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Abstract

In this paper, artificial neural networks and genetic algorithms for solving

optimization problems in ship control systems have been proposed. The gradient

Hopfield ANN for linear minimization is considered. Moreover, HANN for

finding local Pareto-optimal solutions in multicriteria optimization of designed

navigation systems has been considered. Finally, genetic-neural algorithm GNA

for improving a quality of solutions have been introduced.

1. Introduction

Operating and configurations of ship control systems are very complex. So, for

estimating of their quality, we need several parameters. If there are considered the

set of feasible alternatives of navigation systems, we have to solve the instance of

multicriteria optimization problem [1]. Optimization techniques have many

disadvantages related with small efficiency for even easy problems. But, neural

networks and genetic algorithms are means for improving optimization tools.

Although, optimization techniques with neural or genetic acceleration can be used

in several fields, but, in this paper, we concern on methods, which are worth for

ship control applications.

Users and designers consider several criteria related with a particular

problem, for instance, the static deviation of control, the dynamic deviation of

control, the safety of the motion, the fuel consumption, the deviation from the

given trajectory and the others. These criteria evaluate the control quality

and properties of finding solutions. Therefore, the user should express his

system of preferences during the multi criteria problem formulation.

In this paper, artificial neural networks and genetic algorithms for solving

optimization problems in ship control systems have been proposed. The gradient
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Hopfield ANN for linear minimization with continues decision variables is

considered. Moreover, HANN for finding local Pareto-optimal solutions in

multicriteria optimization with discrete decision variables has been considered.

Finally, genetic-neural algorithm GNA for improving a quality of solutions have

been introduced.

2. Neural networks for linear optimization with continues decision variables

Let us consider a linear minimization problem, as follows:

M

mm ][cm*m (1)
*^A ^ = 1

where

decision variables for m = 1, M

are given for m = 1, M

M

a^ are given for m = 1, M

In above optimization problem all decision variables are continuous, an objective

M

function is linear/(*) = 2^ ^m^m , and constraints are linear, too. Of

m = l

course, several optimization techniques can be used based on standard

optimization methods. For instance, SIMPLEX method or parallel COMPLEX

method can be used for solving it, but we want to improve Tank-Hopfield neural

network model for solving it.

2.1. Hopfield neural networks

For some NP-hard combinatorial problems the Hopfield networks can find

suboptimal solutions. There are many combinatorial problems that can be solved

by Hopfield ANN. For instance, the Traveling Salesman Problem, the

Hamiltonian Cycle Problem, graphs problems and minimization problems are

solved with using Hopfield's ANN, the Boltzman Machine or the Genetic

Methods [10,11], That is why, we considered ,,neural" approach for optimization

of navigation systems. But using Hopfield networks for solving continuous

optimization problem is not so common used. So, we want to fill this gap.

In gradient models of HNN the neural activation states are changed from

the initial state wOo) = W*o)>- -̂ (̂ oX-̂ ô)]̂  according to the below

differentiate equations:
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_

Im 1̂ m=\M (2)

™ n=\
where

M - a neuron number,

Um - a global activation level of mth neuron, m = \M ,

% - a positive passive suppress coefficient for the neuron with the output x^

™nm - ̂e synaptic weight from the neuron x* to the neuron x^ ,

IM - the external input to the neuron x^

Matrix of synaptic weights is symmetric. Moreover,

™mm -0 form = l,M. External inputs are constant during network operating.

Signals in a neuron are transformed according to a linear activation function, as

follows:

%m m=l,M (3)

Hopfield found a Liapunov function for the differential system (2) in

respect to the following formula:

MM M

(4)
n=]m=l m=l m=l Q

where

— 1 i
gm - a reverse activation function g^ , u^ = g~ * (%„,) ,

2.2. Hopfield neural networks for linear optimization

M

Let us consider the constraint %] #%,%*, ̂ &% for given n. We take a

m = l

denotation for a positive inequality

M

resource R» = g» (x) = ^ ^m^m -*« - If /?« > 0 , then inequality

m = l

constraint is satisfied. In the other case R^ < 0 , and inequality constraint is not

satisfied. So, unfeasible solution should be punish during calculation. It can be

made by the following penalty function:

P&/Y A\_W^x-6J^ ^r^x-^<0 —
^(a^x-b^)-< for n = \,N (5)

[0 jbra^-^>0 ^

For Hopfield model of analog neural networks an energy function can be
written, as follows:

(6)
n=\ m-l
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where Ĝ l/rĵ  .

From above energy function, the motion system can be obtained, as follows:

Very often on the left side of above formula the constant Cm is used, but it does

not influence on the equilibrium point of motion equations. So, we get:

V

7, / j\ YIW) -qn fn \ )
*7?M — i wv^

where

Because of formula (5) the partial derivatives are given, as follows

W /^4x_^<0

0

Finally, the network for solving linear minimization problem can be presented on

the fig. 1.

-CM

-bi -bn -t>N

Fig. 1. Neural network for linear minimization.

In this network two groups of neurons are considered. The first one

consists of M neurons with linear activation functions. These neurons are called

decision neurons. The output values x^ from these neurons are sent to the second

group of N neurons with a bit strange activation functions (9). These neurons are

called constraint neurons and are responsible for constraint satisfaction. If

associated constraint is not performed, then the constraint neuron generates

positive value proportional to non satisfaction degree. The motion system can be

solved by the linear Euler method, or the first order Runge-Kutty method.

3. Neural networks for optimization problem with zero-one variables

Algorithms for solving anti-collision situations are known. But, the problem is

how to implement these algorithms in effective way. One of the promising

solution is using two processor system to accelerate these calculations, because a

time of decision making is the key for avoiding indicated collision. After solving
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these problem, we know how to share program modules to two processors such,

that cost of anti-collision system is the lowest, and the answer what to do for a

captain was prepared almost at once. To solve above design problem we can use

new optimization technique based on artificial methods, for instance neural

networks or genetic algorithms.

Constraints in discrete optimization problems can be written in a general
M

form 2] Xjn = L , where x* is a typical binary variables, and it should be

m=l

satisfied M>L. It means, that only L variables can be equal to 1, and the other

variables M.-L should have value 0. There is no preferences which decision

variables should be taken.

M

The general form X*m = ̂  includes several constraints from a lot of

m=l

combinatorial problems. For instance, in the Traveling Salesman Problem [12]

during L (L is the number of all cities) steps a salesman should come through each

L _

city Ci exactly ones, what can be written as ]T x% =1 for k = I^L , where x& is

k=l

equal to 1 if the salesman in the kth step is in the city d. The trip of the salesman

has strict bounded time condition. He should make exactly L steps, and if the
L _

constraints £x# = 1 for k = 1,L are satisfied, then that require is performed,
k=l

too.

4. Uniform Hopfield neural networks HNN/L/M for linear constraint
satisfaction

Uniform Hopfield networks UHNN play important role for satisfaction the special

M

class of constraints expressed in a general form %]x̂  = Z, . For uniform

m=l

Hopfield networks all main parameters have the same value for each neuron i.e.

w^=wfor n,/»el,M, /^ =/ for m = \JM , r^ = rj form=\M,

0m = a for/w=l,M.

In neural optimization the designed networks should avoid saddle points

(false atractors). of energy function, because then even feasible solutions can not

be obtained in some cases. On the fig. 2 the saddle point of a basic energy

function is presented. Only two neurons are considered. Synaptic weights are

equal to -2 and external inputs are equal to 1. For this case a basic energy

function has two global minimizers and one saddle point. If UHNN starts form a

initial state, then after relaxation it obtain an equilibrium point. If equilibrium

point is a global minimizer of a basic energy function, then optimal solution of an
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optimization problem can be found. But, if in an equilibrium point of motion

equations a saddle point of a basic energy function is reached, then xl=x2=0.5

and formal constraints xl,x2e{0,l} are not satisfied. So, the UHNN for

optimization should avoid saddle points. In [4] special theorem for solving this

problem has been stated.

A basic energy function

A forbidden
area for
initial states

Ai ^ 0.8 1 u

Fig. 2. A basic energy function for two neurons

So, if ui(to)=U2(to), then xi(to)=X2(to) in UHNN with two neurons (fig. 2). Because

Hopfield networks minimize their energy functions according with the deepest

descent method, then the trajectory of the state converges to a saddle point from

each balanced starting point (c,c), where ce(0,l). On the fig. 2 the unfeasible

area in zero-one optimization for initial states of UHANN is marked.
M

To satisfy the considered constraint X*m = ̂  the special case of

m=l

UHNN can be used according to the below theorem. This theorem says about

main parameters of UHNN such as thr neuron number, synaptic wages, and

external inputs.

Theorem. 2 [4].

M

If %\m=Z &>r *m E (0,1), L<
m=l

network has following parameters

= 0,1,2, . . . , M , and uniform Hopfield

, j - 1, M , m

/m =21-1 m = 1,M

where M is the number of neurons,

then

where
M M A/

T-Y x__^v V rV
Ĥ*/ — ~ 2j Ẑ î n̂ m * 2-i*

n=lm=l m=l

(10)

k a basic energy function of this UHNN
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h(x) - (L - ̂  XM ) + ̂  x^ (1 - XM ) is a penalty function for constraint.

m=l m=l

UHNN with synaptic weights equal to -2 and nonnegative external inputs

calculated according to the rule 7=21-1 can be called UHNN/L/M., because for

their design the pair (L,M) have to be known, only. So, signals from the other

neurons are converted and their absolute value is increased. Moreover, each

neuron has its nonnegative constant input, which forces the activation level u*=I

in an equilibrium point.

There are two basic problems related with a minimization of basic energy function

if networks UHNN/L/M. Firstly, parameters for finding a global minimizer of an

energy function have to be found. Secondly, the network UHNN/L/M should fix

this minimizer as soon as possible e.g. it needs the fewest number of iterations

-T̂ max-

We assume, that a=100, At/T=0.2, 77=!, k^p is the condition E(t̂ )<s

for 6=0.01. For the worst case, the iteration number K̂ E(t̂ ) < s) for solving

a general equation is equal to 5. These experimental results confirm, that neural

networks can be designed as a very efficient method for solving numerical

problems. Especially, for the network UHNN/L/M the neuron number M does not

influence on the increasing of A

5. Network HNN/F1/C for linear constrained minimization

A following optimization problem is studied:
2 J

For above problem two separated modified networks HANN/l/J for the
J

satisfaction of the constraint ^ xfj = 1 , / = 1,2 can be used. In these

7 = 1

networks external inputs are modified according to the formula

T ( ~ n \ - 7I(Xjj ) = 2J + 1.5- AJ(x-jj) y = 1, J, / = 1,2, where A/(x/T) =
^m ax

Kmax is the cost of the most expensive processor.

Above formula is related with the notice, that if in UHNN/L/M one

neuron has the external input greater than the others, then this chosen neural

output gets 1 in an equilibrium point. So, this is a way for preferring neurons

related with the cheaper processors. Therefore, the additional term decreases the

external inputs when the cost increases. If in a network UHNN/L/M all external

inputs are increased about small value, then still L neurons are chosen in an

equilibrium point. For L=0, there is I=2L-1=-1. For L=l, there is 1=1. So,

according to the bounder increasing L=0,1,2,3,4,... , there is an input increasing

I=-1,1,3,4,6,... . For a bounder L is the interval for feasible external inputs (2L-
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2,2L). In this interval, the changed external inputs should have they value. For

each node number, two separate networks UHNN/l/J are considered.

6. Network HNN/F2/C for quasi-quadratic constrained minimization

If a more complex optimization problem is considered, when a time criterion p2(.)

is minimized with respect to constraints ^*vi=l' v = I7V and

i = l
J _
]T xf- = 1 , i ' = 1,2 • This optimization problem can be transformed to the

7 = 1

unconstrained optimization problem. Energy functions of neural networks

designed for constraint satisfaction or for objective function minimization can be

aggregated in a penalty function, as below:

v=l /

where

Pv, Pi- penalty coefficients

Ev- an energy function of a network UHNN/1/2 for a satisfaction of the constraint
2

Z*vi =1
i=l

Ei- an energy function of a network UHNN/l/J for a satisfaction of the constraint

7. Genetic algorithms for quality solution improving

Genetic algorithms can be used for solving several optimization problems.

Holland [11] developed this approach and its theoretical foundation. Rosenberg

noticed abilities of GA for development many criteria [15]. Then, Schaffer [16]

considered GA for solving multiobjective optimization problems by an vector

evaluated genetic algorithm VEGA. VEGA is an extension of system GENESIS

prepared by Grefenstete [9]. VEGA uses ranging system for non-dominated

individuals as Baker's ranging system for one function [3]. An overview of

evolutionary algorithms for multiobjective optimization problems is presented by

Fonseca and Flaming [7]. In recent years interest has risen in the application of

genetic algorithms to combinatorial optimization problems [2,14].

It is possible to combine genetic algorithm and neural networks in several

ways. First of all, neural networks prepared to optimization of a problem can be

used as solvers for local optimization in each basic step of standard genetic

algorithm. In a such approach, the genetic algorithm usually operates on the

activation level initial values of optimization Hopfield network, because for given
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synaptic weights and external inputs, the activation level initial values have a main

influence on the obtained solutions. A gain coefficient in an activation function of

neurons plays a less role. It should be large enough. Similarly, a passive suppress

coefficient should be large enough. This standard genetic-neural algorithm SGNA

assumes the parallel operating of neural networks. They exchange information to

fit initial states in maximizing of fitness function. Fitness function is related with a

global function created for scalarization of multiobjective problem. It is important

to make sure, that this global function is prepared for minimizing of problems.

In [4] some experimental results are discussed. A standard genetic

algorithm SGA and SNGA are compared. SGA uses 67 new populations to

obtain two suboptimal in Pareto sense solutions for studied combinatorial

optimization problem. Each population consists of 200 solutions. A probability of

crossovering for solutions from a gene pool was taken pc=0,95. A mutation

probability for one bit was chosen pm=0,001. A distribution of solutions in an

initial population is uniform. Reached solutions are good, because they are

feasible and close to Pareto-optimal solutions. Then, we used a proposed standard

genetic-neural algorithm SGNA to improve obtained solutions.

Neural-genetic algorithm SGNA is very efficient for solving such

optimization problem example. In the considered example of problem it found

two Pareto-optimal solutions by generating only 12 new populations. Each

population consisted of 50 artificial neural networks PHNN dedicated for solving

considered optimization problem. After selection, crossover, and mutation of

initial activation levels 50 dedicated neural networks obtain their equilibrium

points. Afterwards, fitness function values are calculated and new population of

initial activation levels.

8. Concluding remarks

The recurrent ANN in equilibrium point can represent suboptimal points. Hopfiel

networks were simulated in the PC environment without neural accelerators. It is

possible to use the neural accelerators and improve the performance of the neural

calculating. Designed HNN for optimization can be combined with genetic

algorithms. Therefore, a hybrid genetic-neural algorithm seems to be a very

powerful tool for solving combinatorial problems.

The main advantage of SGNA is improving solutions by neural networks.

If neural networks are implemented as VLSI chips, then time of obtaining

equilibrium points can be approximately equal to one computer instruction time.

Even for simulation of networks by program environment based on computers

IBM PC presented SGNA method is very powerful. Neural networks PHNN for

finding Pareto-suboptimal solutions developed in the SGNA case is described in

[4,5].
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