
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1918–1923,

Austin, Texas, November 1-5, 2016. c©2016 Association for Computational Linguistics

Neural Generation of Regular Expressions from Natural Language

with Minimal Domain Knowledge

Nicholas Locascio

CSAIL, MIT

njl@mit.edu

Karthik Narasimhan

CSAIL, MIT

karthikn@mit.edu

Eduardo DeLeon

CSAIL, MIT

edeleon4@mit.edu

Nate Kushman

Microsoft

nate@kushman.org

Regina Barzilay

CSAIL, MIT

regina@csail.mit.edu

Abstract

This paper explores the task of translating nat-

ural language queries into regular expressions

which embody their meaning. In contrast to

prior work, the proposed neural model does

not utilize domain-specific crafting, learning

to translate directly from a parallel corpus.

To fully explore the potential of neural mod-

els, we propose a methodology for collecting

a large corpus1 of regular expression, natural

language pairs. Our resulting model achieves

a performance gain of 19.6% over previous

state-of-the-art models.

1 Introduction

This paper explores the task of translating natu-

ral language text queries into regular expressions

which embody their meaning. Regular expressions

are built into many application interfaces, yet most

users of these applications have difficulty writing

them (Friedl, 2002). Thus a system for automat-

ically generating regular expressions from natural

language would be useful in many contexts. Fur-

thermore, such technologies can ultimately scale to

translate into other formal representations, such as

program scripts (Raza et al., 2015).

Prior work has demonstrated the feasibility of this

task. Kushman and Barzilay (2013) proposed a

model that learns to perform the task from a parallel

corpus of regular expressions and the text descrip-

tions. To account for the given representational dis-

parity between formal regular expressions and natu-

ral language, their model utilizes a domain specific

1The corpus and code used in this paper is available at https:

//github.com/nicholaslocascio/deep-regex

component which computes the semantic equiva-

lence between two regular expressions. Since their

model relies heavily on this component, it cannot

be readily applied to other formal representations

where such semantic equivalence calculations are

not possible.

In this paper, we reexamine the need for such spe-

cialized domain knowledge for this task. Given the

same parallel corpus used in Kushman and Barzi-

lay (2013), we use an LSTM-based sequence to se-

quence neural network to perform the mapping. Our

model does not utilize semantic equivalence in any

form, or make any other special assumptions about

the formalism. Despite this and the relatively small

size of the original dataset (824 examples), our neu-

ral model exhibits a small 0.1% boost in accuracy.

To further explore the power of neural networks,

we created a much larger public dataset, NL-RX.

Since creation of regular expressions requires spe-

cialized knowledge, standard crowd-sourcing meth-

ods are not applicable here. Instead, we employ

a two-step generate-and-paraphrase procedure that

circumvents this problem. During the generate

step, we use a small but expansive manually-crafted

grammar that translates regular expression into nat-

ural language. In the paraphrase step, we rely on

crowd-sourcing to paraphrase these rigid descrip-

tions into more natural and fluid descriptions. Using

this methodology, we have constructed a corpus of

10,000 regular expressions, with corresponding ver-

balizations.

Our results demonstrate that our sequence to se-

quence model significantly outperforms the domain

specific technique on the larger dataset, reaching a

1918

gain of 19.6% over of the state-of-the-art technique.

2 Related Work

Regular Expressions from Natural Language

There have been several attempts at generating reg-

ular expressions from textual descriptions. Early re-

search into this task used rule-based techniques to

create a natural language interface to regular expres-

sion writing (Ranta, 1998). Our work, however,

is closest to Kushman and Barzilay (2013). They

learned a semantic parsing translation model from a

parallel dataset of natural language and regular ex-

pressions. Their model used a regular expression-

specific semantic unification technique to disam-

biguate the meaning of the natural language descrip-

tions. Our method is similar in that we require only

description and regex pairs to learn.r However, we

treat the problem as a direct translation task without

applying any domain-specific knowledge.

Neural Machine Translation Recent advances in

neural machine translation (NMT) (Bahdanau et al.,

2014; Devlin et al., 2014) using the framework of se-

quence to sequence learning (Sutskever et al., 2014)

have demonstrated the effectiveness of deep learn-

ing models at capturing and translating language se-

mantics. In particular, recurrent neural networks

augmented with attention mechanisms (Luong et

al., 2015) have proved to be successful at handling

very long sequences. In light of these successes, we

chose to model regular expression generation as a

neural translation problem.

3 Regex Generation as Translation

We use a Recurrent Neural Network (RNN) with at-

tention (Mnih et al., 2014) for both encoding and

decoding (Figure 1).

Let W = w1, w2...wm be the input text descrip-

tion where each wi is a word in the vocabulary. We

wish to generate the regex R = r1, r2, ...rn where

each ri is a character in the regex.

We use Long Short-Term Memory

(LSTM) (Hochreiter and Schmidhuber, 1997)

cells in our model, the transition equations for

which can be summarized as:

it = σ(U (i)xt + V (i)ht−1 + b(i)),

ft = σ(U (f)xt + V (f)ht−1 + b(f)),

ot = σ(U (o)xt + V (o)ht−1 + b(o))

zt = tanh(U (z)xt + V (z)ht−1 + b(z))

ct = it ⊙ zt + ft ⊙ ct−1

ht = ot ⊙ tanh(ct)

(1)

where σ represents the sigmoid function and ⊙ is el-

ementwise multiplication. it refers to the input gate,

ft is the forget gate, and ot is the output gate at each

time step. The U and V variables are weight matri-

ces for each gate while the b variables are the bias

parameters. The input xt is a word (wt) for the en-

coder and the previously generated character rt−1

for the decoder.

The attention mechanism is essentially a ‘soft’

weighting over the encoder’s hidden states during

decoding:

αt(e) =
exp(score(ht, he))∑
e′ exp(score(ht, he′))

where he is a hidden state in the encoder and score

is the scoring function. We use the general attention

matrix weight (as described in (Luong et al., 2015))

for our scoring function. The outputs of the decoder

rt are generated using a final softmax layer.

Our model is six layers deep, with one word em-

bedding layer, two encoder layers, two decoder lay-

ers, and one dense output layer. Our encoder and de-

coder layers use a stacked LSTM architecture with

a width of 512 nodes. We use a global attention

mechanism (Bahdanau et al., 2014), which consid-

ers all hidden states of the encoder when comput-

ing the model’s context vector. We perform standard

dropout during training (Srivastava et al., 2014) after

every LSTM layer with dropout probability equal to

0.25. We train for 20 epochs, utilizing a minibatch

size of 32, and a learning-rate of 1.0. The learning

rate is decayed by a factor 0.5 if evaluation perplex-

ity does not increase.

4 Creating a Large Corpus of Natural

Language / Regular Expression Pairs

Previous work in regular expression generation has

used fairly small datasets for training and evaluation.

1919

Figure 1: Deep-Regex Encoder-Decoder setup. Blue

cells represent the encoder and the green ones represent

the decoder.

Non-Terminals

x & y → x and y x | y → x or y ∼(x) → not x

.*x.*y → x followed by y .*x.* → contains x x{N,} → x, N or more times

x& y& z → x and y and z x | y | z → x or y or z x{1,N} → x, at most N times

x.* → starts with x .*x → ends with x \b x\b → words with x

(x)+ → x, at least once (x)* → x, zero or more times x → only x

Terminals

[AEIOUaeiou] → a vowel [0-9] → a number word → the string ‘word’

[A-Z] → an uppercase letter [a-z] → a lowercase letter . → a character

Table 1: Regex → Synthetic Grammar for Data Genera-

tion

In order to fully utilize the power of neural transla-

tion models, we create a new large corpus of regular

expression, natural language pairs titled NL-RX.

The challenge in collecting such corpora is that

typical crowdsourcing workers do not possess the

specialized knowledge to write regular expressions.

To solve this, we employ a two-step generate-and-

paraphrase procedure to gather our data. This tech-

nique is similar to the methods used by Wang et al.

(2015) to create a semantic parsing corpus.

In the generate step, we generate regular expres-

sion representations from a small manually-crafted

grammar (Table 1). Our grammar includes 15 non-

terminal derivations and 6 terminals and of both

basic and high-level operations. We identify these

via frequency analysis of smaller datasets from pre-

vious work (Kushman and Barzilay, 2013). Ev-

ery grammar rule has associated verbalizations for

both regular expressions and language descriptions.

We use this grammar to stochastically generate reg-

ular expressions and their corresponding synthetic

language descriptions. This generation process is

shown in Figure 2.

While the automatically generated descriptions

are semantically correct, they do not exhibit rich-

ness and variability of human-generated descrip-

tions. To obtain natural language (non-synthetic)

descriptions, we perform the paraphrase step. In

this step, Mechanical Turk (Amazon, 2003) human

workers paraphrase the generated synthetic descrip-

Figure 2: Process for generating Synthetic Descriptions

from Regular Expressions. Grammar rules from Table 1

are applied to a node’s children and the resulting string is

passed to the node’s parent.

Synthetic: lines not words with starting with a capital letter

Paraphrased: lines that do not contain words that begin

with a capital letter

Regex: ∼ (\b([A-Z])(.*)\b)

Table 2: NL-RX Text Descriptions and Regular Expres-

sion

tions into the fluent verbalizations.

NL-RX Using the procedure described above, we

create a new public dataset (NL-RX) comprising of

10,000 regular expressions and their corresponding

natural language descriptions. Table 2 shows an ex-

ample from our dataset.

Our data collection procedure enables us to create

a substantially larger and more varied dataset than

previously possible. Employing standard crowd-

source workers to paraphrase is more cost-efficient

and scalable than employing professional regex pro-

grammers, enabling us to create a much larger

dataset. Furthermore, our stochastic generation of

regular expressions from a grammar results in a

more varied dataset because it is not subject to the

bias of human workers who, in previous work, wrote

many duplicate examples (see Results).

Corpora Statistics Our seed regular expression

grammar (Table 1), covers approximately 85% of

the original KB13 regular expressions. Addition-

ally, NL-RX contains exact matches with 30.1% of

the original KB13 dataset regular expressions. This

means that 248 of the 824 regular expressions in the

1920

Verbalization Frequency

’the word x’ 12.6%

’x before y’ 9.1%

’x or y’ 7.7%

’x, at least once’ 6.2%

’a vowel’ 5.3%

Table 3: Top Frequent Verbalizations from NL-RX

KB13 dataset were also in our dataset. The aver-

age length of regular expressions in NL-RX is 25.9

characters, the average in the KB13 dataset is 19.7

characters. We also computed the grammar break-

down of our NL-RX. The top 5 occurring terminals

in our generated regular expressions are those cor-

responding with the verbalizations shown in Table

3.

Crowdsourcing details We utilize Mechanical

Turk for our crowdsource workers. A total of 243

workers completed the 10,000 tasks, with an average

task completion time of 101 seconds. The workers

proved capable of handling complex and awkward

phrasings, such as the example in Table 2, which is

one of the most difficult in the set.

We applied several quality assurance measures on

the crowdsourced data. Firstly, we ensured that our

workers performing the task were of high quality, re-

quiring a record of 97% accuracy over at least 1000

other previous tasks completed on Mechanical Turk.

In addition, we ran automatic scripts that filtered out

bad submissions (e.g. submissions shorter than 5

characters). In all, we rejected 1.1% of submissions,

which were resubmitted for another worker to com-

plete. The combination of these measures ensured a

high quality dataset, and we confirmed this by per-

forming a manual check of 100 random examples.

This manual check determined that approximately

89% of submissions were a correct interpretation,

and 97% were written in fluent English.

5 Experiments

Datasets We split the 10,000 regexp and descrip-

tion pairs in NL-RX into 65% train, 10% dev, and

25% test sets.

In addition, we also evaluate our model on

the dataset used by Kushman and Barzilay (2013)

(KB13), although it contains far fewer data points

(824). We use the 75/25 train/test split used in their

work in order directly compare our performance to

theirs.

Training We perform a hyper-parameter grid-

search (on the dev set), to determine our model

hyper-parameters: learning-rate = 1.0, encoder-

depth = 2, decoder-depth = 2, batch size = 32,

dropout = 0.25. We use a Torch (Collobert et al.,

2002) implementation of attention sequence to se-

quence networks from (Kim, 2016). We train our

models on the train set for 20 epochs, and choose

the model with the best average loss on the dev set.

Evaluation Metric To accurately evaluate our

model, we perform a functional equality check

called DFA-Equal. We employ functional equality

because there are many ways to write equivalent reg-

ular expressions. For example, (a|b) is functionally

equivalent to (b|a), despite their string representa-

tions differing. We report DFA-Equal accuracy as

our model’s evaluation metric, using Kushman and

Barzilay (2013)’s implementation to directly com-

pare our results.

Baselines We compare our model against two

baselines:

BoW-NN: BoW-NN is a simple baseline that is

a Nearest Neighbor classifier using Bag Of Words

representation for each natural language description.

For a given test example, it finds the closest cosine-

similar neighbor from the training set and uses the

regexp from that example for its prediction.

Semantic-Unify: Our second baseline, Semantic-

Unify, is the previous state-of-the-art model from

(Kushman and Barzilay, 2013), explained above. 2

6 Results

Our model significantly outperforms the baselines

on the NL-RX dataset and achieves comparable per-

formance to Semantic Unify on the KB13 dataset

(Table 4). Despite the small size of KB13, our

model achieves state-of-the-art results on this very

resource-constrained dataset (824 examples). Using

NL-RX, we investigate the impact of training data

size on our model’s accuracy. Figure 3 shows how

2We trained and evaluated Semantic-Unify in consultation

with the original authors.

1921

Models
NL-RX-Synth NL-RX-Turk KB13

Dev Test Dev Test Test

BoW NN 31.7% 30.6% 18.2% 16.4% 48.5%

Semantic-Unify 41.2% 46.3% 39.5% 38.6% 65.5%

Deep-RegEx 85.75% 88.7% 61.2% 58.2% 65.6%

Table 4: DFA-Equal accuracy on different datasets.

KB13: Dataset from Kushman and Barzilay(2013), NL-

RX-Synth: NL Dataset with original synthetic descrip-

tions, NL-RX-Turk: NL Dataset with Mechanical Turk

paraphrased descriptions. Best scores are in bold.

Figure 3: Our model’s performance, like many deep

learning models, increases significantly with larger

datasets. String-Equal:Accuracy on direct string match,

DFA-Equal:Accuracy using the DFA-Equal evaluation.

our model’s performance improves as the number of

training examples grows.

Differences in Datasets Keeping the previous

section in mind, a seemingly unusual finding is

that the model’s accuracy is higher for the smaller

dataset, KB13, than for the larger dataset, NL-RX-

Turk. On further analysis, we learned that the KB13

dataset is a much less varied and complex dataset

than NL-RX-Turk. KB13 contains many dupli-

cates, with only 45% of its regular expressions be-

ing unique. This makes the translation task easier

because over half of the correct test predictions will

be exact repetitions from the training set. In con-

trast, NL-RX-Turk does not suffer from this vari-

ance problem and contains 97% unique regular ex-

pressions. The relative easiness of the KB13 dataset

is further illustrated by the high performance of the

Nearest-Neighbor baselines on the KB13 dataset.

7 Conclusions

In this paper we demonstrate that generic neu-

ral architectures for generating regular expressions

outperform customized, heavily engineered mod-

els. The results suggest that this technique can

be employed to tackle more challenging problems

in broader families of formal languages, such as

mapping between language description and program

scripts. We also have created a large parallel corpus

of regular expressions and natural language queries

using typical crowd-sourcing workers, which we

make available publicly.

Acknowledgments

We thank the anonymous reviewers for their helpful

feedback and suggestions.

References

[Amazon2003] Amazon. 2003. Mechanical turk. https:

//mturk.com.

[Bahdanau et al.2014] Dzmitry Bahdanau, Kyunghyun

Cho, and Yoshua Bengio. 2014. Neural machine

translation by jointly learning to align and translate.

CoRR, abs/1409.0473.

[Collobert et al.2002] Ronan Collobert, Samy Bengio,

and Johnny Marithoz. 2002. Torch: A modular ma-

chine learning software library. https://torch.ch.

[Devlin et al.2014] Jacob Devlin, Rabih Zbib,

Zhongqiang Huang, Thomas Lamar, Richard M

Schwartz, and John Makhoul. 2014. Fast and robust

neural network joint models for statistical machine

translation. In ACL (1), pages 1370–1380. Citeseer.

[Friedl2002] Jeffrey EF Friedl. 2002. Mastering regular

expressions. ” O’Reilly Media, Inc.”.

[Hochreiter and Schmidhuber1997] Sepp Hochreiter and

Jürgen Schmidhuber. 1997. Long short-term memory.

Neural computation, 9(8):1735–1780.

[Kim2016] Yoon Kim. 2016. Seq2seq-attn. https://

github.com/harvardnlp/seq2seq-attn.

[Kushman and Barzilay2013] Nate Kushman and Regina

Barzilay. 2013. Using semantic unification to gener-

ate regular expressions from natural language. North

American Chapter of the Association for Computa-

tional Linguistics (NAACL).

[Luong et al.2015] Thang Luong, Hieu Pham, and

Christopher D. Manning. 2015. Effective approaches

to attention-based neural machine translation. In

Proceedings of the 2015 Conference on Empirical

Methods in Natural Language Processing, pages

1922

1412–1421, Lisbon, Portugal, September. Association

for Computational Linguistics.

[Mnih et al.2014] Volodymyr Mnih, Nicolas Heess, Alex

Graves, et al. 2014. Recurrent models of visual atten-

tion. In Advances in Neural Information Processing

Systems, pages 2204–2212.

[Ranta1998] Aarne Ranta. 1998. A multilingual natural-

language interface to regular expressions. In Pro-

ceedings of the International Workshop on Finite State

Methods in Natural Language Processing, pages 79–

90. Association for Computational Linguistics.

[Raza et al.2015] Mohammad Raza, Sumit Gulwani, and

Natasa Milic-Frayling. 2015. Compositional program

synthesis from natural language and examples. In-

ternational Joint Conference on Artificial Intelligence

(IJCAI).

[Srivastava et al.2014] Nitish Srivastava, Geoffrey Hin-

ton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. 2014. Dropout: A simple way to pre-

vent neural networks from overfitting. The Journal of

Machine Learning Research, 15(1):1929–1958.

[Sutskever et al.2014] Ilya Sutskever, Oriol Vinyals, and

Quoc V Le. 2014. Sequence to sequence learning with

neural networks. In Advances in neural information

processing systems, pages 3104–3112.

[Wang et al.2015] Yushi Wang, Jonathan Berant, and

Percy Liang. 2015. Building a semantic parser

overnight. Association for Computational Linguistics

(ACL).

1923

