimation from a 3D Morphable Model. We can

easily see that using our network, the generated shape retains more identity information from the original image, and does not fall in

the sub-space of the PCA-based morphable model that is used as weak supervision for training. All results are produced by the network

designed for explicit representation.

the comparison fair, the bottleneck layer of B is set to 265
(= 128 + 128 + 9) dimensions, which is more than twice

as large as the bottleneck layer in our architecture (size

128), yielding slightly more capacity for the baseline. Even

though our architecture has a narrower bottleneck, the dis-

entangling of the latent factors and the presence of phys-

ically based rendering layers, lead to reconstructions that

are more robust to complex background, pose, illumination,

occlusion, etc., (Fig. 3).

More importantly, given an input face images, our net-

work provides explicit access to an estimation of the albedo,

shading and normal map (Fig. 3) for the face. Notably, in

the last row of Fig. 3, we compare the inferred normals

from our network with the normals estimated from the input

image using the 3D morphable model that we deployed to

guide the training process. The data to construct the mor-

phable model contains only 16 identities; this small sub-

space of identity variation leads to normals that are often

inaccurate approximations of the true face shape (row 7 in

Fig. 3). By using these estimates as weak supervision in

combination with an appearance-based rendering loss, our

network is able to generate normal maps (row 6 in Fig. 3)

that extend beyond the morphable model subspace, better

fit the shape of the input face, and exhibit more identity in-

formation. Please refer to our supplementary material for

more comparisons.

4.2. Face Editing by Manifold Traversal

Our network enables manipulation of semantic face at-

tributes, (e.g. expression, facial hair, age, makeup, and eye-

wear) by traversing the manifold(s) of the disentangled la-

tent spaces that are most appropriate for that edit.
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(a) (b) (c) (d) (e)
Figure 4. Smile editing via traversal on our representation (explicit

albedo and normal) vs. a baseline autoencoder representation. Our

network provides better reconstructions (d) of the input images (a)

and captures the geometry and appearance changes associated with

smiling (e). The baseline network leads to poorer reconstructions

(b) and edits (c).

For a given attribute, e.g., the smiling expression, we

feed both positive data {xp} (smiling faces) and negative

data {xn} (faces with other expressions) into our network

to generate two sets of Z-codes {zp} and {zn}. These sets

represent corresponding empirical distributions of the data

on the low dimensional Z-space(s). Given an input face im-

age Isource that is not smiling, we seek to make it smile by

moving its Z-code(s) Zsource towards the distribution {z}p
to get a transformed code Ztrans. After that, we reconstruct

the image corresponding to Ztrans with the decoders in our

model.

In order to compute the distributions for each attribute,

we sample a subset of 2000 images from the CelebA [21]

with the appropriate attribute label (e.g., smiling vs other

expressions). We use the manifold traversal method pro-

posed by Gardner et al. [10] independently on each appro-

priate variable. The extent of the traversal is parameterized

by a regularization parameter, λ (see [10] for details).

(a) input (b) reconstruction (c) baseline

(d)ZUV (e) ZUV ,ZNi (f) ZUV ,ZNi,ZAi

Figure 5. Smile editing via implicit factor traversal. Our implicit

representation directly captures smiling via a traversal of the UV

manifold (d) and both UV and implicit normal (e). Traversing on

the implicit albedo on the other hand, leads to noticeable appear-

ance artifacts (f). For this experiment, we use the same regulariza-

tion (λ= 0.03) on all manifolds.

(a) input (b) recon (c) (d) (e)
Figure 6. Smile editing via progressive traversal on the bottleneck

manifolds (ZUV and ZNi
). From (c) to (e), λ is 0.07, 0.05,

0.03 respectively. As the latent representation moves closer to the

smiling mode, stronger features of smiling, such as rising cheeks

and white teeth, appear. Note that we are also able to capture sub-

tle changes in the eyes that are often correlated with smiling.

In Fig. 4, we compare the results using our network

against the baseline autoencoder. We traverse the albedo

and normal variables to produce edits which make the faces

smile and are able to capture changes in expression and the

appearance of teeth, while preserving the other aspects of

the image. In contrast, the results from traversing the base-

line latent space are much poorer – in addition to not being

able to reconstruct the pose and identity of the input prop-

erly, the traversal is not able to capture the smiling transfor-

mation as well as we do.

In Fig. 5 we demonstrate the utility of our implicit rep-

resentation. While lips/mouth and teeth might map to the

same region of the image space, they are in fact separated

in the face UV-space. This allows the implicit variables

to learn more targeted and accurate representations, hence

traversing just the ZUV , already results in a smiling face.

Combining this with traversal along ZNi
exaggerates the

smile. In contrast, we do not expect smiling to be correlated

with the implicit albedo space, and traversing along the ZAi

leads to poorer results with an incorrect frontal pose.

In Fig. 6 we demonstrate more results for smiling and

demonstrate that relaxing the traversal regularization pa-

rameter, λ, gradually leads to stronger smiling expressions.

We also address the editing task of aging via manifold

traversal. For this experiment, we construct the latent space

distributions using images and labels from the PubFig [19]
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(a) input (b) recon (c) (d) (e)
Figure 7. Aging via traversal on the albedo and normal manifolds.

From (c) to (e), λ is 0.07, 0.05, 0.03 respectively. As the latent

representation moving towards to the senior mode, stronger fea-

tures of aging, such as changes in face shape and texture, appear

while retaining other aspects of the appearance like pose, lighting,

and eyewear.

dataset corresponding to the most and least senior images.

We expect aging to be correlated with both shape and tex-

ture, and show in Fig. 7 that traversing these manifolds leads

to convincing age progression.

Note that all of these edits have been performed on the

exact same network, indicating that our network architec-

ture is general enough to represent the manifold of face

appearance, and is able to disentangle the latent factors to

support specific editing tasks. Refer to our supplementary

material for more results, and comparisons.

Limitations. Our current face masks do not include hair.

This results in less control over some edits, e.g. aging, that

are inherently affecting the hair as well. However, this can

trivially be addressed, if a mask that also includes the hair

can be generated [9].

4.3. Relighting

A direct application of the albedo-normal-light decom-

position in our network is that it allows us to manipulate the

illumination of an input face via ZL while keeping the other

latent variable fixed. We can directly “relight” the face by

replacing its Z
target
L with some other Zsource

L (e.g. using the

lighting variable of another face).

While our network is trained to reconstruct the input, due

to its limited capacity (especially due to the bottleneck layer

dimensionality), the reconstruction does not reproduce the

(a) target (b) source (c) Ssource (d) transfer (e) Stransfer

Figure 8. Lighting transfer using our model. We transfer the illu-

mination of two source images (b) to a given target (a)(top: image;

bottom: estimated normal), by generating the shading (e) of the

target using the lighting of the source, and applying to the original

target image.

input with all the details. For illumination editing, however,

we can directly manipulate the shading, that is also avail-

able in our network. We pass the source Isource and target

images I target through our network to estimate their individ-

ual factors. We use the target shading Starget with Eq. 2 to

compute a “detailed” albedo Atarget. Given the source light

Lsource, we render the shading of the target under this light

with the target normals N target (Eq. 3) to obtain the trans-

ferred shading Stransfer. In the end, the lighting transferred

image is rendered with Atarget and Stransfer using Eq. 2. This

is demonstrated in Fig. 8 where we are able to successfully

transfer the lighting from two sources with disparate iden-

tities, genders, and poses to a target while retaining all its

details. We present more relighting results, as well as quan-

titative tests on illumination (i.e. spherical harmonics coef-

ficients) prediction in the supplementary material.

5. Conclusions

We proposed a physically grounded rendering-based dis-

entangling network specifically designed for faces. Such

disentangling enables realistic face editing since it allows

trivial constraints at manipulation time. We are the first

to attempt in-network rendering for faces in the wild with

real, arbitrary backgrounds. Comparisons with traditional

autoencoder approaches show significant improvements on

final edits, and our intermediate outputs such as face nor-

mals show superior identity preservation compared to tradi-

tional approaches.
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