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Abstract We present a neural field model of binocular

rivalry waves in visual cortex. For each eye we consider

a one-dimensional network of neurons that respond

maximally to a particular feature of the corresponding

image such as the orientation of a grating stimulus.

Recurrent connections within each one-dimensional

network are assumed to be excitatory, whereas connec-

tions between the two networks are inhibitory (cross-

inhibition). Slow adaptation is incorporated into the

model by taking the network connections to exhibit

synaptic depression. We derive an analytical expression

for the speed of a binocular rivalry wave as a function of

various neurophysiological parameters, and show how

properties of the wave are consistent with the wave-

like propagation of perceptual dominance observed

in recent psychophysical experiments. In addition to

providing an analytical framework for studying binoc-

ular rivalry waves, we show how neural field methods

provide insights into the mechanisms underlying the

generation of the waves. In particular, we highlight

the important role of slow adaptation in providing a

“symmetry breaking mechanism” that allows waves to

propagate.
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1 Introduction

A number of phenomena in visual perception involve

wave-like propagation dynamics. Examples include

perceptual filling-in (De et al. 1998), migraine aura

(Hadjikhani et al. 2001), expansion of illusory contours

(Gold and Shubel 2006) and the line–motion illusion

(Jancke et al. 2004). Another important example, which

is the focus of this paper, is the wave-like propaga-

tion of perceptual dominance during binocular rivalry

(Wilson et al. 2001; Lee et al. 2005; Kang et al.

2009, 2010). Binocular rivalry is the phenomenon

where perception switches back and forth between

different images presented to the two eyes. The re-

sulting fluctuations in perceptual dominance and sup-

pression provide a basis for non-invasive studies of the

human visual system and the identification of possible

neural mechanisms underlying conscious visual aware-

ness (Blake 2001; Blake and Logothetis 2002). One way

to observe and measure the speed of perceptual waves

in psychophysical experiments (Wilson et al. 2001; Lee

et al. 2005) is to take the rival images to be a low-

contrast radial grating presented to one eye and a high-

contrast spiral grating presented to the other eye. Each

image is restricted to an annular region of the visual

field centered on the fixation point of the observer,

thus effectively restricting wave propagation to the one

dimension around the annulus. Switches in perceptual

dominance can then be triggered using a brief rapid

increase in stimulus contrast within a small region of

the suppressed low-contrast grating. This induces a
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perceptual traveling wave in which the observer per-

ceives the local dominance of the low-contrast image

spreading around the annulus. The observer presses a

key when the perceptual wave reaches a target area

at a fixed distance from the trigger zone, and this

determines the wave speed (Wilson et al. 2001; Lee

et al. 2005). Since the rival images consist of oriented

gratings, one might expect that primary visual cortex

(V1) plays some role in the generation of binocular ri-

valry waves. Indeed, it has been shown using functional

magnetic resonance imaging that there is a systematic

correspondence between the spatiotemporal dynamics

of activity in V1 and the time course of perceptual

waves (Lee et al. 2005). However, it has not been

established whether the waves originate in V1 or are

evoked by feedback from extrastriate cortex.

Recently Kang et al. (2009, 2010) have developed

a new psychophysical method for studying binocular

rivalry waves that involves periodic perturbations of the

rival images. An observer tracks rivalry within a small,

central region of spatially extended rectangular grating

patterns, while alternating contrast triggers are pre-

sented repetitively in the periphery of the rival patterns.

The basic experimental set up is illustrated in Fig. 1.

A number of interesting results have been obtained

from these studies. First, over a range of trigger fre-

quencies, the switching between rival percepts within

the central regions is entrained to the triggering events.

Moreover, the optimal triggering frequency depends

on the natural frequency of spontaneous switching (in

the absence of triggers). Second, the latency between

triggering event and perceptual switching increases ap-

proximately linearly with the distance between the trig-

gering site and the central region being tracked by the

observer, consistent with the propagation of a traveling

front. Third, the speed of the traveling wave across

observers covaries with the spontaneous switching

rate.

In this paper we analyze the existence and stability

of binocular rivalry waves in a continuum neural field

Fig. 1 Schematic diagram
illustrating experimental
protocol used to study
binocular rivalry waves (Kang
et al. 2009). High contrast
triggers are presented
periodically in antiphase
within the upper extended
region of one grating pattern
and within the lower region
of the rival pattern. Subject
simply reports perceptual
alternations in rival
dominance within the central
monitoring region indicated
by the horizontal black lines
on each pattern. The
monitoring region is a
distance �d from the trigger
region, which can be
adjusted. If �t is the latency
between the triggering event
and the subsequent
observation of a perceptual
switch, then the speed c of the
wave is given by the slope of
the plot �d = c�t
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model of visual cortex. We derive an analytical expres-

sion for the wave speed as a function of neurophysio-

logical parameters, and use this to show how our model

reproduces various experimental results found by Kang

et al. (2009, 2010), in particular, the observation that

wave speed covaries with the natural alternation rate.

Our model is essentially a continuum version of a pre-

vious computational model of rivalry waves based on

a discrete two layer neural network (Wilson et al. 2001;

Kang et al. 2010). The two layers represent cortical neu-

rons responsive to one or more features of the image

presented to the left and right eye respectively. Such

features could include the orientation of a spatially

extended grating stimulus or distinguish between spiral

and radial annulus patterns. In the discrete computa-

tional model, connections within a layer were taken to

be excitatory, whereas between layers, neurons mutu-

ally inhibited each other via a set of local interneurons.

Moreover, in order to allow switching between the

dominant and suppressed populations, the excitatory

neurons were assumed to exhibit some form of slow

spike frequency adaptation. In our neural field version

of this model, we consider an alternative form of slow

adaptation based on depressing synapses. In addition to

providing an analytical framework for studying binoc-

ular rivalry waves, we show how neural field methods

provide insights into the mechanisms underlying the

generation of the waves. In particular, we highlight

the important role of slow adaptation in providing a

“symmetry breaking mechanism” that allows fronts to

propagate.

2 The model

In order to model binocular rivalry waves in the pres-

ence of oriented grating stimuli (Wilson et al. 2001;

Kang et al. 2009, 2010), it is useful to review some of

the stimulus response properties of neurons in the pri-

mary visual cortex (V1) (Hubel and Wiesel 1962, 1977).

First, each neuron in V1 responds to light stimuli in a

restricted region of the visual field called its classical

receptive f ield; stimuli outside a neuron’s receptive field

do not directly affect its activity. Second, most neurons

in V1 respond preferentially to stimuli targeting either

the left or right eye, which is known as ocular domi-

nance. It has been suggested that neurons with different

ocular dominance may inhibit one another if they have

nearby receptive fields (Katz et al. 1989). Third, most

neurons in V1 are tuned to respond maximally when a

stimulus of a particular orientation is in their receptive

field (Hubel and Wiesel 1962; Blasdel 1992). This is

known as a neuron’s orientation preference, and the

neuron will not respond if a stimulus is sufficiently

different from its preferred orientation. Finally, mul-

tielectrode recordings and optical imaging have estab-

lished that at each point in the visual field there exists

a corresponding set of neurons spanning the entire

spectrum of orientation preferences that are packed to-

gether as a unit in V1, known as a hypercolumn (Hubel

and Wiesel 1977; Tootell et al. 1998; Blasdel 1992).

Within each hypercolumn, neurons with sufficiently

similar orientations tend to excite each other whereas

those with sufficiently different orientations inhibit

each other, and this serves to sharpen a particular neu-

ron’s orientation preference (Ben-Yishai et al. 1995;

Ferster and Miller 2000). Moreover, anatomical evi-

dence suggests that inter-hypercolumn connections link

neurons with similar orientation preferences (Sincich

and Blasdel 2001; Angelucci et al. 2002). The functional

relationship between stimulus feature preferences and

synaptic connections within V1 thus suggests that V1

is a likely substrate of simple examples of binocular

rivalry such as those involving sinusoidal grating stimuli

(Sterzer et al. 2009).

Binocular rivalry waves consist of two basic com-

ponents: the switching between rivalrous left/right eye

states and the propagation of the switched state across

a region of cortex. Let us first focus on the switching

mechanism by neglecting spatial effects. Suppose that

distinct oriented grating patterns are presented to the

two eyes such as those shown in Fig. 1. This induces

rivalry due to the combination of orientation specific

and ocular dominant cross-inhibition in V1 (Ben-

Yishai et al. 1995; Sincich and Blasdel 2001; Blake and

Logothetis 2002). During left eye stimulus dominance,

it is assumed that a group of the left eye neurons

that respond to 135 degree orientations, say, are firing

persistently, while right eye neurons are suppressed by

cross-inhibitory connections. Following this, some slow

adaptive process such as synaptic depression or spike

frequency adaptation causes a switch so that right eye

neurons tuned to 45 degree orientations fire persis-

tently, suppressing the left eye neurons. The cycle of

left eye neural dominance along with right eye neural

suppression followed by right eye neural dominance

along with left eye neural suppression can then repeat

itself in the form of rivalrous oscillations. This basic

model of reciprocal inhibition paired with a slow adap-

tive process has often been used to phenomenologically

model the neural substrate of binocular rivalry oscilla-

tions (Fox and Rasche 1969; Skinner et al. 1994; Wilson

et al. 2001; Laing and Chow 2002; Taylor et al. 2002;

Shpiro et al. 2007, 2009; Kilpatrick and Bressloff 2010).

In order to take into account the propagation of

activity seen in binocular rivalry waves (Wilson et al.
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2001; Kang et al. 2009, 2010), we will consider a contin-

uum neural field model. Several previous studies have

modeled the spontaneous switching between rivalrous

oriented stimuli in terms of a pair of ring networks

(neural fields on a periodic domain) with slow adapta-

tion and cross-inhibition, representing a pair of hyper-

columns for the left and right eyes, respectively (Laing

and Chow 2002; Kilpatrick and Bressloff 2010). In these

models, the rivalrous states consist of stationary activity

bumps coding for either the left or right eye stimuli.

(Rivalry effects in a spatially extended model have

also been examined in a prior study by Loxley and

Robinson (Loxley and Robinson 2009), in which rival-

rous stimuli are presented to a single one-dimensional

network). However, these models were not used to

study binocular rivalry waves and, as formulated, were

on the wrong spatial scale since they only considered

short-range spatial scales comparable to a single hy-

percolumn. One way to proceed would be to construct

a more general coupled ring model along the lines of

Bressloff et al. (2001) and Bressloff and Cowan (2002),

in which two sets of hypercolumns (ring networks) are

distributed along a pair of lines corresponding to the

left and right eyes, respectively, such that along each

line the synaptic weights can be decomposed into short-

range intra-columnar interactions and long-range inter-

columnar interactions, together with cross-inhibitory

connections between the left and right eye networks.

In this paper, we will consider a simpler network ar-

chitecture in which we neglect the internal structure

of a hypercolumn. That is, for each eye we consider

a one-dimensional network of neurons whose orienta-

tion preference coincides with the orientation of the

corresponding grating stimulus, which is a reasonable

first approximation from the perspective of the experi-

ments conducted by Kang et al. (2009, 2010). Recurrent

connections within each one-dimensional network are

assumed to be excitatory, whereas connections between

the two networks are inhibitory (cross-inhibition). Slow

adaptation is incorporated into the model by taking

the network connections to exhibit synaptic depression

along the lines of Kilpatrick and Bressloff (2010). The

basic architecture is shown schematically in Fig. 2. Note

that a similar network architecture was previously con-

sidered in a computational model of binocular rivalry

waves (Wilson et al. 2001; Kang et al. 2010), in which

cross inhibition was mediated explicitly by interneu-

rons and, rather than including depressing synapses,

the excitatory neurons were taken to exhibit spike

frequency adaptation. The most significant difference

between our approach and the previous computational

approaches (besides considering synaptic depression

rather than spike frequency adaptation) is that the

latter considers a discrete neural network rather than

a continuum neural field. As we will establish in this

paper, one advantage of neural field theory is that

analytical methods can be used to derive conditions

for the existence and stability of traveling waves, and

to derive formulae relating the wave speed to various

neurophysiological parameters.

Let u(x, t) and v(x, t) denote the activity of the left

and right eye networks at position x ∈ R at time t. The

Fig. 2 Schematic diagram of network architecture consisting of
two one-dimensional neural fields. Suppose that the left eye is
shown a 135 degree grating and the right eye is shown a 45

degree grating. Then one of the neural fields represents the
activity of neurons tuned to 135 degree orientations in the left
eye, whilst the other neural field represents the activity of neu-
rons tuned to 45 degree orientations in the right eye. Recurrent

connections within each one-dimensional network are assumed
to be excitatory, whereas connections between the two networks
are inhibitory (cross-inhibition). The excitatory and inhibitory
weight distributions are taken to be Gaussians. Slow adaptation
is incorporated into the model by taking the network connections
to exhibit synaptic depression
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associated neural field equations are taken to be of the

form

τ
∂u(x, t)

∂t
= − u(x, t) + Iu(x, t)

+
∫ ∞

−∞
we(x − x′)qu(x′, t) f (u(x′, t)))dx′

−
∫ ∞

−∞
wi(x − x′)qv(x′, t) f (v(x′, t)))dx′

(2.1a)

τs

∂qu(x, t)

∂t
= 1 − qu(x, t) − βqu(x, t) f (u(x, t)), (2.1b)

and

τ
∂v(x, t)

∂t
= − v(x, t) + Iv(x, t)

+
∫ ∞

−∞
we(x − x′)qv(x′, t) f (v(x′, t)))dx′

−
∫ ∞

−∞
wi(x − x′)qu(x′, t) f (u(x′, t)))dx′,

(2.2a)

τs

∂qv(x, t)

∂t
= 1 − qv(x, t) − βqv(x, t) f (v(x, t)). (2.2b)

The nonlinear function f represents the mean firing

rate of a local population and is usually taken to be a

smooth, bounded monotonic function such as a sigmoid

f (u) =
1

1 + e−η(u−κ)
, (2.3)

with gain η and threshold κ . However, in order to derive

explicit traveling wave solutions, it will be convenient

to consider the high gain limit η → ∞ of Eq. (2.3)

such that f becomes a Heaviside function (Amari 1977;

Pinto and Ermentrout 2001; Coombes and Owen 2004)

f (u) = H(u − κ) =
{

0 if u < κ

1 if u > κ.
(2.4)

The distribution we of excitatory connections between

neurons of the same eye preference and the distribu-

tion of cross-inhibitory connections between neurons

of the opposite eye preference are both taken to be

Gaussians:

we(r) =
ae√

2πσ 2
e

e
− r2

2σ2
e , wi(r) =

ai√
2πσ 2

i

e
− r2

2σ2
i (2.5)

We assume that at baseline excitatory connections are

longer range than inhibitory connections,1 σe > σi and

fix length scales by setting σe = 2 and σi = 1 at baseline.

We expect excitatory connections to span a cortical

hypercolumn so that σe will be of the order 200 µm.

We also fix the temporal scale of the network by setting

the membrane time constant τ = 1; the membrane time

constant is typically around 10 ms. Depressing synapses

are incorporated into the model in the form of the

presynaptic scaling factors qu, qv evolving according

to Eqs. (2.1b) and (2.2b). These scaling factors can

be interpreted as a measure of available presynaptic

resources, which are depleted at a rate proportional to

βqf (Tsodyks et al. 1998; Tabak et al. 2000; Bart et al.

2005), and are recovered on a timescale specified by the

constant τs. Specifically, we will study the effect of slow

short term synaptic depression (experimentally shown

to recover over 5–10 s (Varela et al. 1997; Chance et al.

1998)). Slow short term synaptic depression has been

implicated as a mechanism for contrast adaptation in

V1, due to its comparable recovery timescale of 5–

10 s (Varela et al. 1997). Thus, there is evidence for

participation of this slower depression in processes of

V1 in addition to faster short term synaptic depression,

which recovers on timescales of roughly 200–800 ms

(Abbott et al. 1997; Varela et al. 1997). Finally, we

take Iu, Iv to represent the effective strength of the left

and right eye stimuli, respectively. Recall that we are

only modeling neurons whose orientation preference

coincides with the corresponding stimulus orientation

so that we can take the unperturbed network to have

constant homogeneous inputs. (The induction of travel-

ing waves requires locally perturbing one of the inputs).

3 Travelling waves

3.1 Non-depressing synapses (β = 0)

In our simplified model, we interpret the binocular

rivalry wave seen in the experiments of Kang et al.

1From a mathematical perspective, it would also be possible to
generate waves when the cross-inhibition is longer range than the
excitatory connections, see Fig. 4. Which form is more realistic
from the biological perspective depends on which classes of
neurons are being taken into account by the neural field model.
For example, in visual cortex it is known that excitatory pyra-
midal cells make both local synaptic contacts as well as longer-
range horizontal connections. However, the latter innervate both
excitatory and local inhibitory neurons so they could have a
net inhibitory effect, thus providing a possible source of long-
range inhibition; whether long-range connections generate net
excitation or net inhibition also depends on stimulus conditions
(Lund et al. 2003).
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(2009, 2010) as a traveling wave front solution of the

neural field equations (2.1) and (2.2), in which a high

activity state invades the suppressed left eye network,

say, whilst retreating from the dominant right eye net-

work. Let us begin by ignoring the effects of synaptic

depression, that is, we set β = 0 and qu = qv ≡ 1. We

also assume that both inputs have the same strength

or contrast so that Iu = Iv = I. We then obtain the

reduced system of equations (for τ = 1 and f given by

the Heaviside (2.4))

∂u

∂t
+ u =

∫ ∞

−∞
we(x − x′)H(u(x′, t) − κ)dx′

−
∫ ∞

−∞
wi(x − x′)H(v(x′, t) − κ)dx′ + I,

(3.1)

and

∂v

∂t
+ v =

∫ ∞

−∞
we(x − x′)H(v(x′, t) − κ)dx′

−
∫ ∞

−∞
wi(x − x′)H(u(x′, t) − κ)dx′ + I.

(3.2)

Given that the differential operator D = ∂
∂t

+ 1 has a

Green’s function given by G(t, s) = η(t − s) with

η(t) =

{
0 t < 0

e−t t > 0,

we can re-write the above equations in purely integral

form:

u(x, t) = I +
∫ ∞

0

η(s)Ge[u](x, t − s)ds

−
∫ ∞

0

η(s)Gi[v](x, t − s)ds (3.3)

v(x, t) = I +
∫ ∞

0

η(s)Ge[v](x, t − s)ds

−
∫ ∞

0

η(s)Gi[u](x, t − s)ds (3.4)

where

Gp[u](x, t) =
∫ ∞

−∞
wp(y)H(u(x − y, t) − κ)dy (3.5)

for p = e, i.

Homogeneous fixed point solutions (U∗, V∗) of

Eqs. (3.3) and (3.4) satisfy the pair of equations

U∗ = ae H(U∗ − κ) − ai H(V∗ − κ) + I

V∗ = ae H(V∗ − κ) − ai H(U∗ − κ) + I,

where we have used the normalization of the Gaussians

(2.5)

∫ ∞

−∞
we(x)dx = ae,

∫ ∞

−∞
wi(x)dx = ai. (3.6)

There are a maximum of four possible fixed point

solutions, all of which are stable. First, there is the off

state U∗ = V∗ = I, which occurs when I < κ , that is,

the input is not strong enough to directly activate either

population. Second there is the on-state or fusion state

U∗ = V∗ = ae − ai + I, which occurs when I > κ + ai −
ae. This case is more likely when recurrent excitation

is strong or cross-inhibition is weak. Finally, there are

two winner-take-all (WTA) states in which one pop-

ulation dominates the other: the left eye dominant

state (U∗, V∗) = XL ≡ (ae + I, I − ai) and the right eye

dominant state (U∗, V∗) = XR ≡ (I − ai, ae + I). These

states exist when I > κ − ae and I < κ + ai.

Let us now consider a traveling wave front solution

of the form

u(x, t) = U(x − ct), v(x, t) = V(x − ct)

where c is the wave speed and ξ = x − ct is a traveling

wave coordinate. We assume that

(U(ξ), V(ξ)) → XL as ξ → −∞,

(U(ξ), V(ξ)) → XR as ξ → ∞

with U(ξ) a monotonically decreasing function of ξ

and V(ξ) a monotonically increasing function of ξ .

It follows that if c > 0 then the wavefront represents

a solution in which activity invades a supressed left

eye network and retreats from a dominant right eye

network. Substituting the traveling front solution into

Eqs. (3.3) and (3.4) gives

U(ξ) = I +
∫ ∞

0

η(s)Ĝe[U](ξ + cs)ds

−
∫ ∞

0

η(s)Ĝi[V](ξ + cs)ds

V(ξ) = I +
∫ ∞

0

η(s)Ĝe[V](ξ + cs)ds

−
∫ ∞

0

η(s)Ĝi[U](ξ + cs)ds.

where

Ĝp[U](ξ) =
∫ ∞

−∞
wp(y)H(U(ξ − y) − κ)dy, p = e, i

Given the asymptotic behavior of the solution and

the requirements of monotonicity, we see that U(ξ)
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and V(ξ) each cross threshold at a single location,

which may be different for the two eyes. Exploiting

translation invariance we take U(0) = κ and V(ξ0) =
κ . These threshold crossing conditions imply that the

above equations simplify further according to

U(ξ)=
∫ ∞

0

η(s)

[∫ ∞

ξ+cs

we(y)dy −
∫ ξ−ξ0+cs

−∞
wi(y)dy

]
ds + I

(3.7)

V(ξ)=
∫ ∞

0

η(s)

[∫ ξ−ξ0+cs

−∞
we(y)dy −

∫ ∞

ξ+cs

wi(y)dy

]
ds + I.

(3.8)

It is convenient to introduce the function

�ξ0
(z) =

∫ ∞

z

we(y)dy −
∫ z−ξ0

−∞
wi(y)dy. (3.9)

Exploiting the fact that the Gaussian weight distribu-

tions we(y) and wi(y) are even functions of y, it can be

seen that

�ξ0
(ξ0 − z) =

∫ z−ξ0

−∞
we(y)dy −

∫ ∞

z

wi(y)dy,

so that Eqs. (3.7) and (3.8) can be rewritten in the more

compact form

U(ξ) =
∫ ∞

0

η(s)�ξ0
(ξ + cs)ds + I (3.10)

V(ξ) =
∫ ∞

0

η(s)�ξ0
(ξ0 − ξ − cs) + I. (3.11)

Finally, imposing the threshold conditions U(0) =
V(ξ0) = κ gives

κ =
∫ ∞

0

η(s)�ξ0
(cs)ds + I, (3.12)

κ =
∫ ∞

0

η(s)�ξ0
(−cs)ds + I. (3.13)

It is now straightforward to show that a traveling

front solution cannot exist for the neural field model

without adaptation given by Eqs. (3.1) and (3.2). For

subtracting Eq. (3.13) from Eq. (3.12) implies that
∫ ∞

0

η(s)
[
�ξ0

(cs) − �ξ0
(−cs)

]
ds = 0, (3.14)

which does not have a solution for any c, ξ0 such that

c �= 0. The latter follows from Eq. (3.9), which shows

that for c �= 0,

c
[
�ξ0

(cs) − �ξ0
(−cs)

]

= −c

∫ cs

−cs

we(y)dy − c

∫ cs−ξ0

−cs−ξ0

wi(y)dy < 0

whereas η(s) > 0 for all s ∈ [0, ∞). The non-existence

of traveling fronts is consistent with the observation

that in the absence of any cross inhibition (wi ≡ 0), the

system reduces to two independent one-dimensional

neural fields with excitatory connections. In order to

construct a front solution that simultaneously invades

one network whilst retreating from the other we would

require a one dimensional excitatory neural field to

be able to support a pair of counter-propagating front

solutions with speeds ±c, which is not possible (Amari

1977). Therefore, some mechanism must be introduced

that breaks the exchange symmetry of the two one-

dimensional networks. One way to break the symmetry

would be to take the input strengths of the left and

right eye stimuli to be sufficiently different, Iu �= Iv .

However, this case can be excluded, since rivalry waves

are still observed experimentally when both inputs are

of equal strength. Moreover, a traveling front could

only travel in one direction, depending on the sign of

IL − IR. Therefore, we consider an alternative mecha-

nism based on slow synaptic depression.

3.2 Slow synaptic depression (β > 0, τs ≫ 1)

Let us now consider the full neural field model with

depressing synaptic connections given by Eqs. (2.1)

and (2.2) with f (u) = H(u − κ). As in the case β = 0,

there are four possible homogeneous fixed points cor-

responding to an off-state, a fusion state and two WTA

states, and all are stable. Denoting a homogeneous

fixed point by (U∗, V∗, Q∗
u, Q∗

v), we have

U∗ = Q∗
uae H(U∗ − κ) − Q∗

vai H(V∗ − κ) + I

Q∗
u =

1

1 + β H(U∗ − κ)

V∗ = Q∗
vae H(V∗ − κ) − Q∗

uai H(U∗ − κ) + I

Q∗
v =

1

1 + β H(V∗ − κ)

with ae, ai given by Eq. (3.6). Hence, the fusion state is

now

(U∗, V∗) =
(

ae − ai

1 + β
+ I,

ae − ai

1 + β
+ I

)
,

(Q∗
u, Q∗

v) =
(

1

1 + β
,

1

1 + β

)
, (3.15)

and occurs when I > κ − (ae − ai)/(1 + β). This case

is more likely for very strong depression (β large),

since cross inhibition will be weak, or when the local
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connections are strong and excitation-dominated. The

left eye dominant WTA state now takes the form

(U∗, V∗) =
(

ae

1 + β
+ I, I −

ai

1 + β

)
,

(Q∗
u, Q∗

v) =
(

1

1 + β
, 1

)
(3.16)

whereas the right eye dominant WTA state becomes

(U∗, V∗) =
(

I −
ai

1 + β
,

ae

1 + β
+ I

)
,

(Q∗
u, Q∗

v) =
(

1,
1

1 + β

)
(3.17)

The WTA states exist provided that

I > κ −
ae

1 + β
, I < κ +

ai

1 + β

This will occur in the presence of weak depression (β

small) and strong cross-inhibition such that depression

cannot exhaust the dominant hold one population has

on the other. Previously, we have shown that Eqs.

(2.1) and (2.2) also support homogeneous limit cycle

oscillations in which there is periodic switching between

left and right eye dominance consistent with binocular

rivalry (Kilpatrick and Bressloff 2010). Since all the

fixed points are stable, it follows that such oscillations

cannot arise via a standard Hopf bifurcation. Indeed,

we find bistable regimes where a rivalry state coexists

with a fusion state as illustrated in Fig. 3. (Such behav-

ior persists in the case of smooth sigmoid firing rate

0.1 0.2 0.3
-0.4

-0.2

0

0.2

0.4

input I

u

WTA

fusion

rivalry

Off

Fig. 3 Bifurcation diagram showing homogeneous solutions for
the left population activity u as a function of the input amplitude
I. Solid lines represent stable states, whereas circles represent
the maximum and minimum of rivalrous oscillations. It can be
seen that there are regions of off/WTA bistability, WTA/fusion
bistability, and fusion/rivalry bistability. Parameters are τs = 500,
κ = 0.05, β = 5, ae = 0.4 and ai = 1

functions, at least for sufficiently high gain (Kilpatrick

and Bressloff 2010)).

Suppose that the full system given by Eqs. (2.1) and

(2.2) is initially in a stable right eye dominated WTA

state, and is then perturbed away from this state by

introducing a propagating front that generates a switch

from right to left eye dominance. We further assume

that over a finite spatial domain of interest the time

taken for the wave front to propagate is much smaller

than the relaxation time τs of synaptic depression. Thus,

to a first approximation we can ignore the dynamics of

the depression variables and assume that they are con-

stant, that is, (qu(x, t), qv(x, t)) = (Qu, Qv) with Qu = 1

and Qv = (1 + β)−1. A similar adiabatic approximation

can also be made if the network is in a binocular rivalry

state, provided that (a) the duration of wave propaga-

tion is short compared to the natural switching period

and (b) the induction of the wave does not occur close

to the point at which spontaneous switching occurs. In

this case Qu and Qv will not be given by the WTA

solution, but we can assume that Qu �= Qv . Under the

adiabatic approximation, we obtain a slightly modified

version of Eqs. (3.3) and (3.4) given by

u(x, t) = I + Qu

∫ ∞

0

η(s)Ge[u](x, t − s)ds

− Qv

∫ ∞

0

η(s)Gi[v](x, t − s)ds (3.18)

v(x, t) = I + Qv

∫ ∞

0

η(s)Ge[v](x, t − s)ds

− Qu

∫ ∞

0

η(s)Gi[u](x, t − s)ds. (3.19)

with Ge,i given by Eq. (3.5). The analysis of the ex-

istence of a traveling wave front solution proceeds

along identical lines to Section 3.1, except that now the

asymptotic states take the form

XL = (Quae + I, I − Qvai),

XR = (I − Quai, Qvae + I).

We thus obtain the following modified threshold

conditions:

κ =
∫ ∞

0

η(s)�ξ0
(cs)ds + I, (3.20)

κ =
∫ ∞

0

η(s)�ξ0
(−cs)ds + I, (3.21)
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with � and � defined by

�ξ0
(z) = Qu

∫ ∞

z

we(y)dy − Qv

∫ z−ξ0

−∞
wi(y)dy. (3.22)

�ξ0
(z) = Qv

∫ ∞

z

we(y)dy − Qu

∫ z−ξ0

−∞
wi(y)dy. (3.23)

It can be seen that synaptic depression breaks the

symmetry of the consistency equations, and this will

allow us to find solutions for c, ξ0 and thus establish the

existence of traveling front solutions.

3.3 Calculation of wave speed

In order to establish the existence of a wave speed c and

a threshold crossing point ξ0, define the functions

F1(c, ξ0) =
∫ ∞

0

η(s)�ξ0
(cs)ds (3.24)

and

F2(c, ξ0) =
∫ ∞

0

η(s)�ξ0
(−cs)ds. (3.25)

Evaluating the integrals using Eqs. (2.5), (3.22), (3.23)

and η(s) = e−s gives (for c > 0)

F1(c, ξ0) =
ae Qu

2

(
1 − e

σ2
e

2τ2

f
c2

Erfc

[
σe√
2τ f c

])

−
ai Qv

2

⎛
⎝Erfc

[
ξ0√
2σi

]
− e

σ2
i

−2τ f cξ0

2τ2

f
c2

× Erfc

[
σ 2

i − τ f cξ0√
2σiτ f c

] ⎞
⎠ (3.26)

F2(c, ξ0) =
ae Qv

2

(
1 + e

σ2
e

2τ2

f
c2

Erfc

[
σe√
2τ f c

])

−
ai Qu

2

⎛
⎝Erfc

[
ξ0√
2σi

]
− e

σ2
i

+2ξ0τ f c

2τ2

f
c2

× Erfc

[
σ 2

i + ξ0τ f c
√

2σiτ f c

] ⎞
⎠ (3.27)

where

Erfc(x) =
2

√
π

∫ ∞

x

e−t2

dt

is the complementary error function. Subtracting Eq.

(3.21) from Eq. (3.20), we then have the implicit

equation

G(c, ξ0) ≡ F1(c, ξ0) − F2(c, ξ0) = 0. (3.28)

It is straightforward to show that for fixed ξ0,

lim
c→∞

G(c, ξ0) > 0, lim
c→−∞

G(c, ξ0) < 0.

Hence, the intermediate value theorem guarantees at

least one solution c = c(ξ0), which is differentiable

by the implicit function theorem. If Qu = Qv , then

F1(0, ξ0) = F2(0, ξ0) and the only point where G van-

ishes is at c = 0. On the other hand, if Qv �= Qu then

G(0, ξ0) �= 0 for all finite ξ0 so that c(ξ0) �= 0. Given a

solution c = c(ξ0) of Eq. (3.28), the existence of a trav-

eling wavefront solution reduces to the single threshold

condition

κ = F1(c(ξ0), ξ0) + I. (3.29)

We find that there exists a unique traveling front solu-

tion for a range of values of κ .

In Figs. 4 and 5, we plot wave speed as a function

of various model parameters. We choose baseline pa-

rameter values such that spontaneous oscillations and

traveling fronts co-exist, as found experimentally (Kang

et al. 2009, 2010). The model wave speed is of the order

c = 1 in dimensionless units, that is, c = σe/2τ where

σe is the range of excitation and τ is the membrane

time constant. In the psychophysical experiments of

Kang et al. (2009, 2010), it was found that binocular

rivalry waves took approximately 0.8 s to traverse 2

degrees of the visual field. The magnification factor

in humans throughout the foveal region is approxi-

mately 0.4 cm/deg, which corresponds to 0.8 cm of

cortex. Hence the wave speed we would expect to see

in cortex based on the psychophysical experiments is

approximately 10 mm/s. This is consistent with our

analytical results, if we take σe to be of the order 200 µm

and τ to be of the order 10 ms. Figure 4 shows that

increasing the strength of excitation (cross-inhibition)

increases (decreases) the speed of the wave, whereas

Fig. 5(a) shows that the speed of the wave decreases as

the threshold κ increases. However, these parameters

cannot be manipulated in psychophysical experiments.

On the other hand, it is possible to vary the contrast

of the sinusoidal grating stimuli. For example, Kang

et al. (2009, 2010) showed that increasing the stimulus

contrast increases wave speed. This is consistent with

Fig. 5(b), which plots wave speed as a function of input
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Fig. 4 Plot of wave speed c as a function of various weight
parameters: (a, b) the amplitudes ae, ai and (c, d) the length
constants σe, σi. The default parameters are taken to be ai =
1, ae = 0.4, σi = 1, σe = 2, β = 5, κ = 0.05, I = 0.24, Qu = 0.42,

Qv = 0.25 and the corresponding wave speed is c = 1.2. For this
set of parameters, the network operates in a regime that supports
both traveling waves and homogeneous oscillatory solutions, that
is, spontaneous switching occurs in the absence of traveling waves
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Fig. 5 (a–c) Plot of wave speed c as a function of (a) the threshold
κ , (b) the external input strength I and (c) �Q where Qu =
Q0 + �Q, Qv = Q0 − �Q with Q0 = 0.335. (d) Plot of right–
moving traveling front solution in which a high activity state

invades the suppressed left eye network whilst retreating from
the dominant right eye network. Parameters are at the baseline
values of Fig. 4 unless specified otherwise
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amplitude I. Another variable that could be manipu-

lated is the time at which a rivalry wave is induced

relative to the phase of the limit cycle representing

spontaneous rivalry oscillations. In our model, under

the adiabatic approximation, this would correspond to

changing the values of Qu and Qv . In Fig. 5(c) we plot

wave speed as a function of �Q = (Qu − Qv)/2 with

Qu + Qv fixed. It can be seen that c increases with �Q,

which is analogous to inducing a wave closer to the

point at which spontaneous switching would occur (see

also Section 4). Note that in the experimental protocol

of Kang et al. (2009, 2010), see Fig. 1, the wave speed is

determined after averaging with respect to the switch-

ing events induced by a sequence of periodic trigger

stimuli rather than a single triggering event. In terms

of our model, this would correspond to averaging the

wave speed with respect to a range of values of Qu and

Qv , since spontaneous binocular rivalry oscillations are

actually noisy. Hence, the dependence of wave speed

on the timing of the inducing stimuli relative to the

phase of spontaneous oscillations is effectively reduced.

However, Kang et al. did find that there is an optimal

trigger period for inducing reliable switching that de-

pends on the natural period of spontaneous oscillations.

It is likely that this phase-locking phenomenon reflects

some residual dependence of wave propagation on the

relative timing of the trigger stimuli. Finally, a typical

example of a wavefront profile is shown in Fig. 5(d).

Note that the symmetry breaking mechanism necessary

to support wave propagation is reflected by the fact that

limξ→−∞ U(ξ) > limξ→∞ V(ξ). That is, the initial activ-

ity in the dominant right eye is depressed compared to

the final activity in the dominant left eye (under the

adiabatic approximation).

3.4 Wave stability

In order to determine wave stability, we linearize

Eqs. (3.18) and (3.19) around the traveling wave solu-

tion (U(ξ), V(ξ)) with Qu, Qv fixed. Writing u(x, t) =
U(ξ) + r(ξ)eλt and v(x, t) = V(ξ) + p(ξ)eλt, we obtain

the linear system

r(ξ) = Qu

∫ ∞

0

η(s)

∫ ∞

−∞
we(y)r(ξ + cs − y)e−λs

× δ(U(ξ + cs − y) − κ)dyds

− Qv

∫ ∞

0

η(s)

∫ ∞

−∞
wi(y)p(ξ + cs − y)e−λs

× δ(V(ξ + cs − y) − κ)dyds

p(ξ) = Qv

∫ ∞

0

η(s)

∫ ∞

−∞
we(y)p(ξ + cs − y)e−λs

× δ(V(ξ + cs − y) − κ)dyds

− Qu

∫ ∞

0

η(s)

∫ ∞

−∞
wi(y)r(ξ + cs − y)e−λs

× δ(U(ξ + cs − y) − κ)dyds,

where δ(U − κ) denotes the Dirac delta function. Using

the threshold conditions U(0) = κ , V(ξ0) = κ and a

property of Dirac delta functions, we have

δ(U(ξ) − κ) =
δ(ξ)

|U ′(0)|
,

δ(V(ξ) − κ) =
δ(ξ − ξ0)

|V ′(ξ0)|
(3.30)

Hence,

r(ξ) = Qu

∫ ∞

0

η(s)we(ξ + cs)
r(0)

|U ′(0)|
e−λsds

−Qv

∫ ∞

0

η(s)wi(ξ + cs − ξ0)
p(ξ0)

|V ′(ξ0)|
e−λsds

(3.31)

p(ξ) = Qv

∫ ∞

0

η(s)we(ξ + cs − ξ0)
p(ξ0)

|V ′(ξ0)|
e−λsds

−Qu

∫ ∞

0

η(s)wi(ξ + cs)
r(0)

|U ′(0)|
e−λsds.

(3.32)

Introducing an appropriate norm on the space of func-

tions (r(ξ), p(ξ)), the linear equations (3.31) and (3.32)

generate a well defined spectral problem. In particular,

the discrete spectrum of eigenvalues λ is obtained by

finding solutions r(ξ) and p(ξ) that decay sufficiently

fast as |ξ | → ∞—the rate of decay is determined by

the weight functions we, wi. These eigensolutions can

be found by setting ξ = 0 in Eq. (3.31) and ξ = ξ0 in

Eq. (3.32), and solving the resulting self-consistency

equations for r(0) and p(ξ0):

(
r(0)

p(ξ0)

)
=

(
QuŴe(λ,0)

|U ′(0)| − Qv Ŵi(λ,−ξ0)

|V ′(ξ0)|

− QuŴi(λ,ξ0)

|U ′(0)|
Qv Ŵe(λ,0)

|V ′(ξ0)|

)(
r(0)

p(ξ0)

)

where

Ŵp(λ, ξ) =
∫ ∞

0

η(s)wp(cs + ξ)e−λsds
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for p = e, i. The self-consistency equation has a non-

trivial solution provided that λ is a zero of the function

E(λ) = det

(
QuŴe(λ,0)

|U ′(0)| − 1 − Qv Ŵi(λ,−ξ0)

|V ′(ξ0)|

− QuŴi(λ,ξ0)

|U ′(0)|
Qv Ŵe(λ,0)

|V ′(ξ0)| − 1

)

We identify E(λ) with the so-called Evans function of

the traveling wave solution (Zhang 2003; Coombes and

Owen 2004; Sandstede 2007). That is, the complex num-

ber λ is an eigenvalue of the linear system if and only if

E(λ) = 0. Moreover, the algebraic multiplicity of each

eigenvalue is equal to the order of the corresponding

zero of the Evans function. It can be shown that E(λ)

is analytic in λ and thus normal numeric root finding

may be used to find λ. The wave will be linearly stable

if all non-zero eigenvalues λ have negative real part

and λ = 0 is a simple eigenvalue. The existence of a

zero eigenvalue reflects translation invariance of the

dynamical system given by Eqs. (3.18) and (3.19). (Note

that there is also a continuous part of the spectrum, but

this always lies in the left-half complex λ-plane and thus

does not contribute to any wave instabilities (Coombes

and Owen 2004; Sandstede 2007)). Numerically plotting
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Fig. 6 Induction of a solitary binocular rivalry wave. Pa-
rameter values are τs = 800, ai = 1, ae = 0.4, σi = 1, σe = 2, β =
5, κ = 0.05, I = 0.24. (a) Homogeneous oscillatory solution in
which there is spontaneous periodic switching between left and
right eye dominance. Plot against time of the left eye neural
activity u (solid red), the right eye neural activity v (solid blue)
together with the corresponding depression variables qu (dashed

red) and qv (dashed blue). (b, c) Space–time plots of u(x, t) and
v(x, t) following onset of the trigger stimulus to the left eye at

time t0 = 300, which involves a temporary increase in the input
strength Iu from 0.24 to 0.74 within the domain −2 ≤ x ≤ 2.
(The duration of the trigger stimulus is also indicated by the
grey bar in the unperturbed trace of part (a)). Lighter (darker)
colors indicate higher (lower) activity values. The mean wave
speed of the front (calculated numerically)) is c ∼ 2. This is in
good agreement with our analytical results based on taking fixed
depression variables Qu = qu(t0), Qv = qv(t0)
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Fig. 7 Same as Fig. 6 except that τs = 500. Onset of trigger stimulus is at t0 = 200. Both the frequency of spontaneous oscillations and
the speed of the wave are higher with c ∼ 3

the zero sets Re[E[λ]] and Im[E[λ]] for the baseline

parameter values, we find that there exists only a single

eigenvalue (at λ = 0), indicating that the traveling front

is linearly stable. This result persists for other choices of

parameters for which a traveling front exists.

4 Numerical simulations

In our analysis of binocular rivalry waves (Section 3),

we neglected the dynamics of the depression variables

by making an adiabatic approximation. In this section

we numerically solve the full system of Eqs. (2.1) and

(2.2) and show that traveling fronts persist when the

dynamics of the depression variables is included. We

begin by considering a single trigger stimulus in the

form of a temporary, spatially localized increase in the

303 304 305 306 307 308
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6
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10

x

302

t

Fig. 8 Plot of the spatial location x vs. time t of the point at
which u(x, t) = 0.3 (solid curve). Same parameter values as Fig. 6
with onset of trigger stimulus at t0 = 300. There is a latency
period before the wave front reaches the initial location of the
point u = 0.3. The wave front moves with approximately constant
speed that is consistent with the theoretical value as indicated by
the dashed line of constant slope
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Fig. 9 Wavespeed vs phase (solid curve) along one cycle of spon-
taneous oscillations. Here cL (cR) denotes the speed of a wave
induced in the suppressed left (right) eye network. Also shown
are the temporal profiles of the depression variables (dashed

curves). Same parameter values as Fig. 7

input strength to the suppressed eye network, which for

concreteness we take to be the left eye. Thus,

Iu(x, t) = H(t − t0)H(�t + t0 − t)H(�x − |x|)�I + I,

Iv(x, t) = I

where H is again the Heaviside function. The trigger

stimulus is switched on at t = t0 and switched off at
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Fig. 10 Wavespeed and frequency of spontaneous oscillations
covary. Plot of (a) wavespeed c and (b) alternation rate 1

T as
a function of stimulus contrast I. The depression parameters
Qu, Qv are determined by taking the phase θ of stimulus onset
to be θ = 3π/2. All other parameters are given by the baseline
values of Fig. 4

time t = t0 + �t, and consists of an increase in input

strength �I in a region of width 2�x centered about

x = 0. In order for traveling waves to be induced in our

model, the size �x of the excited region has to be of the

order of σe, otherwise the effects of the perturbation

simply die away. This is consistent with the size of per-

turbation used in the experiments by Kang et al. (2009,

2010), which was of size 0.2 degrees, corresponding

to 0.8 mm of cortical tissue. Their perturbations were

shown for 200 ms, similar to the time interval of �t = 10

used in our simulations. Two examples of induced

binocular rivalry waves are shown in Figs. 6 and 7. In

these examples, the wave speed is fast relative to the

frequency of spontaneous oscillations so the depression

variables change very little over the time during which

the wave is traveling. Hence, there is a good match

between properties of the numerically simulated wave

and our analytical results of Section 3. In Fig. 8 we

further illustrate the good agreement between theory
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Fig. 11 Comparison of spontaneous and periodically forced
binocular rivalry oscillations in the presence of noise. The time
evolution of the activity and depression variables are shown
at a fixed spatial location (x = 7). Noise strength σ = 1 and
all other parameter values are as in Fig. 7. Left (right) eye
variables are shown in red (blue) with noise in the depression
variables. (a) Homogeneous oscillatory solution, which shows
some irregularity due to noise in the depression variables.
(b) Periodically triggered alternations in dominance. Onset of
each trigger stimulus is indicated by an arrow. Initial trigger
occurs at t0 = 150 and time between triggers is T0 = 100
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and numerics by plotting the location x vs. time t of

a fixed point in traveling wave coordinates given by

u(x, t) = 0.3. As expected, there is a small variation

in wave speed due to the dynamics of the depression

variables but the mean speed is consistent with theory.

Since the network operates in a regime where spon-

taneous rivalry oscillations occur in the absence of any

trigger stimuli, it follows from our analytical results

(Section 3) that the speed of the induced wave will de-

pend on which phase of the limit cycle the trigger stim-

ulus is initiated. That is, let the time of stimulus onset

be t0 = nT + θT/(2π), where T is the period of spon-

taneous oscillations, n is an integer and 0 ≤ θ < 2π .

Denoting the oscillatory solution of the depression vari-

ables on the limit cycle by {q∗
u(φ), q∗

v(φ)|0 ≤ φ < 2π},
we set Qu = q∗

u(θ), Qv = q∗
v(θ) where Qu, Qv are the

fixed values appearing in Eqs. (3.18) and (3.19) under

the adiabatic approximation. It follows that the wave

speed calculated from Eq. (3.29) is phase-dependent:

c = c(Qu, Qv) = c(θ). An example plot of wave speed
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Fig. 12 Breakdown of mode-locking as noise strength increases.
(a–c) The time evolution of the activity and depression variables
are shown at a fixed spatial location (x = 7) for various noise
strengths: (a) σ = 1, (b) σ = 2, (c) σ = 3. All other parameter
values are as in Fig. 11. Onset of each trigger stimulus is in-
dicated by an arrow. Initial trigger occurs at t0 = 150 and time

between triggers is T0 = 100. (d–f) Corresponding histograms
showing how the change in activity �u = u(x0, t1) − u(x0, t2) at a
fixed location x0 = 7 and two different times (t1 = 450, t2 = 470)
is distributed over multiple trials. Pink (purple) bars indicate
distribution in the presence (absence) of periodic trigger stimuli
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vs phase θ is shown in Fig. 9. We see that a rivalry wave

only exists if the trigger stimulus occurs in the latter

∼ 2

3
of the half-cycle, with faster waves induced closer

to the point of spontaneous switching. Now suppose

that we keep the phase of the trigger stimulus fixed

and determine how both the natural frequency 1/T and

wave speed c vary with stimulus contrast I. The results

are presented in Fig. 10. The wave speed is determined

from Eq. (3.29), whereas the period T is calculated

using the analytical results of Kilpatrick and Bressloff

(2010). It can be seen that faster natural alternation
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Fig. 13 Power spectrum P(ω) = |u(ω)|2 where u(ω) is the
Fourier transform of time varying signal u(x0, t) for x0 = 7: (a)
σ = 1, (b) σ = 2, (c) σ = 3. All other parameters as in Fig. 12

rates lead to faster wave speeds. (Wavespeed and fre-

quency also covary with changes in the depression rate

constant β, for example). Interestingly, an analogous

result was obtained by Kang et al. (2009, 2010), who

found experimentally that traveling waves were faster

for subjects whose natural rate of binocular rivalry

oscillations was higher. However, as noted in Section 3,

the wave speed was averaged over several cycles of trig-

ger stimuli in the psychophysical experiments. Given

the stochastic nature of spontaneous oscillations, we

expect such averaging to reduce the dependence on the

phase θ .

In order to relate our model more closely with the

experimental protocol of Kang et al. (2009, 2010), we

have also carried out simulations of the full model (2.1)

and (2.2) in the presence of additive noise and periodic

trigger stimuli. For the sake of illustration, we introduce

spatially uncorrelated additive white noise terms to the

the dynamical equations for the depression variables

according to

τs

∂qu(x, t)

∂t
= 1 − qu(x, t) − βqu(x, t) f (u(x, t))

+ σξu(x, t) (4.1)

τs

∂qv(x, t)

∂t
= 1 − qv(x, t) − βqv(x, t) f (v(x, t))

+ σξv(x, t) (4.2)

with

〈ξu(x, t)〉 = 〈ξv(x, t)〉 = 0

time t
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Fig. 14 Space–time plots of periodically triggered binocular ri-
valry waves in left eye network for increasing levels of noise: (a)
σ = 1, (b) σ = 2, (c) σ = 3. Red rectangles indicate duration and
spatial extent of trigger stimuli. All other parameters as in Fig. 12
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Fig. 15 Induction of a solitary binocular rivalry wave in the
case of a smooth sigmoidal firing rate function. Gain of sig-
moid is η = 80. Other parameter values are as in Fig. 6. (a)
Homogeneous oscillatory solution in which there is spontaneous
periodic switching between left and right eye dominance. Plot
against time of the left eye neural activity u (solid red), the right
eye neural activity v (solid blue) together with the correspond-
ing depression variables qu (dashed red) and qv (dashed blue).

(b, c) Space–time plots of u(x, t) and v(x, t) following onset of the
trigger stimulus to the left eye at time t0 = 290, which involves
a temporary increase in the input strength Iu from 0.24 to 0.74

within the domain −2 ≤ x ≤ 2. Lighter (darker) colors indicate
higher (lower) activity values. (d) Plot of the spatial location x

vs. time t of the point at which u(x, t) = 0.2 (black curve). The
speed calculated for the Heaviside case is given by the slope of
the straight line (grey curve)

and

〈ξu(x, t)ξu(x′, t′)〉 = δ(x − x′)δ(t − t′),

〈ξv(x, t)ξv(x′, t′)〉 = δ(x − x′)δ(t − t′)

〈ξu(x, t)ξv(x′, t′)〉 = 0.

Furthermore, the inputs Iu and Iv in Eqs. (2.1a) and

(2.2a) take the form

Iu(x, t) = I +
∑

m=0,2,4,...

H(t − t0 − mT0)

× H(�t + t0 + mT0 − t)H(�x − |x|)�I,

Iv(x, t) = I +
∑

m=1,3,5,...

H(t − t0 − mT0)

× H(�t + t0 + mT0 − t)H(�x − |x|)�I

That is, starting at time t = t0, the left and right eye

networks receive a T0-periodic alternating sequence of

trigger stimuli, each of which consists of an enhance-

ment of input strength in the domain |x| < �x that has

duration �t.

Results from numerical simulations of the full model

given by Eqs. (2.1a), (2.2a), (4.1) and (4.2) are shown in

Figs. 11 and 12. It can be seen that if the noise strength

σ is not too large then there is reliable switching be-

tween left and right eye dominance that phase locks

to the periodic trigger stimuli. However, as σ increases

to a value of around σ ≈ 2, phase locking starts to

break down. As a further illustration of how mode-

locking depends on the level of noise, we also plot in

Fig. 12 histograms comparing the spontaneous and

forced distributions of activity �u = u(x0, t1) − u(x0, t2)
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at a fixed location x = x0 and fixed times time t1, t2 over

multiple trials (simulation runs). For a noise strength

σ = 1 it can be seen that mode locking causes a very

strong tendency to be in the completely opposite state

to that without mode locking, whereas for higher noise

strengths σ = 2, 3 the distribution is much wider and

in some situations the forcing did not change the state

from the unforced case (breakdown of mode-locking).

The corresponding power spectrum of the time varying

signal u(x0, t) is plotted in Fig. 13, which shows a broad-

ening of the peak at the forcing frequency ω/2π =
1/T0 = 0.01 as the noise strength increases. Finally, the

disruption of binocular rivalry waves with increasing

noise is illustrated by the space–time plots of the left

network activity variable u(x, t) in Fig. 14.

So far we have taken the firing rate function to be

the Heaviside function (2.4) in order to compare our

numerics with the analysis of Section 3. As in many

previous studies of neural field equations dating back

to Amari (1977), the use of Heavisides allowed us to

construct explicit traveling wave solutions and to derive

an explicit formula for the speed of the wave. However,

it is important to check that the same basic mecha-

nism of wave induction and propagation carries over to

more realistic sigmoidal rate functions. This is indeed

found to be the case, as is illustrated in Fig. 15. The

speed of the wave is more variable than the Heaviside

case but is still comparable in magnitude to theoretical

predictions.

Note on simulations All deterministic simulations

were carried out by discretizing space and solving the

resulting system of ODEs with Mathematica 8.0’s ODE

solver (NDSolve). Discretization of the neural field

model with additive noise generated a system of sto-

chastic ODEs, which were then simulated in C++ code

(with boost and Intel TBB) using the Euler–Maruyama

method.

5 Discussion

In this paper we analyzed a neural field model of binoc-

ular rivalry waves in primary visual cortex. Formulat-

ing the problem in terms of continuum neural field

equations allowed us to study the short time behavior

associated with the propagation of eye dominance from

an analytical perspective. In particular, we established

that in order for traveling waves to exist, a symmetry

breaking mechanism needs to be present. That is, the

equations for the left and right eye networks have to

be different on the time scales during which traveling

waves propagate. We identified one possible mecha-

nism for providing the necessary symmetry breaking,

namely, synaptic depression. However, we expect that

other forms of slow adaptation such as spike frequency

adaptation would also work. We then showed analyti-

cally that for plausible values of biological parameters

such as the range of synaptic interactions and the mem-

brane time constant, we could recover wave speeds

similar to those seen in experiments (Wilson et al. 2001;

Kang et al. 2009, 2010). Moreover, our model exhibited

the expected dependence of wave speed on parameters

that can be experimentally varied, such as stimulus

contrast. It also replicated the experimental finding

that wave speed covaries with the natural frequency

of spontaneous rivalry oscillations. Finally, numerical

simulations of the full system were in good agreement

with our analytical short time scale results in the case

of a Heaviside firing rate function. We also found that

binocular rivalry waves persisted in the case of smooth

sigmoid firing rate functions and in the presence of

additive white noise in the depression variable dynam-

ics. However, mode-locking to periodic trigger stimuli

broke down when the noise strength became too large.

In future work it would be interesting to extend

our neural field model to a more realistic network

topology. Instead of considering one line of neurons

for each eye, we could consider a circle of neurons

for each point in the visual field—this would allow us

to take orientation information into account using an

extension of the coupled ring model (Bressloff et al.

2001; Bressloff and Cowan 2002). We could then in-

vestigate the experimental observation that the speed

of binocular rivalry waves depends on the orientation

of the left and right eye grating stimuli (Wilson et al.

2001). Another important issue that we only partially

addressed in this paper is the role of noise. A number

of recent studies have considered stochastic models

of binocular rivalry and the statistics of dominance

times, but have neglected spatial effects (Moreno-Bote

et al. 2007; Shpiro et al. 2009; Braun and Mattia 2010).

One particularly interesting implication of our work is

that purely noise-driven switching between rivalrous

states in the absence of adaptation cannot by itself

generate rivalry waves. That is, if we were to include

zero mean, spatially uncorrelated additive noise in the

activity equations (3.1) and (3.2) without any adapta-

tion, then this would not be sufficient to break the

exchange symmetry of the left and right eye networks.

Hence, if noise is inadequate as a symmetry-breaking

mechanism, this would argue against studies that favor

a noise-only (or at least noise-dominated) approach

to modeling rivalry (Moreno-Bote et al. 2007; Gigante

et al. 2009). Developing a further understanding of

the combined effects of adaptation, noise and wave
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propagation on periodically triggered switching would

allow us to address relevant issues such as determin-

ing the stimulus trigger period in a noisy system that

gives the highest probability of a dominance switch.

This would add to the results already found in this

paper (such as wave speed variation with phase angle)

that could be experimentally tested and lead to further

refinements of the neural field model.
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