
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Neural Graph Embedding for Neural Architecture Search

Wei Li,1 Shaogang Gong,1 Xiatian Zhu2

1Queen Mary University of London, 2University of Surrey
{w.li, s.gong}@qmul.ac.uk, xiatian.zhu@surrey.ac.uk

Abstract

Existing neural architecture search (NAS) methods often op-
erate in discrete or continuous spaces directly, which ignores
the graphical topology knowledge of neural networks. This
leads to suboptimal search performance and efficiency, given
the factor that neural networks are essentially directed acyclic
graphs (DAG). In this work, we address this limitation by in-
troducing a novel idea of neural graph embedding (NGE).
Specifically, we represent the building block (i.e. the cell) of
neural networks with a neural DAG, and learn it by leveraging
a Graph Convolutional Network to propagate and model the
intrinsic topology information of network architectures. This
results in a generic neural network representation integrable
with different existing NAS frameworks. Extensive experi-
ments show the superiority of NGE over the state-of-the-art
methods on image classification and semantic segmentation.

Introduction
Neural Architecture Search (NAS) is able to automate the te-
dious process of designing neural network architectures op-
timal for target tasks, bypassing the demand for rich domain
knowledge and experiences. Recent attempts in NAS have
achieved enormous success in various challenging tasks, e.g.
image classification (Zoph and Le 2017), object detection
(Ghiasi, Lin, and Le 2019), and semantic segmentation (Liu
et al. 2019; Nekrasov et al. 2019).

There are three common learning paradigms among exist-
ing NAS methods: reinforcement learning (RL), evolution-
ary algorithm (EA), and gradient differentiable (GD) opti-
misation. A RL-based NAS method constructs a network ar-
chitecture through deriving a sequence of discrete actions
(each selecting an operator connection token), and uses its
dev set accuracy as the reward. In a EA-based method, mu-
tations and combinations of architectural elements are used
to generate and search the architectures, where those ar-
chitectures with higher fitness score (accuracy) are often
selected to continue the evolution. Despite their remark-
able performance, RL-based and EA-based NAS methods
suffer from extremely low efficiency and high computa-
tional resource demand. For instance, to search a state-of-
the-art architecture for CIFAR-10 and ImageNet, it takes

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

������

�	
�����

����������

�����

��������

	�
��

���
��

Figure 1: The concept of neural graph architecture search.
We represent the cell of a network architecture with directed
acyclic graph (DAG), which enables the search space to be
represented in a continuous space, and facilitates the adop-
tion of gradient descent based optimisation.

2000 GPU days for RL (Zoph and Le 2017) and 3150 GPU
days for EA (Real et al. 2019). Several recent attempts have
been made to improve, e.g. structural search space design-
ing (Liu et al. 2018b; 2018a), architecture weights shar-
ing and inheritance (Pham et al. 2018; Cai et al. 2018a;
2018b). Due to the fundamental searching challenge in a dis-
crete space, RL and EA remain inefficient for NAS.

In contrast, a GD-based NAS method operates in a contin-
uous search space and hence enables continuity optimisation
by gradient based methods. The key of this paradigm lies in
how to construct a continuous search space. For example,
DARTS (Liu, Simonyan, and Yang 2019) simply relaxes the
search space to be continuous by introducing a mixture of
weights for all the candidate operations. NAO (Luo et al.
2018) maps a neural architecture into a continuous represen-
tation via an encoder model. Notwithstanding significantly
lower search cost by further using weight sharing (Pham et
al. 2018), both DARTS and NAO run the risk of being easily
stuck around inferior local minimums as observed in (Sci-
uto et al. 2019). We consider that their limitation is com-
monly due to weak capability of modelling the topological
knowledge of the network architecture when constructing
the continuous search space. As an intrinsic property of neu-
ral network in specific and directed acyclic graph (DAG) in
general, topology plays a fundamentally crucial role in the
process of NAS (Figure 1).

To solve the aforementioned limitation, in this work we
propose the notion of Neural Graph Embedding (NGE) for

4707

neural architecture search. In particular, NGE elegantly en-
ables integrating the Graph Convolutional Network (GCN)
(Kipf and Welling 2017) with existing solutions, including
the efficient gradient-based paradigm (Figure 1), therefore
allowing for modelling the topology of the network archi-
tecture by recursive message propagation among nodes in
a cell. Importantly, through dedicated neural graph embed-
ding we obtain a continuous search space in a principled
manner. This not only facilitates the NAS design, but also
enjoys favourable search efficiency even compared with ex-
isting fast GD-based NAS methods like DARTS and NAO.

Our contributions are summarised below:

• We propose a novel notion of Neural Graph Embedding
(NGE) for NAS, characterised by jointly modelling the
graphical topology of a network architecture and per-
forming the network search in a continuous representa-
tion space. Introducing a neural graph concept and mak-
ing a principled exploitation of Graph Convolutional Net-
work, NGE addresses the limitation of the state-of-the-art
methods in mining network topology knowledge, provid-
ing a generic neural architecture representation solution
specially tailored for NAS.

• We demonstrate that the proposed NGE method not only
achieves highly competitive accuracy performance on
CIFAR-10, CIFAR-100 and ImageNet, but also signifi-
cantly reduces the architecture search process (taking only
0.1 GPU day for cell search). Moreover, we show that the
neural architecture discovered on CIFAR-10 by NGE can
be readily transferred to the more challenging semantic
segmentation task. We performed this test with DeepLab-
v3 on PASCAL VOC 2012 and achieved 75.96% mIOU
without the stronger COCO pretraining, consistently out-
performing the state-of-the-art network architectures.

Related Works

Existing NAS methods usually fall into three paradigms:
reinforcement learning (RL) based methods, evolutionary
algorithm (EA) based methods, and gradient differentiable
(GD) methods. For example, the policy networks in (Zoph
et al. 2018; Pham et al. 2018) guide the selection of the ar-
chitecture component sequentially. Some EA-based meth-
ods (Liu et al. 2018b; Real et al. 2019) evolve a popula-
tion of initialised architectures with the corresponding val-
idation accuracies as fitness. Instead of searching in a dis-
crete search space, DARTS (Liu, Simonyan, and Yang 2019)
provides a gradient optimisation NAS framework, in which
the search space is relaxed to be continuous. Several works
(Liu et al. 2018a; 2018b) attempt to reduce the search cost
by exploring the search space progressively. Whilst differ-
ent in the specific searching algorithm, all these works com-
monly conduct the searching process in discrete or continu-
ous search spaces directly without considering the topologi-
cal information of network structures as we investigate here.

A very recent work related to ours is GHN (Zhang, Ren,
and Urtasun 2019), which uses the Graph HyperNetwork
(GHN) to amortise the search cost by generating network
weights and predict the network performance directly. While
similarly considering the topology of network architectures,

Figure 2: (a) The structure of the k-th block: taking two input
feature tensors {Fi,Fj}, applying two separate operations

{o(i,k), o(j,k)}, and then combining them via element-wise
addition as the output Fk. (b) Overview of building the net-
work by stacking M × 3 normal cells and 2 reduction cells.
(c) The head architectures used for CIFAR and ImageNet.

our method significantly differs from GHN in three aspects:
(1) In graph construction, we treat the computational node of
a network as the vertex, which is more intuitive and simple
than considering each operation as a graphical node in GHN.
(2) Unlike GHN focusing on producing network weights, we
aim at reducing the search cost by joint learning the graph
representations and the connections of the topology of a net-
work architecture, resulting in a more effective and efficient
solution. (3) Our NGE is a general neural graph represen-
tational method that can be easily integrated into existing
different NAS paradigms. In contrast, GHN is not a generic
approach due to the specific design of the graph structure,
i.e. each operation as a node in the graph.

The Preliminaries

Architecture Space

Instead of an entire network architecture, a more feasible
strategy is to search a repeatable structure (Zoph et al. 2018),
which factorises the search space via cells and blocks.
Cell. A cell consists of a set of N ordered feature (tensor)
nodes {Fk|, 1<= k <=N}. F1 & F2 are two input nodes,

i.e. the outputs from the previous two cells. {Fk}
N−1
k=2 de-

notes the inner nodes that perform computation. The cell
output is the N -th node FN , formed as the concatenation of

all the inner nodes, i.e. FN =concat({Fk}
N−1
k=2). There are

two types of cells: normal cell (with stride of 1) and reduc-
tion cell (with stride of 2).
Block. A block is defined as a computational node that out-
puts a feature node Fk (Fig. 2(a)) by transforming two input
feature nodes Fi and Fj as:

Fk = o(i,k) (Fi) + o(j,k) (Fj) s.t. i < k & j < k, (1)

where o(i,k) and o(j,k) are the i-th and j-th operations. Each
operation is taken from the candidate set O with O=7 prim-

4708

������

�

����������

����������

�����

���������

�� �����

���������

��

����������������� ��!
"�#���$

�����

���������

� ��� � � �

	�	�	 	�	�	

� �!��"

� ��� ��	 � ��	

	�	�	 	�	�	

��

�����

���������������� �������� ��������

Figure 3: An overview of the proposed Neural Graph Embedding (NGE) for NAS. Each node denotes a computational transfor-
mation in a cell, initialised as a one-hot vector sequentially. We use a 3-layers GCN to perform the propagation of node-to-node
interaction information. Each edge represents a connection between two nodes. We represent it by mapping the concatenation of
the embeddings of the two nodes with a multilayer perceptron (MLP). It is this edge representation that significantly facilitates
the optimisation of operation selection, e.g. learning an operation class classifier end-to-end.

itive operations: (1) identity, (2) 3×3 max pooling, (3) 3×3
average pooling, (4) 3 × 3 separable convolution, (5) 5 × 5
separable convolution, (6) 3 × 3 dilated separable convolu-
tion, (7) 5× 5 dilated separable convolution.
Search Space. Generally, the architecture search space A is
determined by the compositions of blocks, since the struc-
ture design of the input and output nodes in a cell is fixed.
For a cell with N = 7 nodes, we only need to specify
the inputs and operations for 4 inner computational nodes

(blocks), resulting in a total number of
∏N−3

n=1
(n+1)n

2 ×

O2 ≈ 109 possible design choices.
Whole Network. Based on the definitions of cell and block
above, one can construct a network in two steps: (i) Design a
cell structure that contains (N−3) ordered blocks; (ii) Stack
multiple cells together. As shown in Fig. 2 (b), after the cell
search is finished, M normal cells are stacked repeatedly for
3 times, interpolated with 2 reduction cells for downsam-
pling the feature maps.

NAS as Optimisation

As DARTS (Liu, Simonyan, and Yang 2019), the search
problem can be efficiently formulated in a gradient differen-
tiable manner by relaxing the search space to be continuous.
Continuous Relaxation. For a connection from the i-th
node to the k-th node in a cell with the architecture parame-
ters a(i,k), a softmax over all possible operations is applied
to obtain the categorical choice of a particular operation:

o(i,k)(Fi) =
∑

o∈O

exp
(

a
(i,k)
o

)

∑

o′∈O
exp

(

a
(i,k)
o′

)o(Fi). (2)

Optimisation. Within a continuous search space, a common
search process for neural architecture is generally composed
of two separate optimisation procedures. Given the network
parameter space W and the architecture space A, the first
procedure (Eq. (3)) discovers the optimal parameters w∗ ∈
W for a given architecture a ∈ A w.r.t a training objective
function Ltrain:

w∗(a) = argmin
w

Ltrain(w,a). (3)

The second procedure (Eq. (4)) then explores the optimal ar-
chitecture a∗ over the architecture space A w.r.t a validation

objective function Lval:

a∗ = argmin
a

Lval(w
∗(a),a). (4)

Once this alternated optimisation is done, an amenable cell
architecture is deviated by retaining the top-k strongest in-
coming operations from all the previous nodes.

Methodology
We aim to make full use of the intrinsic topology informa-
tion of neural networks for facilitating the optimisation of
NAS. To this end, we propose the notion of Neural Graph
Embedding (NGE). The idea is that, we represent the cell
and block structures with a neural graph, and leverage Graph
Convolutional Networks (GCN) (Kipf and Welling 2017) to
form the relational embeddings of this neural graph. Not
only does our method capture the underlying topology infor-
mation of network architecture comprehensively, but it also
creates a means of representing the discrete operator selec-
tion by continuous feature vectors that substantially facili-
tate the optimisation of operator association. An overview
of the proposed NGE model is depicted in Fig. 3.

In the followings, we first describe how to build a search
space as a graph. We then provide the detail of GCN in the
context of neural architecture graph. Finally, we delve into
the details of how we integrate NGE into the task of NAS.

Neural Graph

Rather than searching over a search space A directly, we
transform the architecture search space in the form of a
graph. This forms a neural graph, leading to two advan-
tages: (1) It explicitly encodes the high-order relationships
between different nodes in a cell; (2) It also implicitly regu-
lates the relationships between nodes and operations.
Search Space as Neural Graph. As discussed above, given
the factorised search space, all we need for NAS is to search
an appropriate design of blocks in a cell. Intrinsically, a cell
with N ordered nodes can be defined as a directed acyclic
graph (DAG) G = (V, E), where each node v ∈ V has an
associated embedding vector xv ∈ X (Note that the output
node is excluded for consideration as its incoming connec-
tions are fixed); And the edge eu→v =(u, v)∈E is the con-
nection between node u and node v, representing the infor-
mation flow u→ v. Besides, a specific operation ou,v from

4709

the candidate set O is applied to the edge eu→v . Forming
this neural graph search space G, next we aim to learn con-
tinuous embeddings (representations) for the nodes and the
edges of G.
Node Embedding. We learn the node embedding by de-
signing a Graph Convolutional Network (GCN). This al-
lows naturally modelling the topological relationships be-
tween nodes. Specifically, the input to each node v is an ini-
tial embedding vector xv , initialised as a specific one-hot
vector different for each node and updated simultaneously
during learning. We summarise the inputs of all the nodes as

a matrix X =
[

x1, · · · ,x|V|

]

∈ R
|V|×D, where D denotes

the dimension of the input embedding. The GCN outputs a

node-level representation Z =
[

z1, · · · , z|V|

]

∈ R
|V|×F ,

where F denotes the dimension of the output embedding.
Formally, the node embedding learning is formulated as:

Z = GCN(X;Θn), (5)

where Θn is the parameter for the GCN model. More specif-
ically, considering |V| ordered nodes, the structure of graph
search space is represented as a normalised adjacency matrix

A ∈ R
|V|×|V| as the follows:

Ai,j =

{

1
i+1 if i < j& i > 1,

0 otherwise.
(6)

To incorporate self-reinforcement, we further form an aug-

mented version Â by:

Â = A+ I, (7)

where I ∈ R
|V|×|V| is the identity matrix. Let f (·) de-

notes the ReLU activation function, we then formulate the
per-layer learning module as:

H(l+1) = f(ÂH(l)W (l)), (8)

where W (l) ∈ Θn is the l-th layer’s parameter, and L the

total layer number. In particular, H(0)=X and H(L)=Z.
With this formulation, the topological knowledge between
different nodes can be continuously propagated in a stack
of feed-forward operations sequentially, enabling to reveal
high-order relationships across the whole neural graph.
Edge Embedding. We learn the edge embedding based on
the embeddings of the two associated nodes. Specifically, for
an edge between the i-th and j-th nodes, we first concate-
nate their embeddings zi and zj to merge their information.
Then, we deploy an efficient MLP with two fully-connected
(FC) layers and ReLU activation to further learn the edge

embedding e(i,j). Formally, we formulate the edge embed-
ding learning as the follows:

e(i,j) = MLP(concat(zi, zj);Θe) ∈ R
K , (9)

where Θe is the parameter set of the edge embedding MLP,
shared for all the edges, and K denotes the dimension of

edge embedding. Importantly, the edge embedding e(i,j) not
only encodes the local pairwise relationships between the i-
th and j-th nodes, but also considers the global higher-order
relationships among all the nodes. In doing so, we provide
a principled method for modelling the comprehensive topo-
logical knowledge of a neural architecture.

Algorithm 1: Neural Graph Embedding (NGE) for NAS

Input: Training set: Xtrain; validation set: Xval.
Output: Network architecture a∗

1 w, X , Θn, Θe, Θo ← random initialisation
2 for Num. of max epochs. do
3 Z ← obtain by Eq. (5);
4 E ← obtain by Eq. (9);
5 P ← obtain by Eq. (10);
6 for samples in Xtrain do
7 Update weights w by descending

∇wLtrain(w,P);
8 end
9 for samples in Xval do

10 Z ← obtain by Eq. (5);
11 E ← obtain by Eq. (9);
12 P ← obtain by Eq. (10);
13 Update X , Θn, Θe, Θo by descending

∇Lval(w,P);
14 end

15 end
16 Derive the final architecture a∗ based on the learned P .

NGE for NAS

Applying the NGE to the NAS task is straightforward, since
an edge eu→v = (u, v) ∈ E can be readily associated with
the operation selection. That being said, this allows us to
derive the optimal operation selection from the edge em-
beddings E in a standard learning framework. It is worth
mentioning that our NGE is a general representation model
that can be integrated into different NAS paradigms. For RL-
based NAS, we can compute the actions from the edge em-
beddings for choosing operations. For EA-based NAS, the
edge embeddings act as a controller to generate mutations.
In this work, due to the resource constraint we focus on the
efficient GD-based NAS. Concretely, we predict the opera-
tion probability distribution for all the relaxed connections
by using the NGE edge embeddings as input.

Operation Probability. Given the edge embedding e(i,j)

between the i-th and j-th nodes, we compute the associated

operation probability p(i,j) ∈ R
O by a FC layer with the

softmax activation:

p(i,j) = softmax(FC(e(i,j);Θo)), (10)

where Θo is the parameter for the FC layer and shared for
all the edges. We summarise the operation probability of all

the edges as a matrix P =
[

p1, · · · ,p|E|

]

∈ R
|E|×O. We

reformulate the continuous relaxation in Eq. (2) as:

o(i,k)(Fi) =
∑

o∈O

p(i,k)o o(Fi). (11)

In this way, we can integrate the NGE learning into an exist-
ing GD-based NAS framework seamlessly.
Learning. In the search process, we jointly learn the NGE
and the network parameters w in a fully differentiable man-
ner. Unlike DARTS (Liu, Simonyan, and Yang 2019) opti-
mising for each batch input, we formulate the optimisation

4710

in an epoch-wise way, which would provide better converge
speed (see a comparison in experiments). The pseudo code
of NES for NAS is summarised in Algorithm 1.

Experiments

To show the effectiveness and transferability of our NGE
method on both image classification and semantic segmen-
tation tasks, we conducted the network architecture search
on CIFAR-10 only, and compared the obtained architecture
with both state-of-the-art human-design and NAS models on
CIFAR-10, CIFAR-100, ImageNet and PASCAL VOC 2012
datasets. Below we gave the experiment details including
datasets, model instantiating, evaluation, and analysis.

Datasets

CIFAR. Both CIFAR-10 and CIFAR-100 (Krizhevsky and
others 2009) contain 50K/10K train/test RGB images with a
unified resolution of 32 × 32. The images of both datasets
are categorised into 10 and 100 classes, respectively.
ImageNet. For the large-scale image classification evalua-
tion, we used the ILSVRC2012, a subset of ImageNet (Rus-
sakovsky et al. 2015) that contains 1K classes, 1.28M train-
ing images, and 50K validation samples.
PASCAL VOC 2012. We used the PASCAL VOC 2012
(Everingham et al. 2015) for semantic segmentation eval-
uation. It consists 1,464/1,449/1,456 train/val/test images
with pixel annotation from 21 classes. Extra annotations
from (Hariharan et al. 2011) were used for data augmen-
tation, resulting in 10,582 training images. We used mean
pixel intersection-over-union (mIOU) across all the classes
to measure the performance.

NGE Instantiating

We constructed the graph search space G = (V, E) with
|V| = 6 nodes (2 input nodes and 4 inner nodes). As such,
there are |E| = 14 edges totally. For the node embedding,
we set the input dimension D = 64 and the output dimen-
sion F =64. We used a (L=3)-layers GCN with the hidden
dimensions of 128. A MLP with 2-FC layers at the dimen-
sion of 64 was applied to learn the edge embedding with
dimension K=64, taking as input the concatenation of two
node embeddings. We included O = 7 primitive operations
in the candidate function set O as introduced early. All the
parameters (Θn, Θe and Θo) were randomly initialised in
the normal distribution. All the FC layers use no bias.

Cell Search

We followed the setup of existing methods (Real et al. 2019;
Liu, Simonyan, and Yang 2019; Liu et al. 2018a) to search
the convolutional cells on CIFAR-10. A small proxy net-
work consists of 8 cells was constructed for searching both
the normal cell and the reduction cell. As shown in Fig. 2(b),
two reduction cells are located at the 1/3 and 2/3 of the total
depth of the network. The detailed head structure for CIFAR
is depicted in Fig. 2(c), in which the number of initial chan-
nels is 16. We split 25K images from the training set for val-
idation. We initialised the node embeddings Xnormal and
Xreduction for the normal cells and reduction cells, where

�������

	

����������

�
���������� �

����������
�

����������

�������
����������
�����������

����������������

�����������

�������

	

����������
�

����������

�
����������

�������
�����������

������������ �����

������������

�
������������

������������

������ �	��

	������ �	��

Figure 4: Normal cell and reduction cell obtained by NGE.

Xnormal is shared for all normal cells and Xreduction was
shared for all reduction cells. For the network parameter w,
we used SGD with an initial learning rate 0.025 and the mo-
mentum of 0.9. We decayed the learning rate to 0 during
training using a cosine schedule. A weight decay of 3×10−4

was imposed to avoid over-fitting. For the NGE learning, we
used the Adam optimiser with a fixed learning rate 6×10−4

and set the weight decay to 1× 10−3. To search the nor-
mal cell and reduction cell efficiently, we used 25 epochs
for training the proxy network. With NGE, the search on
CIFAR-10 took only 2.4 hours on a single NVIDIA Tesla
V100 GPU. The searched cells by NGE is shown in Fig. 4.

Architecture Evaluation

CIFAR. To measure the final image classification perfor-
mance of the searched cells on CIFAR-10 and CIFAR-100,
an evaluation network of 20 cells, 36 initial channels and
an auxiliary tower with loss weight 0.4 was created. The
network was trained from scratch for 600 epochs with 128-
sized mini-batches. To avoid over-fitting, the cutout regu-
larisation (DeVries and Taylor 2017) with length 16 and
the drop-path (Larsson, Maire, and Shakhnarovich 2017) of
probability 0.3 were applied. The weight decay values for
CIFAR-10 and CIFAR-100 were set to 3×10−4 and 5×10−4

individually. For model training, the standard SGD optimi-
sation with a momentum of 0.9 was performed. The initial
learning rate was 0.25, decayed to 0 with a cosine scheduler.

We summarised the evaluation results with comparison
to the state-of-the-art methods in Table 1. Using NGE, the
discovered network with 3.5M parameters achieves 2.60%
error rate on CIFAR-10. Without re-searching, we applied
the same network on CIFAR-100 and achieved 16.53% error
rate. We made three observations: (1) NGE achieves a very
competitive result (third best) on CIFAR-10, whilst enjoying
the fastest search speed (only 0.1 GPU day). This demon-
strates the cost-effective advantages of our NGE model,
compared with ProxylessNAS (Cai, Zhu, and Han 2019)
with the best accuracy and 4 GPU days and AmoebaNet-
B (Real et al. 2019) with the second best accuracy and 3150
GPU days. (2) Compared with GHN which also conducts
graph-based search, our NGE can achieve the cells with less
parameters (3.4M vs 5.7M) at a significant less cost (0.1 vs

4711

Architecture Venue
Error (%) Params Search Cost

Search Method
C10 C100 (M) GPUs Days

DenseNet-BC (Huang et al. 2017) CVPR17 3.46 17.18 25.6 - - manual

NASNet-A + cutout (Zoph et al. 2018) CVPR18 2.65 - 3.3 450 1800 RL
AmoebaNet-A + cutout (Real et al. 2019) CVPR18 3.34 - 3.2 450 3150 EA
AmoebaNet-B + cutout (Real et al. 2019) CVPR18 2.55 - 2.8 450 3150 EA
Hireachical Evolution (Liu et al. 2018b) ICLR18 3.75 - 15.7 200 300 EA
PNAS (Liu et al. 2018a) ECCV18 3.41 - 3.2 100 1.5 SMBO
ENAS + cutout (Pham et al. 2018) ICML18 2.89 - 4.6 1 0.5 RL
ProxylessNAS-G + cutout (Cai, Zhu, and Han 2019) ICLR19 2.08 - 5.7 - 4 GD
RENAS (Chen et al. 2019) CVPR19 2.88 - 3.5 4 1.5 EA&RL

DARTS (1st) + cutout (Liu, Simonyan, and Yang 2019) ICLR19 3.00 - 3.3 1 1.5 GD
DARTS (2nd) + cutout (Liu, Simonyan, and Yang 2019) ICLR19 2.76 17.54 3.3 1 4.0 GD
SNAS (mild) + cutout (Xie et al. 2019) ICLR19 2.98 - 2.9 1 1.5 GD
SNAS (moderate) + cutout (Xie et al. 2019) ICLR19 2.85 - 2.8 1 1.5 GD
SNAS (aggressive) + cutout (Xie et al. 2019) ICLR19 3.10 - 2.3 1 1.5 GD
GHN + cutout (Zhang, Ren, and Urtasun 2019) ICLR19 2.84 - 5.7 1 0.84 GD
GDAS [C=36,N=6] (Dong and Yang 2019) CVPR19 2.93 18.38 3.4 1 0.84 GD
GDAS(FRC) [C=36,N=6] (Dong and Yang 2019) CVPR19 2.82 18.13 2.5 1 0.68 GD
BayesNAS(0.010) + cutout (Zhou et al. 2019) ICML19 3.02 - 2.5 1 0.2 GD
BayesNAS(0.007) + cutout (Zhou et al. 2019) ICML19 2.90 - 3.1 1 0.2 GD
BayesNAS(0.005) + cutout (Zhou et al. 2019) ICML19 2.81 - 3.4 1 0.2 GD
ASNG-NAS + cutout (Akimoto et al. 2019) ICML19 2.83 - 3.9 1 0.11 GD

NGE + cutout Ours 2.60 16.53 3.5 1 0.1 GD

Table 1: Comparisons with the state-of-the-art architectures on the CIFAR-10 and CIFAR-100 datasets.

0.84 GPU day), while obtaining a better performance (2.60
vs 2.84). (3) Directly transferring the CIFAR-10 searched
network to CIFAR-100 can achieve the best result, out-
performing DARTS (Liu, Simonyan, and Yang 2019) and
GDAS (Dong and Yang 2019) significantly. This indicates
the superior transferability of the network searched by our
method in a challenging cross-dataset evaluation.

ImageNet. To evaluate the transferability of the architec-
tures discovered by NGE on the large scale ImageNet bench-
mark, we followed the mobile setting as in (Liu, Simonyan,
and Yang 2019; Dong and Yang 2019), where the number
of multiply-add operations is restricted to be less than 600M
with the input size at 224×224. Specifically, we constructed
an evaluation network with 14 cells and 48 initial channels;
The detailed head structure consists of three conv layers, as
shown in Fig. 2(c). An auxiliary tower with loss weight 0.4
was also applied. We trained this model using the SGD for
250 epochs at batch-size 512 on 4 Nvidia Tesla P100 GPUs.
We initialised a learning rate of 0.25 and reduced it to 0 by
a linear scheduler. Learning rate warmup (Goyal et al. 2017)
was applied for the first 5 epochs to deal with the large batch-
size and learning rate.

The ImageNet results in the mobile setting are presented
in Table 2. Notably, the cell architectures found on CIFAR-
10 by our method can achieve highly competitive perfor-
mance, with significantly less computation cost (0.1 GPU
day vs 6 GPU days for RENAS and 3,150 GPU days for
AmoeBaNet). Unlike ProxylessNAS searching the network
on ImageNet directly using 8.3 GPU days, the network
searched by NGE on CIFAR-10 can be successfully trans-

ferred. Moreover, NGE discovers the cells on CIFAR-10 that
performs better on ImageNet than state-of-the-art GD-based
methods (GHN, DARTS, SNAS, GDAS and BayesNAS).

Pascal VOC 2012. We further conducted a semantic seg-
mentation experiment with DeepLabv3 (Chen et al. 2017).
In this test, the Atrous Spatial Pyramid Pooling (ASPP)
module, that contains three 3 × 3 convolutions with differ-
ent atrous rates, was applied. To make a fair comparison, we
followed the setting as in RENAS (Chen et al. 2019) and
trained on the PASCAL VOC dataset using the above Im-
ageNet pretrained network as the backbone model. We set
the output stride to 16, which is the ratio of the input to the
output spatial resolution. Note, we did not apply multi-scale
inference and left-right flipping to improve the performance.

In Table 3, we summarise the validation set results in two
pretraining settings (ImageNet and COCO (Lin et al. 2014))
and presented comparisons with other mobile networks. The
results show that: (1) In both settings, our model achieves
the best performance with 75.96% mIOU. Unlike the two
state-of-the-art manually-designed models (MobileNet-v1
and MobileNet-v2), NGE does not rely on the stronger
COCO pretraining. (2) Our model outperforms other two
state-of-the-art NAS-designed models, whilst having less
parameters (10.31M with 75.96% mIOU vs 12.39M with
73.68% mIOU for NASNet-A and 11.63M with 75.83%
mIOU for RENAS). Overall, the cells discovered on CIFAR-
10 by NGE surpass both state-of-the-art hand-crafted and
NAS-mined designs on the semantic segmentation task.

4712

Architecture Venue
Test Err. (%) Params ×+ Search Cost

Search Method
top-1 top-5 (M) (M) (GPU-days)

MobileNet-v1(1.0)(Howard et al. 2017) arXiv17 29.4 10.5 4.2 575 - manual
MobileNet-v2(1.0)(Sandler et al. 2018) CVPR18 28.0 - 3.4 300 - manual
ShuffleNet 2× (v1) (Zhang et al. 2018) CVPR18 26.4 10.2 ≈5 524 - manual
ShuffleNet 2× (v2) (Ma et al. 2018) ECCV18 25.1 - ≈5 591 - manual

NASNet-A (Zoph et al. 2018) CVPR18 26.0 8.4 5.3 564 1800 RL
NASNet-B (Zoph et al. 2018) CVPR18 27.2 8.7 5.3 488 1800 RL
NASNet-C (Zoph et al. 2018) CVPR18 27.5 9.0 4.9 558 1800 RL
PNAS (Liu et al. 2018a) ECCV18 25.8 8.1 5.1 588 1.5 SMBO
AmoebaNet-A (Real et al. 2019) AAAI19 25.5 8.0 5.1 555 3150 EA
AmoebaNet-B (Real et al. 2019) AAAI19 26.0 8.5 5.3 555 3150 EA
AmoebaNet-C (Real et al. 2019) AAAI19 24.3 7.6 6.4 570 3150 EA
ProxylessNAS (GPU) (Cai, Zhu, and Han 2019) ICLR19 24.9 7.5 7.1 465 8.3 GD
RENAS (Chen et al. 2019) CVPR19 24.3 7.4 5.4 580 6 EA&RL

DARTS (Liu, Simonyan, and Yang 2019) ICLR19 26.7 8.7 4.7 574 4.0 GD
SNAS (Xie et al. 2019) ICLR19 27.3 9.2 4.3 522 1.5 GD
GHN (Zhang, Ren, and Urtasun 2019) ICLR19 27.0 8.7 6.1 569 0.84 GD
GDAS [C=50,N=4] (Dong and Yang 2019) CVPR19 26.0 8.5 5.3 581 0.84 GD
GDAS (FRC) [C=52,N=4] (Dong and Yang 2019) CVPR19 27.5 9.1 4.4 497 0.68 GD
BayesNAS (0.010) (Zhou et al. 2019) ICML19 28.1 9.4 4.0 - 0.2 GD
BayesNAS (0.007) (Zhou et al. 2019) ICML19 27.3 8.4 3.3 - 0.2 GD
BayesNAS (0.005) (Zhou et al. 2019) ICML19 26.5 8.9 3.9 - 0.2 GD

NGE (searched on CIFAR10) Ours 25.3 7.9 5.0 563 0.1 GD

Table 2: Comparisons with the state-of-the-art architectures on the ImageNet benchmark with the mobile setting.

Model Dataset #Params mIOU(%)

MobileNet-v1 (Howard et al. 2017) COCO 11.15M 75.29
MobileNet-v2 (Sandler et al. 2018) COCO 4.52M 75.70

MobileNet-v1 (Howard et al. 2017) ImageNet 11.15M 68.79
MobileNet-v2 (Sandler et al. 2018) ImageNet 4.52M 70.02
NASNet-A (Zoph et al. 2018) ImageNet 12.39M 73.68
RENAS (Chen et al. 2019) ImageNet 11.63M 75.83

NGE ImageNet 10.31M 75.96

Table 3: Semantic segmentation evaluation with DeepLabv3
on the PASCAL VOC 2012 validation set.

Further Analysis

To further demonstrate the necessity of learning neural graph
embeddings for NAS, we compared three alternative learn-
ing strategies: (1) As the baseline method, without neural
embeddings we directly learn the architecture parameters as
DARTS (Liu, Simonyan, and Yang 2019). (2) A plain em-
bedding learning strategy is added on the baseline, in which
no relationships between nodes is modelled. (3) Two RNN
layers are further introduced upon the plain method to model
the relationships between nodes in a sequential manner. For
fair comparison, we followed the same setting as NGE to
search the cell architectures on CIFAR-10 and reported the
final performance on both CIFAR-10 and CIFAR-100. Ta-
ble 4 shows that: (1) Compared with the baseline, learning
embedding for NAS consistently helps find better cell archi-
tectures. (2) Modelling the relationships between nodes can
further benefit the searching of cell architectures. (3) The
proposed NGE outperforms alternative learning strategies
significantly. This verifies the significance of graph embed-

Model
Test Error (%)

CIFAR-10 CIFAR-100

Baseline 3.44 17.90

Plain 3.14 17.60
RNN 2.71 16.97

NGE 2.60 16.53

Table 4: Comparing different embedding learning models.

dings for NAS and the superiority of our method.

Conclusion

We presented a generic Neural Graph Embedding (NGE)
method for neural architecture search (NAS). Unlike exist-
ing methods, NGE uniquely takes into account the intrinsic
topology knowledge of neural networks from the directed
acyclic graph perspective. It gives rise to a generic neural
network representation with the flexibility of benefiting var-
ious NAS paradigms. As an efficient showcase, we demon-
strate the advantages of NGE in a gradient descent based
NAS framework. Extensive experiments on image classifica-
tion and semantic segmentation show that with our method,
high-quality cell architectures can be identified at a signifi-
cant low computation cost.

Acknowledgments

This work is supported by the China Scholarship Council,
the Alan Turing Institute, and Innovate UK Industrial Chal-
lenge Project (98111-571149).

4713

References

Akimoto, Y.; Shirakawa, S.; Yoshinari, N.; Uchida, K.;
Saito, S.; and Nishida, K. 2019. Adaptive stochastic natural
gradient method for one-shot neural architecture search. In
ICML.

Cai, H.; Chen, T.; Zhang, W.; Yu, Y.; and Wang, J. 2018a.
Efficient architecture search by network transformation. In
AAAI.

Cai, H.; Yang, J.; Zhang, W.; Han, S.; and Yu, Y. 2018b.
Path-level network transformation for efficient architecture
search. In ICML.

Cai, H.; Zhu, L.; and Han, S. 2019. Proxylessnas: Direct
neural architecture search on target task and hardware. In
ICLR.

Chen, L.-C.; Papandreou, G.; Schroff, F.; and Adam, H.
2017. Rethinking atrous convolution for semantic image
segmentation. arXiv.

Chen, Y.; Meng, G.; Zhang, Q.; Xiang, S.; Huang, C.; Mu,
L.; and Wang, X. 2019. Renas: Reinforced evolutionary
neural architecture search. In CVPR, 4787–4796.

DeVries, T., and Taylor, G. W. 2017. Improved regulariza-
tion of convolutional neural networks with cutout. arXiv.

Dong, X., and Yang, Y. 2019. Searching for a robust neural
architecture in four gpu hours. In CVPR, 1761–1770.

Everingham, M.; Eslami, S. A.; Van Gool, L.; Williams,
C. K.; Winn, J.; and Zisserman, A. 2015. The pascal visual
object classes challenge: A retrospective. IJCV 111(1):98–
136.

Ghiasi, G.; Lin, T.-Y.; and Le, Q. V. 2019. Nas-fpn: Learning
scalable feature pyramid architecture for object detection. In
CVPR.

Goyal, P.; Dollár, P.; Girshick, R.; Noordhuis, P.;
Wesolowski, L.; Kyrola, A.; Tulloch, A.; Jia, Y.; and He,
K. 2017. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv.

Hariharan, B.; Arbeláez, P.; Bourdev, L.; Maji, S.; and Ma-
lik, J. 2011. Semantic contours from inverse detectors. In
ICCV, 991–998. IEEE.

Howard, A. G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang,
W.; Weyand, T.; Andreetto, M.; and Adam, H. 2017. Mo-
bilenets: Efficient convolutional neural networks for mobile
vision applications. arXiv.

Huang, G.; Liu, Z.; Van Der Maaten, L.; and Weinberger,
K. Q. 2017. Densely connected convolutional networks. In
CVPR, 4700–4708.

Kipf, T. N., and Welling, M. 2017. Semi-supervised classi-
fication with graph convolutional networks. In ICLR.

Krizhevsky, A., et al. 2009. Learning multiple layers of
features from tiny images. Technical report, Citeseer.

Larsson, G.; Maire, M.; and Shakhnarovich, G. 2017. Frac-
talnet: Ultra-deep neural networks without residuals.

Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.;
Ramanan, D.; Dollár, P.; and Zitnick, C. L. 2014. Mi-
crosoft coco: Common objects in context. In ECCV, 740–
755. Springer.

Liu, C.; Zoph, B.; Neumann, M.; Shlens, J.; Hua, W.; Li, L.-
J.; Fei-Fei, L.; Yuille, A.; Huang, J.; and Murphy, K. 2018a.
Progressive neural architecture search. In ECCV, 19–34.

Liu, H.; Simonyan, K.; Vinyals, O.; Fernando, C.; and
Kavukcuoglu, K. 2018b. Hierarchical representations for
efficient architecture search. In ICLR.

Liu, C.; Chen, L.-C.; Schroff, F.; Adam, H.; Hua, W.; Yuille,
A. L.; and Fei-Fei, L. 2019. Auto-deeplab: Hierarchical
neural architecture search for semantic image segmentation.
In CVPR.

Liu, H.; Simonyan, K.; and Yang, Y. 2019. Darts: Differen-
tiable architecture search. In ICLR.

Luo, R.; Tian, F.; Qin, T.; Chen, E.; and Liu, T.-Y. 2018.
Neural architecture optimization. In NeurIPS, 7816–7827.

Ma, N.; Zhang, X.; Zheng, H.-T.; and Sun, J. 2018. Shuf-
flenet v2: Practical guidelines for efficient cnn architecture
design. In ECCV, 116–131.

Nekrasov, V.; Chen, H.; Shen, C.; and Reid, I. 2019. Fast
neural architecture search of compact semantic segmenta-
tion models via auxiliary cells. In CVPR.

Pham, H.; Guan, M. Y.; Zoph, B.; Le, Q. V.; and Dean,
J. 2018. Efficient neural architecture search via parameter
sharing. In ICML.

Real, E.; Aggarwal, A.; Huang, Y.; and Le, Q. V. 2019. Reg-
ularized evolution for image classifier architecture search. In
AAAI.

Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.;
Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.;
et al. 2015. Imagenet large scale visual recognition chal-
lenge. IJCV 115(3):211–252.

Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; and
Chen, L.-C. 2018. Mobilenetv2: Inverted residuals and lin-
ear bottlenecks. In CVPR, 4510–4520.

Sciuto, C.; Yu, K.; Jaggi, M.; Musat, C.; and Salzmann, M.
2019. Evaluating the search phase of neural architecture
search. arXiv.

Xie, S.; Zheng, H.; Liu, C.; and Lin, L. 2019. Snas: stochas-
tic neural architecture search. In ICLR.

Zhang, X.; Zhou, X.; Lin, M.; and Sun, J. 2018. Shufflenet:
An extremely efficient convolutional neural network for mo-
bile devices. In CVPR, 6848–6856.

Zhang, C.; Ren, M.; and Urtasun, R. 2019. Graph hypernet-
works for neural architecture search. In ICLR.

Zhou, H.; Yang, M.; Wang, J.; and Pan, W. 2019. Bayesnas:
A bayesian approach for neural architecture search. In
ICML.

Zoph, B., and Le, Q. V. 2017. Neural architecture search
with reinforcement learning. In ICLR.

Zoph, B.; Vasudevan, V.; Shlens, J.; and Le, Q. V.
2018. Learning transferable architectures for scalable im-
age recognition. In CVPR, 8697–8710.

4714

