
Workshop track - ICLR 2016

NEURAL GENERATIVE QUESTION ANSWERING

Jun Yin1 Xin Jiang2 Zhengdong Lu2

Lifeng Shang2 Hang Li2 Xiaoming Li1

1School of Electronic Engineering and Computer Science, Peking University
{jun.yin, lxm}@pku.edu.cn
2Noah’s Ark Lab, Huawei Technologies
{jiang.xin, lu.zhengdong, shang.lifeng, hangli.hl}@huawei.com

ABSTRACT

This paper presents an end-to-end neural network model, named Neural Genera-
tive Question Answering (GENQA), that can generate answers to simple factoid
questions, both in natural language. More specifically, the model is built on the
encoder-decoder framework for sequence-to-sequence learning, while equipped
with the ability to access an embedded knowledge-base through an attention-like
mechanism. The model is trained on a corpus of question-answer pairs, with
their associated triples in the given knowledge-base. Empirical study shows the
proposed model can effectively deal with the language variation of the question
and generate a right answer by referring to the facts in the knowledge-base. The
experiment on question answering demonstrates that the proposed model can out-
perform the embedding-based QA model as well as the neural dialogue models
trained on the same data.

1 INTRODUCTION

Question answering (QA) can be viewed as a special case of single-turn dialogue: QA aims at
providing correct answers to the questions asked in natural language, while dialogue models often
emphasize on generating relevant and fluent responses in natural language in a conversation. Re-
cent progress in neural dialogue (Shang et al., 2015; Vinyals & Le, 2015) has raised the intriguing
possibility of having a generation-based model for QA. That is, the answer is generated by a neural
network (e.g., Recurrent Neural Network, or RNN) based on a proper representation of the question,
hence enjoying the flexibility of language in the answer. More importantly, since it can be trained
in an end-to-end fashion, there is no need for extra effort on building a semantic parser for ana-
lyzing the question. There is however one serious limitation of this generation-based approach to
QA. It is practically impossible to store all the knowledge in the weights of neural network with the
desired precision and coverage for real world QA. This is a fundamental difficulty, rooting deeply
in the way in which knowledge of different forms and abstract levels are acquired, represented and
stored. The weights of neural network, and more generally the fully distributed way of represen-
tation, are good for representing smooth and shared patterns, e.g., in language modeling, but poor
for representing discrete and isolated concepts, e.g., a particular year, city name, or the height of a
person. On the other hand, the recent success of memory-based neural network models has greatly
extended the current scheme of representing text information in both short-term memory and long
short-term memory, offering much richer ways to store and access the information of one or more
sentences (Bahdanau et al., 2015; Weston et al., 2015; Yin et al., 2015). It is hence a natural choice
to connect the neural model for QA with an external memory with long-term knowledge residing
in it, which also approaches the more traditional line of research on template-based QA equipped
with a knowledge-base (KB) from a different angle. In this paper, we report our exploration in this
direction, with a proposed model called Neural Generative Question Answering (GENQA).

Learning Task: We formalize generative question answering (GENQA) as a supervised learning
task or more specifically a sequence-to-sequence learning task. A GENQA system takes a sequence
of words as input question and generates another sequence of words as answer. In order to provide
right answers, the system is connected with a knowledge-base (KB), which contains facts. During
the process of answering, the system queries the KB, retrieves a set of candidate facts and generates
a correct answer to the question using the right fact. The generated answer may contain two types

1

Workshop track - ICLR 2016

of “words”: one is common words for composing the answer (referred to as common word) and
the other is specialized words in the KB denoting the answer (referred to as KB-word). To learn a
GENQA model, we assume that each training instance consists of a question-answer pair with the
KB-word specified in the answer. In this paper, we only consider the case of simple factoid question,
which means each question-answer pair is associated with a single fact (i.e., one triple) of the KB.

Dataset: We build a knowledge-base by extracting triples from three Chinese encyclopedia web
sites (Baidu Baike, Hudong Baike and Douban), and collect QA pairs from two Chinese commu-
nity QA sites (Baidu Zhidao and Sougou Wenwen). Training and test data for GENQA are then
constructed by “grounding” the QA pairs with the triples in knowledge-base using some heuristic
rules. As the result, 720K instances (tuples of question, answer, triple) are finally obtained with an
estimated 80% of instances being truly positive.

2 THE NEURAL MODEL

Let Q = (x1, . . . , xTQ
) and Y = (y1, . . . , yTY

) denote the natural language question and answer
respectively. The knowledge-base is organized as a set of triples (subject, predicate, object), each
denoted as τ = (τs, τp, τo). We propose an end-to-end neural network model for GENQA, which
is illustrated in Figure 1. The GENQA model consists of Interpreter, Enquirer, Answerer, and
an external knowledge-base. Basically, Interpreter transforms the natural language question Q
into a representation HQ and saves it in the short-term memory. Enquirer takes HQ as input to
interact with the knowledge-base in the long-term memory, retrieves relevant facts (triples) from
the knowledge-base, and summarizes the result in a vector rQ. The Answerer feeds on the question
representation HQ (through the Attention Model) as well as the vector rQ and generates the answer
with Generator.

Figure 1: The diagram for GENQA.

Interpreter: Interpreter encodes the question Q to
the array of vector representations. We adopt a bi-
directional RNN as in Bahdanau et al. (2015), which
processes the sequence in forward and reverse order by
using two independent RNNs. By concatenating the
hidden states (ht) and the embedding of the words (xt),

we obtain an array of vectors HQ = {h̃1, · · · , h̃TQ
},

where h̃t = [ht;xt]. This array of vectors is saved in
the short-term memory, allowing for further processing
by Enquirer and Answerer for different purposes.

Enquirer: Enquirer “fetches” the relevant facts from
the knowledge-base with Q and HQ. It first performs
term-level matching to retrieve a list of relevant candi-

date triples, denoted as TQ = {τk}
KQ

k=1
. Then the task

reduces to evaluating the relevance of each candidate triple with the question in the embedded space,
which may be viewed as a kind of attention mechanism.

More specifically Enquirer calculates the matching scores between the question and the KQ triples.

For question Q, the scores are represented in a KQ-dimensional vector rQ where the kth element

of rQ is defined as rQk
= eS(Q,τk)

∑KQ

k′=1
e
S(Q,τ

k′)
, where S(Q, τk) denotes the matching score between

question Q and triple τk. The probability in rQ will be further taken into the probabilistic model in
Answerer for generating a particular answering sentence. In this work, we provide two implemen-
tations to calculate S(Q, τk) between question and triples: one is the bilinear matching model as in
Bordes et al. (2014b;a), the other is the CNN-based matching model as in Hu et al. (2014) and Shen
et al. (2014).

Answerer: Answerer uses an RNN to generate the answer sentence based on the information of
question saved in the short-term memory (represented by HQ) and the relevant knowledge retrieved
from the long-term memory (indexed by rQ). The probability of generating the answer sentence
Y = (y1, y2, . . . , yTY

) is defined as

p(y1, · · · , yTY
|HQ, rQ; θ) = p(y1|HQ, rQ; θ)

TY∏

t=2

p(yt|y1, . . . , yt−1,HQ, rQ; θ)

2

Workshop track - ICLR 2016

where the conditional probability in the RNN model (with hidden state s1, · · · , sTY
) is specified by

p(yt|yt−1, st,HQ, rQ; θ). In generating the tth word yt in the answer sentence, the probability is
given by the following mixture model

p(yt|yt−1, st,HQ, rQ; θ) = p(zt = 0|st; θ)p(yt|yt−1, st,HQ, 0; θ) + p(zt = 1|st; θ)p(yt|rQ, 1; θ),

which sums the contributions from the “language” part and the “knowledge” part, with the coef-
ficient p(zt|st; θ) being realized by a logistic regression model with st as input. Here the latent
variable zt indicates whether the tth word is generated from a common vocabulary (for zt = 0) or a
KB vocabulary (zt = 1). In this work, the KB vocabulary contains all the objects of the candidate
triples associated with the particular question. For any word y that is only in the KB vocabulary,
e.g., “2.29m”, we have p(yt|yt−1, st,HQ, 0; θ) = 0, while for y that does not appear in KB, e.g.,
“and”, we have p(yt|rQ, 1; θ) = 0. There are some words (e.g., “Shanghai”) that appear in both
common vocabulary and KB vocabulary, for which the probability contains nontrivial contributions
of both bodies.

In generating common words, Answerer acts in the same way as the decoder RNN in Bahdanau
et al. (2015) with information from HQ selected by the attention model. In generating KB words via
p(yt|rQ, 1; θ), Answerer simply employs the model p(yt = k|rQ, 1; θ) = rQk

. The better a triple
matched with the question, the more likely the object of the triple is selected.

Training: The parameters to be learned include the weights in the RNNs for Interpreter and An-
swerer, parameters in the matching models of the Enquirer, and the word-embeddings which are
shared by the Interpreter RNN and the knowledge-base. GENQA, although essentially containing
a retrieval operation, can be trained in an end-to-end fashion by maximizing the likelihood of ob-
served data, since the mixture form of probability in Answerer provides a unified way to generate
words from common vocabulary and (dynamic) KB vocabulary. In practice the model is trained on
machines with GPUs by using stochastic gradient-descent with mini-batch.

3 EXPERIMENTS

Table 1: Training and test accuracies
Models Training Test

Retrieval-based 40% 36%

NRM 15% 19%

Embedding-based 36% 45%

GENQA 46% 47%

GENQACNN 59% 52%

To our best knowledge there is no previous work on
generative QA, we choose three baseline methods:
the Neural Responding Machine (NRM) (Shang
et al., 2015), the Retrieval-based QA and the
Embedding-based QA (Bordes et al., 2014a;b), re-
spectively corresponding to the generative aspec-
t and the KB-retrieval aspect of GENQA. For our
models, we denote the one using the bilinear mod-
el as GENQA and the other based on CNN as
GENQACNN.

We randomly select 300 questions from the training and test sets respectively, and evaluated the
performance of the models in terms of answering accuracy and fluency. Table 1 shows the accura-
cies of the models in the training and test set respectively. NRM has the lowest accuracy on both
training and test data, showing the lack of ability to remember the answers accurately and gener-
alize to questions unseen in the training data. For example, to question “Which country does

Xavi play for as a midfielder?” (Translated from Chinese), NRM gives the wrong answer
“He plays for France” (Translated from Chinese), since the athlete actually plays for Spain.
The retrieval-based method achieves a moderate accuracy, but like most string-matching methods
it suffers from word mismatch between the question and the triples in KB. The embedding-based
QA model achieves higher accuracy on test sets, thanks to its generalization ability from distribut-
ed representations. GENQA and GENQACNN are both better than the competitors, showing that
GENQA can further benefit from the end-to-end training for sequence-to-sequence learning. For
example, as we conjecture, the task of generating the appropriate answer may help the learning of
word-embeddings of the question. Among the two GENQA variants, GENQACNN achieves the best
accuracy, getting over half of the questions right. An explanation for that is that the convolution
layer helps to capture salient features in matching. The experiment results demonstrate the ability of
GENQA models to find the right answer from KB even with regard to new facts. For example, to the
example question mentioned above, GENQA gives the correct answer “He plays for Spain”.
We make some empirical comparisons and find no significant differences between NRM and GEN-
QA in terms of the fluency of answers. In general, all the three models based on sequence generation
yield correct patterns in most of the time.

3

Workshop track - ICLR 2016

REFERENCES

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. In ICLR, 2015.

Antoine Bordes, Jason Weston, and Sumit Chopra. Question answering with subgraph embeddings.
EMNLP, 2014a.

Antoine Bordes, Jason Weston, and Nicolas Usunier. Open question answering with weakly super-
vised embedding models. In ECML PKDD, pp. 165–180, 2014b.

Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai Chen. Convolutional neural network architectures
for matching natural language sentences. In Advances in Neural Information Processing Systems,
pp. 2042–2050, 2014.

Lifeng Shang, Zhengdong Lu, and Hang Li. Neural responding machine for short-text conversation.
In Association for Computational Linguistics (ACL), pp. 1577–1586, 2015.

Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mesnil. Learning semantic repre-
sentations using convolutional neural networks for web search. In Proceedings of the companion
publication of the 23rd international conference on World wide web companion, pp. 373–374.
International World Wide Web Conferences Steering Committee, 2014.

Oriol Vinyals and Quoc Le. A neural conversational model. arXiv preprint arXiv:1506.05869, 2015.

Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. In International Conference
on Learning Representations (ICLR), 2015.

Pengcheng Yin, Zhengdong Lu, Hang Li, and Ben Kao. Neural enquirer: Learning to query tables.
arXiv preprint arXiv:1512.00965, 2015.

4

	Introduction
	The Neural Model
	Experiments

