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Abstract

Layer assignment is seldom picked out as an independent
research topic in neural architecture search. In this paper,
for the first time, we systematically investigate the impact
of different layer assignments to the network performance
by building an architecture dataset of layer assignment on
CIFAR-100. Through analyzing this dataset, we discover
a neural inheritance relation among the networks with dif-
ferent layer assignments, that is, the optimal layer assign-
ments for deeper networks always inherit from those for
shallow networks. Inspired by this neural inheritance re-
lation, we propose an efficient one-shot layer assignment
search approach via inherited sampling. Specifically, the
optimal layer assignment searched in the shallow network
can be provided as a strong sampling priori to train and
search the deeper ones in supernet, which extremely reduces
the network search space. Comprehensive experiments car-
ried out on CIFAR-100 illustrate the efficiency of our pro-
posed method. Our search results are strongly consistent
with the optimal ones directly selected from the architec-
ture dataset. To further confirm the generalization of our
proposed method, we also conduct experiments on Tiny-
ImageNet and ImageNet. Our searched results are remark-
ably superior to the handcrafted ones under the unchanged
computational budgets. The neural inheritance relation dis-
covered in this paper can provide insights to the universal
neural architecture search.

Introduction

Network depth is a critical dimension in neural architecture
design. An increasing network depth in convolutional neu-
ral networks (CNNs) will bring a remarkable performance
boost, such as the accuracy increase from ResNet-18 to
ResNet-152. However, an important problem is neglected:
Given a fixed network depth, how to assign the layers into
different groups for computing feature maps with different
spatial resolution? Taking ResNet-50(He et al. 2016) as an

∗Equal contributions.This work is done when Rang Meng is an
intern at Hikvision Research Institute.

†Corresponding Author
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Different layer assignments, different network per-
formances. (a) presents different layer assignments. All the
networks follow the rule of half the spatial size, double the
channels to keep them with the same FLOPs. (b) and (c) il-
lustrate the performance gap (the bin in these figures) among
different layer assignments of plain and residual networks on
CIFAR-100, respectively.

example, it assigns [3, 4, 6, 3] stacked residual bottlenecks
to compute feature maps with spatial resolution 56 × 56,
28 × 28, 14 × 14 and 7 × 7, respectively. In this paper,
we name this process as layer assignment for short. Obvi-
ously, this is an empirically handcrafted design and cannot
guarantee the best performance. As shown in Fig.1, there ex-
ist many layer assignment manners with the same network
depth whose accuracy in a given task are different a lot. Ac-
tually, the optimal layer assignment is changeable among
different tasks and it is costly to search the optimal layer
assignment for each task in a trial-and-error way. Therefore,
it is essential to search the optimal layer assignment auto-
matically and efficiently.
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Before designing the method to search the optimal layer
assignment, we are curious about the relation among dif-
ferent layer assignment. Is there any inheritance relation
among the optimal layer assignments from shallow networks
to deeper networks? Bringing this question, we build a neu-
ral architecture dataset of different layer assignments, which
consists of 908 different neural networks trained on CIFAR-
100, including plain networks and residual networks(we will
release later). We separately pick out the optimal ones for
each network depth from this dataset. Surprisingly but rea-
sonably, as is shown in Fig.4, we find that the optimal layer
assignments for deeper networks are always developed from
those for shallow ones. We name this as neural inheritance
relation in this paper.

Inspired by the discovered neural inheritance relation, we
propose a one-shot layer assignment search method via in-
herited sampling. First of all, one-shot method(Bender et
al. 2018) is an efficient neural architecture search frame-
work, which constructs a supernet coupled every candidate
sub-network in a weight-sharing manner. It can be trained
through a sampling way (like uniform sampling(Guo et al.
2019)). After that, the performances of the sub-networks
sampled from this supernet are ranked so as to search the
best one. In this paper, we couple the sub-networks with dif-
ferent layer assignments into a shared supernet, which can
efficiently reduce training cost. We propose a neural inheri-
tance relation guided sampling method to train the supernet.
Starting from training shallow sub-networks sampled from
the supernet, we search the optimal layer assignment and
take it as a strong sampling priori to sample and train the
deeper one which is named as inherited sampling for short.
Different from other one-shot methods, we iterate the train-
ing and searching process from shallow to deep networks. In
this way, our method can reduce the search complexity from
O(mn) to O(mn), where m means the layer number and n
denotes the group number.

We conduct extensive experiments on CIFAR-100 to
demonstrate the efficiency and accuracy of our proposed
layer assignment search method. Our searched layer assign-
ment for different network depth is strongly consistent with
the optimal one selected from the architecture dataset. To
the best of our knowledge, we are the first one to use ar-
chitecture dataset to evaluate the performance of searching
method. Before our work, other related works evaluate their
performance through comparing with each other, and they
never know the accuracy gap between their searched mod-
els and the best model actually. Moreover, to make sure the
generalization of our proposed method, we also conduct ex-
tensive experiments on Tiny-ImageNet and ImageNet. The
performance of our searched models surpass the correspond-
ing handcrafted ones by a large margin.

To summarize, our contributions can be listed as follows:

• We build an architecture dataset of layer assignment to
analyze their hidden relation, and we discover a neural
inheritance relation among the optimal layer assignment
for each network depth. To the best of our knowledge, we
are the first one to systematically investigate the impact of
layer assignment to network performance.

• We propose a neural inheritance relation guided one-shot
method for automatic layer assignment search.

• To the best of our knowledge, we are the first one to eval-
uate the performance of searching method through archi-
tecture dataset by providing the ground-true performance
comparison of different networks.

• Our searched layer assignments surpass handcrafted ones
by a large margin.

Related Works

Layer Growing

The original training method of VGGNet (Simonyan and
Zisserman 2014) may be the prototype of layer grow-
ing, which trains the deeper network inheriting the trained
weights from the shallow one and only initializes the newly-
stacked layers. Network Morphism (Wei et al. 2016; Chen,
Goodfellow, and Shlens 2016; Wei, Wang, and Chen 2017)
morphs a shallow network to a deeper network through
stacking new layers initialized as identity mapping so as to
expand its learning capacity. It can fast learn extra knowl-
edges directly based on the trained shallow network. Be-
yond, AutoGrow (Wen, Yan, and Li 2019) proposes to au-
tomatically grow the layers until the network accuracy stops
increasing. Also, it proves that a simple random initializa-
tion is better than Network Morphism.

The abovementioned methods only focus on how to ini-
tialize the newly-stacked layers and how to discover the net-
work depth when the accuracy stops increasing. Different
from them, our proposed method aims to search the opti-
mal layer assignment to achieve the best network accuracy
with unchanged computational budgets (network depth and
FLOPs). Also, our method can search the optimal layer as-
signment from shallow to deeper networks once.

Neural Architecture Search

Neural Architecture Search (NAS) can search the network
architecture automatically, including network depth, through
reinforcement learning (Zoph and Le 2016; Cai et al. 2018;
Zoph et al. 2018; Tan and Le 2019; Tan et al. 2019),
evolution methods (Liu et al. 2017; Real et al. 2019;
Pérez-Rúa et al. 2019; Elsken, Metzen, and Hutter 2018)
and gradient-based methods (Shin, Packer, and Song 2018;
Luo et al. 2018; Liu et al. 2019; Wu et al. 2019; Xie et al.
2018). Layer Assignment Search (LAS) is a sub-problem of
NAS. Before our work, no one purely picks out this sub-
problem and analyzes its influence to the network perfor-
mance. Different from other related NAS works, we build
an architecture dataset about layer assignment to systemat-
ically analyze the hidden relation among different architec-
tures, which inspires our proposed solution to LAS.

The most closely related NAS methods to ours is the
one-shot methods (Bender et al. 2018; Brock et al. 2017;
Guo et al. 2019; Chu et al. 2019; Yu and Huang 2019),
which couple each candidate network into a supernet in a
weight-sharing manner. The two most important operations
are a sampling method to train the supernet and an efficient
method to search the best one. For the former one, there exist
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sandwich rule (Yu and Huang 2019), uniform sampling (Guo
et al. 2019), fairness-aware sampling methods (Chu et al.
2019) and so on. For the latter one, there exist greedy(Yu and
Huang 2019), evolutionary(Guo et al. 2019), differentiable
searching methods(Stamoulis et al. 2019). These two opera-
tions are applied to make the candidate networks predictable
and search the best one efficiently. However, since there are
too many networks coupled into a shared supernet, it is too
hard to make sure the candidate networks predictable. Also,
the candidate network space is too large to search efficiently.
How to reduce the candidate network space in training and
searching phase is a feasible direction to solve these two
problems. Different from the related methods, our proposed
inherited sampling method to train the supernet can reduce
the network space by a large margin.

Problem Definition

In the convolutional neural networks, the feature maps are
usually downsampled into several spatial resolutions by
strided convolution or pooling operations from shallow to
higher layers. From this perspective, a CNN architecture
can be divided into several groups. The intermediate feature
maps in each group share the same spatial resolution. Let ai
be the number of layers in the ith group. A CNN Am

n with
m layers and n groups (m ≥ n) can be expressed as:

Am
n = [a1, a2, ..., an]

s.t.

{∑n

i=1
ai = m

ai > 0, i = 1, 2, ..., n

(1)

Apparently, there exist many solutions in Eqn.1 especially
as m increases given a fixed n. Different solutions corre-
spond to different layer assignment to the CNN architecture,
and further lead to different performances in each task. In
this work, a layer assignment search problem can be defined
as to find an optimal solution of Am

n with the best perfor-
mance in each task, which can be formulated as:

Ãm
n = argmax

Am
n

ACCval(N (w,Am
n )) (2)

where N (w,Am
n ) means a network with trained weights w

and layer assignment Am
n , and ACCval(·) denotes the accu-

racy on the validation dataset.

Theoretically, a naive enumeration method can solve this
problem, in which networks with every enumerated layer as-
signment are trained and evaluated. However, it is too ex-
pensive to train every possible network. The number of the
satisfied networks can be determined as:

O =
(m− 1)!

(n− 1)!(m− n)!
(3)

where ! denotes factorial. In practice, it is usually necessary
to search the best layer assignment in a range of network
depth instead of a given m. Hence, the more generalized
layer assignment search problem should be formulated as:

{Ãi
n} = argmax

Ai
n

ACCval(N (w,Ai
n)), i ∈ [n,m] (4)

Figure 2: An intuitive visualization of network space reduc-
tion brought by neural inheritance relation.

The complexity of enumeration method increases to:

O =

m
∑

i=n

(i− 1)!

(n− 1)!(i− n)!
=

∑m

i=n

∏n−1

j=1
i− j

(n− 1)!
(5)

which can be represented as a complexity O(mn) for short.
Our work here exactly focuses on reducing the complexity
and searching the optimal layer assignment efficiently.

In order to purely discuss the function of different layer
assignment manners, we double the output feature maps
when downsampling the spatial resolution in half to guaran-
tee the invariant FLOPs among different layer assignments
with the same network depth.

Method

Neural Inheritance Relation Assumption

As shown in Eqn.5, the layer assignment space for search-
ing is very enormous. Here naturally comes a question: does
there exist redundancy in this layer assignment searching
space? We believe there must exist some hidden relation
among different layer assignments. Given the performance
comparison of a small portion of them, it can directly de-
rive the performance comparison of other layer assignments
without training, which further reduces the searching space.
To proceed, we propose a reasonable Neural Inheritance Re-
lation Assumption (NIR assumption).

Assumption 1 The optimal layer assignments for deep net-
works always inherit from those for shallow networks.

Mathematically, this assumption can be formulated as:

Ãm
n=Ã

m−1
n +argmax

1

ACCval(N (w, Ãm−1
n +1)), 1∈Ω (6)

where 1 is a n-dimension one-hot vector and Ω is collection
of all one-hot vectors. This formula means we can search
the optimal layer assignment of m layers based on the re-
sult of m − 1 layers. According to this assumption, we can
search the optimal layer assignment from shallow to deep
networks in a recursive process, which reduces the search-
ing complexity from O(mn) to O(mn) as shown in Fig.2.

In the experimental part, we will prove it by building an
architecture dataset of different layer assignments.
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Figure 3: The pipeline of our proposed neural inheritance relation guided one-shot layer assignment search method.

Neural Inheritance Relation Guided One-Shot
LAS Method

Based on the NIR assumption, the layer assignment can be
searched recursively from shallow to deep networks. To ac-
celerate the search process, a weight-sharing mechanism is
integrated, where a supernet (one-shot model) is constructed
covering every possible layer assignment. That is, a given
layer assignment can be sampled from this supernet without
training stand alone to reduce the training time.

Moreover, according to the NIR assumption, it is unnec-
essary to couple every possible network into the supernet
causing a waste of training resource. Actually, the more sub-
networks coupled into the supernet, the larger the accuracy
gap between one-shot and stand-alone models will be. We
define the accuracy gap as:

GAP =
1

|Γ|

∑

A∈Γ

|ACCval(N (wstand−alone, A))

−ACCval(N (wone−shot, A)|

(7)

where Γ is the collection of layer assignments and |Γ| de-
notes the corresponding count. wstand−alone and wone−shot

denote the weights for stand-alone training and super-
net training. We claim that only if the accuracy gap is
small enough will the performance comparison among sub-
networks be highly confident. However, the more coupled
sub-networks, the larger this accuracy gap will be. Here we
propose to train the supernet through a Neural Inheritance
Relation Guided Sampling method, where only a few sub-
networks couple into the supernet for each network depth.

This sampling method is inspired by NIR assumption.

Given the searched optimal layer assignment Ãm−1
n for the

network with m − 1 layers, there exist n inherited layer as-
signment candidates for the network with m layers, namely

{Ãm−1
n +1}. We only sample n candidate networks from su-

pernet to train uniformly. After several epochs training, we
evaluate the performance of these candidate networks on the
validation dataset and then select the best one as the optimal

layer assignment Ãm
n for the network with m layers. Repeat-

edly, Ãm
n can be taken as a strong sampling priori to search

Ãm+1
n in next step. The entire procedure is shown as Fig.3.

Discussion

Previous one-shot search methods can be divided into two
steps: 1) Training the supernet coupled every possible sub-
network; 2) After training, evaluating the sub-networks sam-
pled from the supernet and then searching the best one.

Compared with these kinds of methods, our proposed
method turns these two steps into an integration, which ac-
tually cuts an enormous sub-network space into many small
pieces and then picks the useful ones from shallow networks
to deeper networks for training and searching in a recur-
sive way. As is mentioned above, our proposed method ex-
tremely reduces the searching complexity from O(mn) to
O(mn), which makes the one-shot training faster and brings
more confident searching results.

Experiments

In this work, we mainly conduct experiments on CIFAR-100
to analyze the neural inheritance relation for both plain net-
works and residual networks. Each layer in these networks
follow the rule of half spatial resolution, double channel
size so as to keep FLOPs unchanged for different layer as-
signments with the same network depth. By building an ar-
chitecture dataset of layer assignment on CIFAR-100, we
empirically prove our proposed Assumption 1. We use this
architecture dataset to evaluate our proposed LAS method.
To demonstrate the generalization of our proposed method,
we also carry out experiments on Tiny-ImageNet and a very
large-scale dataset ImageNet to further analyze: 1) The dif-
ferent impact of layer assignments on shallow networks and
very deep ones. 2) The layer assignments of the same net-
work searched for different datasets. 3) The improvement of
searched layer assignments to handcrafted counterparts.

Benchmark Datasets

CIFAR-100(Krizhevsky, Hinton, and others 2009) is a
dataset for 100-classes image classification. There are 500
training images and 100 testing images per class with reso-
lution 32× 32. In this dataset, we build a serial of VGG-like
plain networks and a serial of residual networks to analyze
the neural inheritance relation. We divide the feature extrac-
tor of each network into 3 groups with 3 input resolutions
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Algorithm 1: Layer Assignment Search Algorithm

Input: groups number n, target layers number and the
deepest layers number in supernet mt and ms,
step size K, training data loader Dt, validation
dataset Dv , 1000-images subset of training data
loader Ds

Output: the optimal layer assignments Ãmt

n

1 Warm up the deepest sub-network N (w, Ȧms

n );

2 Set the seed layer assignmentÃn
n;

3 for p = n to mt do

4 Inherited sampling, {(Ãp
n + 1i), i = 1, 2, . . . , n};

5 for d = 1 to K do
6 for data, labels in Dt do

7 Train(N (w, Ȧms

n ), data, label);
8 for i = 1 to n do

9 Train(N (w, Ãp
n + 1i), data, label);

10 end

11 end

12 end
13 for i = 1 to n do

14 Recalculate BN(N (w, Ãp
n + 1i), Ds);

15 ACCi=Predict(N (w, Ãp
n + 1i), Dv);

16 end

17 Ãp+1
n =Top1({(Ãp

n + 1i, ACCi), i = 1, 2, . . . , n});

18 end

32 × 32, 16 × 16 and 8 × 8. For the plain networks, the
channel of each group corresponds to 64, 128 and 256. Each
group consists of several stacked 3 × 3 convolution layers
and ends with a max-pooling layer for downsampling. A
batch normalization and a ReLU layer are appended after
each convolution layer. The classifier consists of 3 fully-
connected layers with channel 512, 512 and 100. For the
residual networks, we exactly follow the design of (He et
al. 2016) for CIFAR-10 with channels 16, 32, 64 for each
group. Different from the plain networks, the basic unit of
residual networks is bottleneck with two 3 × 3 convolution
layers. LAS problem is to determine the number of layers
(convolution layer, bottleneck or other basic units) assigned
for each group given a target network depth.

Tiny-ImageNet is a subset of ImageNet for 200-classes
image classification. There are 500 training images, 50 val-
idation images and 50 testing images per class with resolu-
tion 64× 64. In this dataset, we adopt two famous networks
MobileNet-V1 and ResNet-50 as the representatives to show
the efficiency of our LAS method, which covers the cases in-
cluding shallow network, very deep network, plain network
and residual network. The handcrafted layer assignments for
MobileNet-V1 and ResNet-50 are [2, 2, 6, 2] and [3, 4, 6, 3]
with resolution 16× 16, 8× 8, 4× 4 and 2× 2.

ImageNet(Russakovsky et al. 2015) is a 1000-classes im-
age classification dataset, which consists of 1.28 million im-
ages for training and 50k for validation. In this dataset, we
mainly adopt MobileNet-V1 as a representative to illustrate

the generalization of our proposed LAS method to the very
large-scale dataset since it is a great tendency to search a
compact light-weight network with high performance.

Implementation Details

To simplify the description of our algorithm, we name the
searching process from a network depth to next network
depth as one step. To balance the training iteration of each
step, we warm up the deepest sub-network in supernet
through training 60 epochs by a pre-set base learning rate be-
fore searching. After that, we initialize the seed layer assign-
ment as [1]×n for searching. During training the supernet in
each step, we iteratively train the deepest sub-network and
n sub-networks obtained by inherited sampling. The reason
why we always train the deepest sub-network is to tune the
parameters uncovered by the sampled sub-networks in real
time to accelerate the searching process for the following
steps. In each step, we adopt half of the base learning rate
with linear decaying policy for 10 epochs training. In the end
of each step for performance evaluation, we re-calculate all
the statistics in the batch normalization layer with 1000 im-
ages randomly selected from the training dataset. Note that
we only preserve one optimal layer assignment as the inher-
ited sampling priori for the next network depth. Our entire
searching process is summarized in Algorithm 1.

Experiments on CIFAR-100

Training Details. During training phase, we first zero-pad
the images with 4 pixels on each side and then randomly
crop them to produce 32 × 32 images, followed by ran-
domly horizontal flipping. We normalize them by channel
means subtraction and standard deviations division for both
training dataset and validation dataset. During building an
architecture dataset of layer assignment, we train all the enu-
merated networks in Pytorch. using SGD with Nesterov mo-
mentum 0.9. The base learning rate is set to 0.1 and mul-
tiplied with a factor 0.2 at 60 epochs, 120 epochs and 160
epochs, respectively. Weight decay is set as 0.0005. All the
networks are trained with batch size 128 for 200 epochs.
During searching, the setup is the same as above except that
the base learning rate is set to 0.05 with linear decaying pol-
icy for each step as shown in Fig.6.

Architecture Dataset Construction. To provide argu-
ments to Assumption 1, we build a layer assignments dataset
on CIFAR-100. It consists of 908 different neural networks
including both plain networks and residual networks, as well
as their corresponding accuracy on the validation dataset. In
this architecture dataset, we enumerate all the layer assign-
ments for the network with 4 to 15 layers (or bottlenecks).
After building the architecture dataset, we analyze the prop-
erty of layer assignment from the following aspects:

• Given a fixed network depth, different layer assignments,
different performance. As shown in Fig.1, we collect the
accuracy change of different layer assignments from shal-
low to deeper networks. Apparently, the performance gap
is significantly large. Take network depth 11 as an ex-
ample, the accuracy in plain network can change from
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Figure 4: Neural inheritance relation in plain (a) and residual
(b) networks on CIFAR-100.

68.11% to 74.37%, and the accuracy in residual network
can change from 64.92% to 70.29%.

• Different network configurations, different optimal layer
assignments. We take out the optimal layer assignments
for both plain networks and residual networks. As shown
in Tab.1, for plain networks, they tend to place the layers
in the shallow groups, while for residual networks, they
tend to place the layers in the higher groups. It means that
we cannot summarize a general layer assignment design
manner for different network configurations.

• Layer assignment distribution in each network depth. We
visualize the layer assignment distribution in Fig.5. The
majority lie in the not bad region, while the percentage of
the optimal ones is quite small, which indicates the diffi-
culty of layer assignment search. As layer increases, the
accuracy gap between the majority part and the optimal
part is getting small since the influence of layer assign-
ment is weakened by increasing network depth. This also
provides an indirect proof for Randomly Wired Neural
Networks(Xie et al. 2019) that even randomly wiring can
generate a not-bad network.

• Neural inheritance relation among the optimal layer as-
signments from shallow networks to deeper networks. To
discover the hidden relation among the layer assignments
with different network depth. We take out top4 optimal
layer assignments from the architecture dataset and plot
them in Fig.4. We can see that, the optimal layer assign-
ments in deeper networks always inherit the configuration
from shallow networks and further develop the optimal
layer assignment to their network depth. It means that we
can fast discover the optimal one in an extremely small
network space if given the optimal layer assignment in
shallow network. This is the key discovery in this paper
and inspires our proposed LAS method.

Automatic Layer Assignment Search. We iteratively
search the optimal layer assignment from shallow networks

Figure 5: Layer assignment distribution of residual networks
on CIFAR-100.

Figure 6: Searching procedure of plain network and residual
network on CIFAR-100. (a) Learning rate varies with train-
ing epoch. (b) and (c) Searching accuracy of plain network
and residual network vary with training epoch, and the ac-
curacy of corresponding stand-alone networks.

to deeper networks according to Algorithm. 1, and the
searching procedure is shown in Fig.6. We take out the win-
out layer assignments in different network depths and use
the accuracy trained from scratch to compare with each cor-
responding best layer assignment. As shown in Tab.1, the
accuracy gaps between our searched networks and the best
ones are quite small.

Experiments on Tiny-ImageNet

Training Details. We augment the training images by
RandomResizedCrop function with default settings in Py-
torch as well as randomly horizontal flipping. During search-
ing process, we train the supernet with SGD optimizer with
Nesterov momentum 0.9, batch size 256 and dropout ratio
0.5. The base learning rate is set to 0.05 with linear de-
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caying policy in each step. Weight decay is set as 0.0001
for MobileNet-V1 and 0.0005 for ResNet-50. To compare
the performance between our searched networks and the
handcrafted ones more fairly after searching, we train both
from scratch with exactly the same training configuration.
It can decouple the influence of our special training manner
used in searching process. Different from searching process,
we train MobileNet-V1 and ResNet-50 for 200 epochs. The
base learning rate is set to 0.1 and multiplied with a factor
0.1 at 100 epochs, 150 epochs and 175 epochs.

Searching Result on MobileNet-V1. As shown in Tab.2,
our searched layer assignment is [2, 5, 2, 3], which is totally
different with handcrafted one [2, 2, 6, 2]. Ours surpasses it
by a large margin with 1.42% accuracy improvement.

Searching Result on ResNet-50. As shown in Tab.2, our
searched one is [5, 6, 4, 1], and the handcrafted one is [3,
4, 6, 3]. Ours surpasses it by 0.4% accuracy improvement.
This improvement is less than MobileNet-V1, as we mention
above that the impact of layer assignment is weakened by the
improvement brought by the increasing network depth.

Experiments on ImageNet

Training Details. From the experiments on Tiny-
ImageNet, we can see that the impact of layer assignment in
shallow compact networks is more significant than deeper
networks. Hence, we use MobileNet-V1 as a representative
to further show the impact of layer assignment on the very
large-scale dataset. We only use 1/6 training datasets for
searching. We use almost the same training configuration
with the experiments on Tiny-ImageNet. Differently, weight
decay here is set to 0.00004, the base learning rate is set
to 0.6, and the batch size for every GPU is set to 128. We
totally use 7 GPUs for training.

Searching Result on MobileNet-V1. As shown in Tab.3,
compared with handcrafted one [2, 2, 6, 2], our searched
layer assignment only has a slight difference, which indi-
cates that the designer for MobileNet-V1 may had already
roughly search the layer assignment manually. Our searched
result only moves two layers from 3th group to 2nd group
and 4th group, respectively. Despite the slight difference, the
performance of our searched one surpasses the handcrafted
one by a large margin with an unexpected 1.5% accuracy im-
provement! The detailed training procedures are shown in
Fig.7. Also, comparing the searched layer assignments for
Tiny-ImageNet and ImageNet, the searching results for dif-
ferent datasets are totally different.

Training Cost Analysis. We do not use a lot of training
time for searching since we only train 10 epochs for each
step, and the sub-networks in early-stages are shallow. As
shown in Tab.4, our searching method only occupies half of
training time compared with training a stand-alone network.

Conclusions

In this paper, we discuss the impact of layer assignments
to the network performance. We discover the neural inheri-

Table 1: The performance comparison for the layer assign-
ments searched for different network depth on CIFAR-100.

Network Search Best Accuracy
Gap

plain

Layer Assignment Accuracy Layer Assignment Accuracy

2-1-1 68.35 1-1-2 68.93 0.58
2-1-2 71.23 2-1-2 71.23 0
3-1-2 71.26 2-2-2 72.01 0.75
3-2-2 72.98 3-2-2 72.98 0
3-2-3 72.06 4-2-2 73.68 1.62
4-2-3 73.06 3-4-2 73.52 0.46
5-2-3 72.88 5-3-2 73.90 1.02
5-3-3 73.85 8-1-2 74.25 0.40
6-3-3 73.53 5-5-2 73.91 0.38
7-3-3 73.14 6-5-2 74.41 0.27
7-4-3 73.95 5-6-3 74.53 0.58
8-4-3 74.2 8-4-3 74.2 0

residual

1-1-2 65.05 1-1-2 65.05 0
1-1-3 66.97 1-1-3 66.97 0
1-2-3 67.97 1-2-3 67.97 0
1-2-4 67.91 1-1-5 68.30 0.39
1-3-4 68.94 1-3-4 68.94 0
2-3-4 68.64 1-3-5 69.23 0.59
2-3-5 69.11 2-4-4 69.70 0.59
2-4-5 69.83 3-3-5 70.29 0.46
2-4-6 70.01 1-3-8 70.06 0.05
2-5-6 70.34 3-5-5 70.43 0.09
2-5-7 70.17 4-3-7 71.06 0.89
2-5-8 70.28 5-4-6 71.06 0.78

Table 2: Searching results on Tiny-ImageNet

Network Layer Assignment Accuracy(%) FLOPs(M) #Params(M)

MobileNet-V1(Our Impl.) 2-2-6-2 53.46 46.5 3.3
MobileNet-V1(Search) 2-5-2-3 54.88(1.42↑) 46.7 3.5
ResNet-50(Our Impl.) 3-4-6-3 57.00 329.8 23.8

ResNet-50(Search) 5-6-4-1 57.40(0.4↑) 329.8 13.4

Table 3: MobileNet-V1 searching result on ImageNet

Layer Assignment Stand Alone Accuracy(%) Epoch FLOPs(M) #Params(M)

2-2-6-2(Howard et al. 2017) 70.6 ≫90 568.7 4.2
2-2-6-2(Our Impl.) 69.82 90 568.7 4.2

2-3-4-3(Search) 71.32 90 569.1 4.8

Table 4: The efficiency of MobileNet-V1 layer assignment
search on ImageNet

GPUs Layer Assignment Search Stand Alone

TITAN XP
2-3-4-3 86.8 GPU-hours 173.9 GPU-hours
2-2-6-2 - 183 GPU-hours

Figure 7: The training procedures of our searched
MobileNet-V1 and the handcrafted one.Both are trained
from scratch with exactly the same training settings.

tance relation among the networks with different layer as-
signments, which inspires us to propose an efficient one-
shot layer assignment search approach via inherited sam-
pling. We believe this intrinsic property can be extended to
other dimensions of neural architecture and provides more
insights to the NAS community.
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