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Abstract The original neural field model of Wilson and Cowan is often interpreted

as the averaged behaviour of a network of switch like neural elements with a distri-

bution of switch thresholds, giving rise to the classic sigmoidal population firing-rate

function so prevalent in large scale neuronal modelling. In this paper we explore the

effects of such threshold noise without recourse to averaging and show that spatial

correlations can have a strong effect on the behaviour of waves and patterns in con-

tinuum models. Moreover, for a prescribed spatial covariance function we explore

the differences in behaviour that can emerge when the underlying stationary distri-

bution is changed from Gaussian to non-Gaussian. For travelling front solutions, in a

system with exponentially decaying spatial interactions, we make use of an interface

approach to calculate the instantaneous wave speed analytically as a series expansion

in the noise strength. From this we find that, for weak noise, the spatially averaged

speed depends only on the choice of covariance function and not on the shape of

the stationary distribution. For a system with a Mexican-hat spatial connectivity we

further find that noise can induce localised bump solutions, and using an interface

stability argument show that there can be multiple stable solution branches.
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1 Introduction

The study of waves, bumps and patterns in models of Wilson–Cowan type [1] is now

a very mature branch of mathematical neuroscience, as discussed in the review by

Bressloff [2], with many practical applications to topics including working mem-

ory, visual processing, and attention. For a recent and comprehensive description of

neural fields and their applications we refer the reader to the book [3]. It is only rel-

atively recently that stochastic effects in neural fields have begun to be considered,

with important applications to problems such as binocular rivalry waves [4] and per-

ceptual switching [5]. These stochastic models are often obtained by considering the

addition of noisy currents (notionally a “Gaussian random noise”) to standard (de-

terministic) neural fields, and the resulting models are cast as stochastic nonlinear

integro-differential equations driven by a Wiener process, such as in [6–14]. A rigor-

ous probabilistic framework in which to study these equations has recently been pro-

vided by Faugeras and Inglis [15]. The analysis of patterns, waves and bumps in such

models has been possible utilising tools from stochastic centre manifold theory (espe-

cially tools for weak noise analysis), Fokker–Planck reductions, and other techniques

from stochastic calculus developed previously for PDEs. For a recent perspective on

this approach the book by Bressloff is a highly valuable resource [16], as well as the

paper by Inglis and MacLaurin [17], which presents a general framework in which to

rigorously study the effect of spatio-temporal noise on travelling wave fronts. Indeed

there is now a quite elegant body of rigorous theory growing up around neural field

models with multiplicative stochastic forcing, as exemplified in the paper by Krüger

and Stannat [18] using multiscale analysis, which moves beyond formal perturbation

methods, to understand front propagation in particular. However, the original work

of Wilson and Cowan suggests that another, perhaps more natural, way to introduce

stochasticity into neural field models is by treating some of the system parameters

as random variables. Indeed, threshold noise in a linear integrate-and-fire model is

able to fit real firing patterns observed in the sensory periphery [19]. The simplicity

of such models is also appealing from a theoretical perspective, and for a threshold

described by an Ornstein–Uhlenbeck process it has recently been shown that analyt-

ical (and non-perturbative) expressions for the first-passage time distribution can be

obtained [20].

To appreciate the original idea of Wilson and Cowan that threshold noise in switch-

ing networks can give rise to a probabilistic interpretation of network dynamics in

terms of a smooth firing-rate function it is enough to consider a simple discrete time

model for the evolution of neural activity xi(t), i = 1, . . . ,N , in a network with con-

nections wij :

xi(t + 1) = H

(∑

j

wijxj (t) − h

)
. (1)

Here H is a Heaviside step function with threshold h. If we now associate a thresh-

old hi with each individual node and treat it as a random variable drawn from a

normalised stationary probability distribution φ(hi) at each time step then we can
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take the ensemble average of the above and find

xi(t + 1) = f

(∑

j

wijxj (t)

)
, (2)

where f (u) =
∫ ∞
−∞ H(u − h)φ(h)dh. Thus we obtain a smooth nonlinear determin-

istic model describing the average behaviour of a set of switch like elements with

random thresholds, with the link between the two determined by the relationship

f ′ = φ. Since φ is a probability distribution, this relationship immediately implies a

monotonically increasing firing-rate function. Given a realisation of the thresholds hi

at some time t , it is of interest to ask how the spatial covariance structure of these

random thresholds affects network dynamics. This is precisely the question we wish

to address in this paper for continuum models of Wilson–Cowan type, in which the

random firing threshold is now described as spatially continuous quenched disorder.

Although we will restrict our attention to a Gaussian covariance function, we shall

consider a broad class of stationary distributions, and present practical techniques

from applied mathematics and statistics for working with non-Gaussian distributions.

Moreover, by working with the Heaviside choice, as in (1), we will be able to build

on the interface approach of Amari [21] to obtain explicit results for travelling fronts

and bumps, and their dependence on the threshold noise structure.

In Sect. 2 we introduce our neural field model of choice, as well as the form of the

stochastic threshold, namely its steady state distribution and spatial covariance struc-

ture. In Sect. 3 we show that, for a given realisation of the threshold, we may use the

Amari interface approach to determine the instantaneous speed of a travelling front.

We further show how to calculate the effects of the quenched spatial disorder arising

from the noisy threshold using a perturbative approach, valid for small deviations of

the threshold from its average value. We extend the approach for fronts to tackle sta-

tionary bumps in Sect. 4, where we also show how to determine the linear stability

of localised solutions. This leads to a prediction that noise can induce multiple stable

bumps, which we confirm numerically. Indeed throughout the paper we use direct

numerical simulations to illustrate the accuracy of all theoretical predictions. Finally

in Sect. 5 we discuss natural extensions of the work in this paper.

2 The Model

For mathematical convenience it is often easier to work with spatially continuous

models rather than lattice models of the type described by (1). We consider a neural

field u = u(x, t) ∈ R, x ∈ [0,L], t ∈ R
+, whose dynamics is given by

∂u

∂t
= −u +

∫ L

0

w
(
|x − y|

)
H

(
u(y, t) − h(y)

)
dy. (3)

The kernel w represents the anatomical connectivity, and we have chosen to include

the nonlinearity within the spatial integration, though activity based models with the

nonlinearity outside the spatial integration may also be considered with the tech-

niques described below (and are qualitatively similar in their behaviour). As it stands
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the model given by (3) is a standard Amari neural field model for the choice that h,

the firing threshold, is a constant function. In this case the model is well known to

support travelling waves, including fronts [22] and localised bump states in systems

with a mixture of excitation and inhibition. For a review of such behaviour see [23],

and for a recent overview of neural field modelling in general see [3].

In this paper we shall consider the case that h is a spatially random function. Given

the wealth of mathematical knowledge for Gaussian disorder it would be highly con-

venient to make this choice for the threshold. However, this is a non-physiological

convenience that we would prefer to avoid. Indeed it is very natural to expect thresh-

old noise to be bounded and unlikely to be best described by a symmetric distribution.

As such we will consider both Gaussian and non-Gaussian disorder and in particular

skewed exponential distributions and distributions with compact support. We shall

explicitly model the random firing threshold h(x) as

h(x) = h0 + ǫg(x), (4)

where h0 > 0 corresponds to the mean of the threshold, and g(x) denotes the

quenched disorder with symmetric, bounded and non-negative spatial covariance

function C(x, y). We shall fix this to be a Gaussian shape such that C(x, y) =
C(|x − y|), with

C(x) = σ 2 exp

(
−π

x2

κ2

)
. (5)

Here κ is the correlation length of the quenched disorder. Note that the variance of the

threshold is given by ǫ2σ 2. There exists a sequence of non-negative real numbers, λm,

m ≥ 1, which are eigenvalues of the covariance operator, associated with a sequence

of eigenfunctions, em, m ≥ 1, according to

∫ L

0

C(x, y)em(y)dy = λmem(x), (6)

that form a complete orthonormal basis so that we may represent g(x) by its

Karhunen–Loève decomposition [24–26]

g(x) =
∞∑

m=1

√
λmαmem(x). (7)

Here the αm are uncorrelated random variables with zero mean and unit variance, i.e.

E(αm) = 0 and E(αmαn) = δmn. The properties of the αm ensure that the Karhunen–

Loève representation captures the first and second moment of g(x) exactly. The latter

result follows from the fact that

C(x, y) = E
([

g(x) −E(g)
][

g(y) −E(g)
])

= E
(
g(x)g(y)

)

=
∑

m,n

√
λmλnem(x)en(y)E(αmαn) =

∑

m

λmem(x)em(y), (8)
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so that C(x, y) has the expected spectral representation. When the correlation length

κ is much smaller than the domain size L, the Karhunen–Loève decomposition of

g(x) for the Gaussian covariance function (5) with periodic boundary conditions can

be very well approximated by [25]

g(x) =
∞∑

m=0

βm

√
λme(1)

m (x) +
∞∑

m=1

γm

√
λme(2)

m (x). (9)

Here we have split the eigenfunctions em(x) in (7) into two sets e1
m(x) and e2

m(x),

which read

e(1)
m (x) =

√
2

L
cos (ωmx), e(2)

m (x) =
√

2

L
sin (ωmx), m ≥ 1, (10)

with λm = σ 2κ exp [−ω2
mκ2/(4π)], ωm = 2πm/L and e

(1)
0 =

√
1/L. Note that we

have

∫ L

0

e(1)
m (x)e(2)

n (x)dx = 0,

∫ L

0

e(i)
m (x)e(i)

n (x)dx = δmn, i = 1,2, (11)

for any n, m. To complete the model setup we need to specify the random co-

efficients βm and γm. They are determined by the local distribution φ(g) of the

quenched disorder g(x). If φ(g) is Gaussian, it suffices to choose the βm and γm as

uncorrelated univariate Gaussian random variables, namely E(βm) = 0 = E(γm) and

E(βmβn) = δmn = E(γmγn). Indeed there is a large variety of methods to simulate

Gaussian disorder including autoregressive-moving-averages [27], circular embed-

ding [28] spectral representations [29] or the Karhunen–Loève decomposition [24–

26]. However, if φ(g) is non-Gaussian, then βm and γm are not described by a scaled

version of φ(g). Thus we require suitable techniques to generate non-Gaussian dis-

order.

Compared to Gaussian statistics, there are only a few methods for simulating non-

Gaussian disorder. Amongst them, translation processes, in which a suitably chosen

Gaussian model is non-linearly mapped to the desired non-Gaussian disorder, and a

Karhunen–Loève decomposition feature most prominently [30, 31]. We have chosen

to employ a Karhunen–Loève decomposition as it is more robust [32], which means

that we may use the same technique for both Gaussian and non-Gaussian disorder.

We implement the method developed in [30] and provide details of the algorithm in

Appendix A, though the main idea is as follows. As a starting point choose uncorre-

lated βm and γm from the probability distribution φ(g) and generate a large number

of samples of the quenched disorder g(x) according to (7). Since the βm and γm are

uncorrelated g(x) possesses the prescribed covariance function C(x, y). However,

the probability distribution of g(x) differs from φ(g). This can be corrected by deter-

mining a new set of the βm and γm, but these βm and γm are now correlated. It is then

possible to decorrelate the βm and γm without changing their statistics, which in turn

ensures that the statistics of g(x) still comply with φ(g). Overall, the method in [30]

provides an iterative scheme such that the probability distribution of g(x) converges
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Fig. 1 Random thresholds. Realisations of the random threshold (left) for a Gaussian (top), shifted ex-

ponential (middle) and bump (bottom) distribution. The middle column shows the probability distribution

of the threshold on the left. The right column depicts the probability distribution of the threshold obtained

from 1000 realisations. Equation (9) was truncated after 50 (top), 32 (middle) and 64 (bottom) terms per

sum, respectively. Parameter values are L = 50, κ = 3 and σ = 0.2 (top), λ = 1, μ = −1 (middle) and

A =
√

2, B = 2, α = 0.5 (bottom)

towards the prescribed distribution φ(g), while keeping the chosen covariance func-

tion exact in every iteration step. In Fig. 1 we show the three types of distribution that

we use to realise threshold values. These are (i) a Gaussian distribution, (ii) a highly

skewed shifted exponential distribution, and (iii) a piecewise linear distribution with

compact support. The precise mathematical form for each of these is given in Ap-

pendix B.

3 Travelling Fronts

As mentioned in Sect. 1 much is now known about the effects of random forcing on

neural field models. As regards travelling fronts the work of Bressloff and Webber

[9] has shown that this can result in ‘fast’ perturbations of the front shape as well

as a ‘slow’ horizontal displacement of the wave profile from its uniformly translat-

ing position. A separation of time-scales method is thus ideally suited to analysing

this phenomenon, though we also note that more numerical techniques based upon

stochastic freezing [33] could also be utilised. In this section we will explore the ef-

fects of quenched or ‘frozen’ threshold noise on the properties of a travelling wave,

and in particular its speed.

For a symmetric choice of synaptic kernel w(x) = w(|x|), which decays exponen-

tially, the one-dimensional model (3) with a constant threshold is known to support

a travelling front solution [22, 23] that connects a high activity state to a low activity
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Fig. 2 Travelling front.

Instance of a travelling front

(blue) for the bump distribution.

The threshold is shown in green.

The red dot indicates the

position x0(t) where

u(x0(t), t) = h(x0(t)).

Equation (9) was truncated after

64 terms per sum. Parameter

values are A =
√

2, B = 2,

α = 0.5, L = 50, κ = 3,

ǫ = 0.05 and h0 = 0.3

state. In this case it is natural to define a pattern boundary as the interface between

these two states. One way to distinguish between the high and the low activity state is

by determining whether u is above or below the firing threshold. When denoting the

position of the moving interface by x0(t), the above notion leads us to the defining

equation

u
(
x0(t), t

)
= h

(
x0(t)

)
. (12)

Here, we are assuming that there is only one point on the interface as illustrated in

Fig. 2, though in principle we could consider a set of points. For the choice (5) we

see that C(x) is differentiable at x = 0, which means that the random threshold is

differentiable in the mean square sense. The differentiation of (12) gives an exact

expression for the velocity of the interface c in the form

c ≡
dx0

dt
=

ut

hx − ux

∣∣∣∣
x=x0(t)

, (13)

which modestly extends the original approach of Amari [21] with the inclusion of the

term for hx . We can now describe the properties of a front solution solely in terms of

the behaviour at the front edge that separates high activity from low, as described in

[34, 35]. To see this, let us consider a right moving front for which u(x, t) > h(x) for

x < x0(t) and u(x, t) ≤ h(x) for x ≥ x0(t). Then we solve (3), dropping transients,

to obtain

u(x, t) =
∫ t

0

e−(t−s)ψ(x, s)ds, ψ(x, t) =
∫ x0(t)

−∞
w(x − y)dy. (14)

Hence,

u
(
x0(t), t

)
=

∫ t

0

dse−(t−s)

∫ ∞

x0(t)−x0(s)

dyw(y). (15)
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For simplicity we make the choice w(x) = exp(−|x|)/2 so that from (14) we find by

differentiation with respect to x that for a right moving wave (for large t)

u
(
x0(t), t

)
= −ux |x=x0(t). (16)

By noting that

ut |x=x0(t) = −h
(
x0(t)

)
+

∫ x0(t)

−∞
w

(
x0(t) − y

)
dy = −h

(
x0(t)

)
+

1

2
, (17)

and inserting (16) and (17) into (13), we find the wave speed c+ of a right moving

wave

c+ =
1 − 2h(x0(t))

2hx(x0(t)) + 2h(x0(t))
. (18)

When we repeat the above derivation for a left moving wave, the wave speed c− is

given by

c− =
1 − 2h(x0(t))

2hx(x0(t)) + 2 − 2h(x0(t))
, (19)

where we used

u
(
x0(t), t

)
= 1 + ux |x=x0(t). (20)

Note that in the case of a constant threshold with h(x) = h0 we obtain c+ =
(1 − 2h0)/(2h0), for h0 < 1/2, and c− = (1 − 2h0)/(2(1 − h0)), for 1/2 < h0 < 1,

which recovers a previous result, as discussed in [16]. If the front is moving to the

right we have an exact expression for the speed (see also [36]):

c(x) =
1 − 2h(x)

2h(x) + 2hx(x)
. (21)

Examples of this relationship are shown in Figs. 3 and 4 where we plot both c(x)

and the instantaneous front velocity extracted from a numerical simulation of (3).

Figure 3 depicts results when the local probability distribution is a Gaussian for two

different values of the correlation length κ , while Fig. 4 illustrates travelling fronts

for thresholds that are locally distributed as a skewed exponential and a bump. We

see excellent agreement between the numerical values and the expression (21).

3.1 Perturbative Calculation of Wave Speed

We can also perturbatively calculate the effects of threshold disorder on the speed of

a travelling front. Substituting (4) into (21) and taking ǫ ≪ 1 we find that

c(x) ≃
1 − 2h0

2h0
−

ǫ

2h0

[
g(x)

h0
+

1 − 2h0

h0
g′(x)

]

+
ǫ2

2h2
0

[
g(x)2 + 2g(x)g′(x) + g′(x)2

h0
− 2g(x)g′(x) − 2g′(x)2

]
, (22)



Journal of Mathematical Neuroscience  (2016) 6:3 Page 9 of 26

Fig. 3 Instantaneous speed of a

travelling front for a Gaussian

threshold distribution. Measured

front speed for a Gaussian

threshold distribution, extracted

from a simulation of (3) (blue);

theoretical value from (21)

(red); and the threshold (4)

(green), for κ = 5 (top) and

κ = 30 (bottom). Equation (9)

was truncated after 50 terms per

sum. Other parameter values are

σ 2 = 1/κ , h0 = 0.3, ǫ = 0.01,

L = 100

where the prime denotes differentiation. We will now take the spatial and ensemble

average of (22). It is convenient to introduce an angle bracket notation to denote spa-

tial averaging according to 〈·〉 ≡
∫ L

0 ·dx/L. We find from (9) that 〈g〉 = β0

√
λ0/L

(since only the constant eigenfunction e
(1)
0 (x) contributes to the integral and all other

terms in (9) integrate to zero because of periodicity) and 〈g′〉 = 0 (because of period-

icity). Hence, the spatial average of c takes the compact form

〈c〉 ≃
1 − 2h0

2h0
−

ǫ〈g〉
2h2

0

+
ǫ2

2h3
0

[〈
g2

〉
+ (1 − 2h0)

〈
g′2〉], (23)

where L〈g2〉 =
∑∞

m=0 β2
mλm +

∑∞
m=1 γ 2

mλm and L〈g′2〉 =
∑∞

m=1 β2
mλmω2

m +∑∞
m=1 γ 2

mλmω2
m. Now taking expectations over the βm and γm we obtain E(〈g〉) = 0,

LE(〈g2)〉 = λ0 + 2
∑∞

m=1 λm and LE(〈g′2)〉 = 2
∑∞

m=1 λmω2
m. Hence, we may con-

struct c = E(〈c〉) as

c ≃
1 − 2h0

2h0
+

ǫ2

h3
0L

[
λ0

2
+

∞∑

m=1

λm + (1 − 2h0)

∞∑

m=1

λmω2
m

]
. (24)
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Fig. 4 Instantaneous speed of a

travelling front for non-Gaussian

threshold distributions.

Measured front speed, extracted

from a simulation of (3) (blue);

theoretical value from (21)

(red); and the threshold (4)

(green) for a shifted exponential

distribution (top) and a bump

distribution (bottom) for κ = 3,

h0 = 0.3 and L = 50.

Equation (9) was truncated after

32 (top) and 64 (bottom) terms

per sum, respectively. Other

parameter values are λ = 1,

μ = −1, ǫ = −0.03 (top) and

A =
√

2, B = 2, α = 0.5,

ǫ = 0.05 (bottom)

This expression gives the lowest order correction term to the expression for speed (for

a right moving wave) when the threshold is constant and takes the value h0. The term

in square brackets in (24) is positive, and thus spatial disorder will always increase

the average speed. This term also increases as the correlation length decreases since

the λm decay more slowly for smaller correlation lengths. Note, however, that the

correction term remains uniformly small since λm ∼ κ for all m when κ ≪ 1.

Figure 5 shows c as a function of ǫ for a Gaussian distribution of threshold values,

as well as results from directly averaging realisations of (21). Here the βm and γm are

randomly chosen from the unit normal distribution. We obtain identical results when

these are uniformly distributed on [−
√

3,
√

3] (i.e. with mean zero and variance 1).

The difference between using bounded distributions for the βm versus unbounded is

that the maximum value of h is then bounded/unbounded. The results based on (24)

are almost identical to those obtained from (21) for small values of ǫ, while minor de-

viations appear as we increase ǫ. In Fig. 6 we plot c as a function of ǫ for the shifted

exponential and bump distribution. In addition, we show results for a Gaussian distri-
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Fig. 5 Mean speed versus ǫ for

a Gaussian threshold

distribution. c as a function of ǫ

for h0 = 0.3. Solid curve: (24);

circles: from averaging (21)

over 1000 realisations per point.

Equation (9) was truncated after

50 terms per sum. Other

parameter values are κ = 5,

σ 2 = 0.2, L = 100

bution with the same variance. We again observe very good agreement between the

small noise expansion (24) and averaging (21) for small values of ǫ. In addition, the

curves for the Gaussian threshold and for the non-Gaussian thresholds obtained from

averaging (21) almost agree, while the expansion (24) yields identical results for both

kinds of threshold noise. The latter is a direct consequence of the bi-orthogonality of

the Karhunen–Loève expansion. Equation (24) only depends on the eigenvalues of

the covariance function and not on the properties of the local distributions.

4 Stationary Bumps

Neural fields of Amari type are known to support spatially localised stationary bump

patterns when the anatomical connectivity function has a Mexican-hat shape. In a one

dimensional spatial model, and in the absence of noise, it is known that pairs of bumps

exist for some sufficiently low value of a constant threshold and that only the wider

of the two is stable [21]. For random forcing it is possible to observe noise-induced

drifting activity of bump attractors, which can be described by an effective diffusion

coefficient (using a small noise expansion) [11] or by an anomalous sub-diffusive

process in the presence of long-range spatio-temporal correlations [37]. However, it

is also known that spatial disorder can act to pin states to certain network locations

by breaking the (continuous) translation symmetry of the system, as described in [38]

for neural field models with heterogeneous anatomical connectivity patterns. It is the

latter phenomenon that we are interested in here, especially since for a disordered

threshold that breaks translational symmetry, it is not a priori obvious how many

bump solutions exist and what their stability properties are.

A one-bump solution q(x) is characterised by a width �, such that for two values

x1 and x2 with � = x2 − x1 we have q(x) ≥ h(x) for x1 ≤ x ≤ x2. Using (3) a one-

bump solution therefore satisfies

q(x) =
∫ x2−x

x1−x

w(y)dy. (25)
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Fig. 6 Mean speed versus ǫ for

non-Gaussian threshold

distributions. c as a function of ǫ

for κ = 0.5, h0 = 0.3, L = 100

for the exponential distribution

(top) and the bump distribution

(bottom). In each panel results

for the non-Gaussian

distribution (dashed blue) are

compared to those for a

Gaussian distribution (solid

green) with the same variance.

Solid/dashed curves: (24); blue

squares (non-Gaussian)/green

circles (Gaussian): from

averaging (21) over 1000

realisations per point.

Equation (9) was truncated after

250 terms per sum. Other

parameter values are λ = 1.66,

μ = −0.6 (top) and A =
√

2,

B = 2, α = 0.5 (bottom)

Note that h(x1) = q(x1) = h(x2) = q(x2) = U(�) with U(�) given by

U(�) =
∫ �

0

w
(
|y|

)
dy. (26)

We can determine the linear stability of bumps by studying the (linearised) evolution

of a perturbation v(x)eλt around the stationary bump q(x). We hence find from (3)

(1 + λ)v(x) =
∫

R

w(x − y)δ
(
q(y) − h(y)

)
v(y)dy (27)

=
w(x − x1)

|Q′(x1)|
v(x1) +

w(x − x2)

|Q′(x2)|
v(x2), (28)

where Q(x) = q(x) − h(x). Demanding that the perturbations at x1,2 be non-trivial

yields the spectral equation det(A − (1 + λ)I2) = 0, where I2 is the identity matrix

in R
2×2 and

A =

[
w(0)

|Q′(x1)|
w(�)

|Q′(x2)|
w(�)

|Q′(x1)|
w(0)

|Q′(x2)|

]
. (29)
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Fig. 7 Widths of stationary

bumps. The left hand side of

(31) (solid) and the right hand

side (dashed), with α = 5,

B = 0.76, β = 3, h0 = 0.05 and

ǫ = 0

The eigenvalues are then given by λ = λ±:

1 + λ± =
1

2

{
TrA±

√
(TrA)2 − 4 detA

}
. (30)

Note further that for h′(x) = 0 we have |Q′(x1)| = |Q′(x2)| = |w(0) − w(�)| and

therefore λ− = 0 as expected from translation invariance.

4.1 Simple Heterogeneity

We first consider a simple form of heterogeneity to present the ideas, and then move

to more general heterogeneity. Suppose w(x) = e−α(1−cosx) − Be−β(1−cosx) and

h(x) = h0 + ǫ cosx, and the domain is [0,2π]. Then we have bumps which have

their maximum at either 0 or π . Suppose the maximum is at 0 and x1 = −a for

0 < a < π . Since we need h(x1) = h(x2) and the threshold is symmetric around 0,

we immediately arrive at x2 = a. To determine a we require U(�) = U(2a) = h(a)

i.e.
∫ 2a

0

e−α(1−cosx) − Be−β(1−cosx) dx = h0 + ǫ cosa. (31)

Choosing α = 5, B = 0.76, β = 3, h0 = 0.05 and ǫ = 0 we have two bump widths,

as shown in Fig. 7 (a = �/2). We find that the larger root is stable and the other is

unstable, and both have a zero eigenvalue as expected. Increasing ǫ from zero breaks

the translational invariance of the system and we obtain 4 bumps for ǫ = 0.01 as

shown in Fig. 8: the two that exist for the homogeneous case (ǫ = 0), now centred

around x = π , and similarly two centred around x = 0. (We no longer restrict to

x1 < 0.)

4.2 General Heterogeneity

We keep w(x) = e−α(1−cosx) − Be−β(1−cosx) and now consider a general h(x) with-

out symmetries. The problem of the existence of a bump is this: given h(x) and a

value of x1, find a value of x2 such that h(x2) = h(x1), and U(�) = U(x2 − x1) =
h(x1), where U(x) is given by (26). This will not happen generically but only at iso-

lated points in the (x1, x2) plane. Thus we need to solve the simultaneous equations

h(x2) = h(x1), (32)

U(x2 − x1) = h(x1), (33)
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Fig. 8 Bump widths and

profiles for a spatially

heterogeneous threshold. Top:

solutions of (32)–(33), where

� = x2 − x1 , for

h(x) = 0.05 + 0.01 cosx. Only

the red solution is stable.

Bottom: bump profiles for the

solutions in the upper panel, and

threshold h(x) (dash-dotted).

The solid bump is stable, all

others (dashed) are unstable.

Parameter values are α = 5,

B = 0.76 and β = 3

and we only search for solutions which satisfy

0 < x1 < 2π and x1 < x2 < x1 + 2π. (34)

We now apply this general concept to the stochastic threshold (9). For each realisation

and set of parameter values we use Newton’s method with 1000 randomly chosen ini-

tial values which satisfy (34). Out of these 1000 initial values, the number of distinct

solutions of (32)–(33) that satisfy (34) is recorded, and their stability is determined

as described above. We then check these solutions to verify that q(x) > h(x) only for

x1 < x < x2. Any that do not satisfy this inequality are discarded.

Typical results for a Gaussian threshold are depicted in Fig. 9 for κ = 1 and

ǫ = 0.01. We see that width values (� ≡ x2 − x1) are clustered around two values

(those corresponding to the homogeneous system) and that the only stable ones are

those with large widths (inherited from the homogeneous case). Two example bumps,

one stable and the other unstable, from Fig. 9 are shown in Fig. 10. Space-time sim-

ulations of (3) using these two bumps as initial conditions are shown in Fig. 11. The

stable bump is stationary, as expected, while the solution starting close to (but not ex-

actly at) the unstable bump rapidly increases in size and then slowly moves towards

a stable solution.
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Fig. 9 Bump widths for a

Gaussian threshold distribution.

Typical sets of solutions of

(32)–(33) for a Gaussian

threshold distribution with

κ = 1, σ = 1 and ǫ = 0.01. Only

those with red dots are stable.

Other parameter values are

σ = 1, α = 5, B = 0.76, β = 3

and h0 = 0.05

Fig. 10 Bumps for a Gaussian

threshold distribution. Stable

(solid) and unstable (dashed)

solutions corresponding to the

two points in Fig. 9 with x1

slightly less than 2. The

threshold is shown dash-dotted.

Parameter values are κ = 1,

ǫ = 0.01, σ = 1, α = 5,

B = 0.76, β = 3 and h0 = 0.05

In Fig. 12 we show the number of solutions of (32)–(33) as well as the number and

fraction of stable solutions as a function of ǫ. While the number of solutions exhibits

an increasing trend, the number of stable solutions decreases, leading to an overall

decrease in the fraction of stable solutions. When lowering the correlation length five

times (Fig. 13), we observe a similar behaviour. Note, however, that the number of

solutions has increased significantly. When we fix ǫ and vary κ the number of so-

lutions decays quickly as shown in Fig. 14. At the same time, the number of stable

solutions remains almost constant, resulting in a strong increase of the fraction of

stable solutions. Overall, we find that varying the amplitude of the threshold hetero-

geneity by changing ǫ more strongly affects solution numbers when κ is small, and

that the value of κ has a significant effect on how many fixed points exist (and a lesser

effect on the number of those which are stable).

A more detailed view on bump solutions with a Gaussian threshold is presented in

Fig. 15, where we show the distribution of � values as a function of ǫ and the pro-

portion which are stable. For ǫ = 0 the probability distribution consists of two delta

functions at the stable and unstable bump, respectively. As ǫ increases two branches

of solutions emerge from the solutions in the homogeneous case, which widen for

larger values of ǫ. Note that as in the homogeneous case, only large-width bumps are

stable.



Page 16 of 26 R. Thul et al.

Fig. 11 Space-time plots of

bumps for a Gaussian threshold

distribution. Simulations of (3)

using as initial conditions the

two different solutions shown in

Fig. 10. Top: stable; bottom:

unstable. Parameter values are

κ = 1, ǫ = 0.01, σ = 1, α = 5,

B = 0.76, β = 3 and h0 = 0.05

When ǫ = 0 bumps only exist below a critical value of h0, and a branch of stable

bumps coalesces with a branch of unstable bumps at this critical value when h0 is

varied. Figure 16 shows results for a Gaussian threshold when we change h0 for

ǫ = 0.002. We again observe two solution branches that only exist below a critical

value of h0. Each solution branch is smeared out compared to the homogeneous limit,

indicating a probability distribution that has a finite and non-zero width.

Using the shifted exponential distribution for the threshold we obtain the results

plotted in Fig. 17. We again observe two solution branches that emerge from the

solutions in the homogeneous case as ǫ increases, with the stable solutions confined

to the upper branch. In contrast to the Gaussian case in Fig. 15 the two solution

branches do not grow symmetrically around the values of the homogeneous case.

This is a manifestation of the highly skewed character of the exponential distribution

compared to the symmetric Gaussian distribution. The probability distribution of the

widths also exhibits much more structure compared to the Gaussian case.

We know that for a Heaviside firing rate, Mexican-hat connectivity, and a con-

stant firing threshold, multibump solutions cannot exist [39]. However, breaking the

translational invariance by using a heterogeneous threshold does allow such solutions

to exist. We show an example of this behaviour in Fig. 18, where the L2 norms of

stable steady states of (3) are shown as a function of h0. Each point corresponds to a
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Fig. 12 Bump solutions as a

function of ǫ for a Gaussian

threshold distribution. Top:

average number of total

solutions (blue) and stable

solutions (green) of (32)–(33)

for a Gaussian threshold

distribution. Bottom: fraction of

solutions which are stable.

Parameter values are α = 5,

B = 0.76, β = 3, h0 = 0.05,

κ = 0.5 and σ 2 = 4

different realisation of h(x) and a different initial condition. We clearly see different

“bands”, each identified with an integer number of bumps in a solution, and the L2

norm of these solutions increases as the number of bumps increases, in the same way

as seen for systems with a smooth firing-rate function and homogeneous threshold

[40–42], or with an oscillatory coupling function [39].

5 Conclusion

In this paper we have explored the role of threshold noise on travelling fronts and

bumps in a simple neural field model with a Heaviside nonlinearity. For a frozen

form of disorder and a given realisation of a spatial threshold the standard rules

of calculus apply and we have exploited the interface approach of Amari to obtain

exact results about solution properties for both existence and stability. The theory

that we have developed is not restricted to any special choice of distribution for de-

scribing the threshold noise, apart from that sample trajectories be differentiable in

the mean square sense. It is worth noting that the stochastic threshold model pre-

sented here is formally equivalent to already published stochastic nonlinear integro-

differential equations with constant threshold [6–14] when we employ the transfor-
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Fig. 13 Bump solutions as a

function of ǫ for a Gaussian

threshold distribution. Top:

average number of total

solutions (blue) and stable

solutions (green) of (32)–(33)

for a Gaussian threshold

distribution. Bottom: fraction of

solutions which are stable.

Parameter values are α = 5,

B = 0.76, β = 3, h0 = 0.05,

κ = 0.1 and σ 2 = 10

mation v(x, t) = u(x, t) − ǫg(x). However, our approach permits the analysis of

strong noise (see e.g. [20]) and hence will allow us to move beyond perturbative

expansions.

Theoretical predictions have been shown to be in excellent agreement with numer-

ical simulations of both Gaussian and non-Gaussian threshold models. As such we

have a viable mathematically tractable model of a noisy neural tissue that would be

of interest to explore in a variety of more neurobiologically relevant scenarios. For

example, temporal correlations in excitability of neural tissue would be expected to

strongly affect wave propagation and could be easily modelled with an appropriate

choice for h = h(x, t). To investigate the consequences for wave speed all that would

be required would be a minimal extension of the formula for interface dynamics (13)

with the replacement of the numerator ut according to ut → ut − ht . Moreover, the

inclusion of a linear adaptation current, as is common for describing spike frequency

adaptation, would allow the study of travelling pulses as well as fronts, building on

the deterministic approach in [43] and more recently in [44] for understanding corti-

cal waves in epilepsy. The work here can also be extended to planar systems, allowing

the study of spiral waves [45] and an investigation of how noise levels could be used

to control the scale and size of a spiral, as suggested in [46]. These are topics of

current investigation and will be reported upon elsewhere.



Journal of Mathematical Neuroscience  (2016) 6:3 Page 19 of 26

Fig. 14 Bump solutions as a

function of κ for a Gaussian

threshold distribution Top:

average number of total

solutions (blue) and stable

solutions (green) of (32)–(33)

for a Gaussian threshold

distribution. Bottom: fraction of

solutions which are stable.

Parameter values are α = 5,

B = 0.76, β = 3, h0 = 0.05,

ǫ = 0.01 and σ 2 = 1/κ
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Appendix A: Non-Gaussian Quenched Disorder

In the following, we will describe the iterative approach that we have used to generate

non-Gaussian quenched disorder. The algorithm is based on [30]. We will use the

more general form of the Karhunen–Loève decomposition in (7). To translate our
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Fig. 15 Probability

distributions of bump widths for

a Gaussian threshold

distribution. Top: log of the

probability density of � values

for a Gaussian threshold

distribution. (White is high,

black low.) Bottom: fraction of

solutions which are stable.

(Black = 0, white = 1.)

Parameter values are α = 5,

B = 0.76, β = 3, h0 = 0.05,

κ = 0.5 and σ 2 = 4

findings for the αm to the βm and γm in (9) we note that this can be achieved by

relabelling, i.e.

{α1, α2, α3, α4, . . .} = {β1, γ1, β2, γ2, . . .}. (35)

In the following it is convenient to introduce the notation α
(k,l)
m , which denotes the

mth expansion coefficient at the kth iteration for the lth realisation of the quenched

disorder. To initialise the scheme, we generate M sets of uncorrelated α
(0,l)
m , l =

1, . . . ,M , drawn from the prescribed non-Gaussian distribution φ(g) shifted to mean

zero and scaled to unit variance. A convenient way for doing this is to use inverse

transform sampling based on the cumulative distribution function Fφ of φ(g). Strictly

speaking the α
(0,l)
m could be generated from any mean zero and unit variance distribu-

tion, but starting with the prescribed distribution φ(g) might speed up convergence.

For numerical purposes, the sum in (7) will only contain N terms. One method to

determine N is to impose the condition

max
y

{∫ ∞

−∞

∣∣∣∣∣C(x, y) −
N∑

m=1

λmem(x)em(y)

∣∣∣∣∣dx

}
< ε, (36)
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Fig. 16 Probability

distributions of bump widths for

a Gaussian threshold

distribution. Top: probability

density of � values for a

Gaussian threshold distribution.

(White is high, black low.) The

deterministic solution is

superimposed in blue. Bottom:

fraction of solutions which are

stable. (Black = 0, white = 1.)

Parameter values are α = 5,

B = 0.76, β = 3, ǫ = 0.002,

κ = 0.5 and σ 2 = 4

i.e. that the maximal L1 norm of the difference between the given covariance function

and its approximation is smaller than some ε > 0. Once N is fixed, each iteration step

proceeds as follows:

1. Generate M samples of the quenched disorder

g(k,l)(x) =
N∑

m=1

√
λmα(k,l)

m em(x), l = 1, . . . ,M, (37)

where g(k,l) denotes the lth realisation of the quenched disorder at the kth itera-

tion. Note that because the α
(k,l)
m are uncorrelated with unit variance, the numerical

error in determining the covariance function only depends on N (to satisfy (8)) and

on M (for high-fidelity averaging).

2. Numerically determine the cumulative distribution function

F̃ (k)
g (y) =

1

M

M∑

l=1

I
(
g(k,l)(x) ≤ y

)
, (38)
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Fig. 17 Probability

distributions of bump widths for

a non-Gaussian threshold

distribution. Logarithm of the

probability of the bump width �

when the local probability

distribution is given by a shifted

exponential and the covariance

function is Gaussian: all bumps

(top), stable bumps (middle),

unstable bumps (bottom).

Parameter values are σ = 1,

μ = −1, λ = 1, N = 32, κ = 1,

L = 2π and h0 = 0.05
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Fig. 18 Multibumps. Top: L2

norm of stable steady states of

(3) for a Gaussian threshold

distribution, with many different

initial conditions, different

realisations of h(x), and various

h0. Solutions indicated by blue

stars are shown in the bottom

panel. Bottom: typical stable

steady states solutions of (3)

with 1, 2 and 3 bumps, for

h0 = 0.03. Their L2 norms

increase as the number of bumps

increases (blue dots in the top

panel). These three solutions

correspond to three different

realisations of h(x). Parameter

values are α = 15, B = 0.76,

β = 9, ǫ = 0.003, κ = 0.5 and

σ 2 = 4

where I represents the indicator function, i.e. I(A) = 1 if A is true, otherwise

I(A) = 0. The cumulative distribution function F̃
(k)
g (y) generally does not agree

with the prescribed function Fφ . The next two steps alleviate this problem.

3. Map the simulated values g(k,l)(x) to follow Fφ :

h(k,l)(x) = F−1
φ ◦ F̃ (k)

g

(
g(k,l)(x)

)
. (39)

4. Compute new values α
(k+1,l)
m as

α(k+1,l)
m =

1
√

λm

∫ L

0

(
h(k,l)(x) −E

(
h(k,l)(x)

))
em(x)dx. (40)

The mean of α
(k+1,l)
m is zero by construction, but the variance is unequal from one

due to (39). Is therefore necessary to scale the α
(k+1,l)
m to have unit variance.

5. While the α
(k+1,l)
m now give rise to the prescribed probability distribution φ(g),

they are correlated due to the mapping in (39). To decorrelate them, we use an

iterative product-moment orthogonalisation technique.

(a) Arrange the values of α
(k+1,l)
m into a (M × N) matrix A, i.e. the mth column

contains the realisations of αm. The goal is to re-arrange each column such
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that correlations between columns are minimised. This is equivalent to having

minimal correlations between draws of the αm.

(b) Compute the N × N covariance matrix C(A) of A.

(c) Because C(A) is positive definite, we can employ a Cholesky decomposition,

i.e. C(A) = GT G. Therefore, the new matrix H = AG−1 is uncorrelated.

(d) Reorder the entries in A to follow the rankings in H .

Repeating the steps (a)–(d) will decrease the correlations of the α
(k+1,l)
m as

required.

Appendix B: Local Probability Distributions

We here provide details of the three zero-mean local probability distributions used in

this study. We consider a Gaussian distribution

φ(x) =
1

√
2πσ 2

exp

[
−

x2

2σ 2

]
, −∞ < x < ∞, σ > 0, (41)

a highly skewed shifted exponential distribution

φ(x) = exp
[
−(λx + 1)

]
, −

1

λ
≤ x < ∞, λ ∈ R, (42)

and a piecewise linear distribution with compact support

φ(x) =

⎧
⎪⎨
⎪⎩

α(L + x), −L ≤ x ≤ −B,

α(L − B), −B ≤ x ≤ B,

α(L − x), B ≤ x ≤ L,

0 < B < L,α > 0. (43)

We refer to the last distribution as bump distribution. By demanding that it is nor-

malised, we find α = 1/(L2 − B2). The variances of the exponential and bump dis-

tribution are given, respectively, by

σ 2
SE =

1

λ2
, σ 2

bu =
L2 + B2

6
. (44)
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