
Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 864–881

June 6–11, 2021. ©2021 Association for Computational Linguistics

864

Neural Language Modeling for Contextualized Temporal Graph
Generation

Aman Madaan, Yiming Yang

Language Technologies Institute, Carnegie Mellon University

Pittsburgh, PA, USA

amadaan@cs.cmu.edu

Abstract

This paper presents the first study on using

large-scale pre-trained language models for

automated generation of an event-level tem-

poral graph for a document. Despite the

huge success of neural pre-training methods in

NLP tasks, its potential for temporal reasoning

over event graphs has not been sufficiently ex-

plored. Part of the reason is the difficulty in

obtaining large training corpora with human-

annotated events and temporal links. We ad-

dress this challenge by using existing IE/NLP

tools to automatically generate a large quantity

(89,000) of system-produced document-graph

pairs, and propose a novel formulation of the

contextualized graph generation problem as a

sequence-to-sequence mapping task. These

strategies enable us to leverage and fine-tune

pre-trained language models on the system-

induced training data for the graph generation

task. Our experiments show that our approach

is highly effective in generating structurally

and semantically valid graphs. Further, eval-

uation on a challenging hand-labeled, out-of-

domain corpus shows that our method outper-

forms the closest existing method by a large

margin on several metrics. We also show a

downstream application of our approach by

adapting it to answer open-ended temporal

questions in a reading comprehension setting.1

1 Introduction

Temporal reasoning is crucial for analyzing the in-

teractions among complex events and producing

coherent interpretations of text data (Duran et al.,

2007). There is a rich body of research on the

use of temporal information in a variety of impor-

tant application domains, including topic detection

and tracking (Makkonen et al., 2003), information

extraction (Ling and Weld, 2010), parsing of clin-

ical records (Lin et al., 2016), discourse analy-

1Code and pre-trained models available at https://
github.com/madaan/temporal-graph-gen

sis (Evers-Vermeul et al., 2017), and question an-

swering (Ning et al., 2020).

Graphs are a natural choice for representing the

temporal ordering among events, where the nodes

are the individual events, and the edges capture

temporal relationships such as “before”, “after” or

“simultaneous”. Representative work on automated

extraction of such graphs from textual documents

includes the early work by Chambers and Jurafsky

(2009), where the focus is on the construction of

event chains from a collection of documents, and

the more recent CAEVO (Chambers et al., 2014) and

Cogcomptime (Ning et al., 2018), which extract

a graph for each input document instead. These

methods focus on rule-based and statistical sub-

modules to extract verb-centered events and the

temporal relations among them. As an emerging

area of NLP, large scale pre-trained language mod-

els have made strides in addressing challenging

tasks like commonsense knowledge graph comple-

tion (Bosselut et al., 2019) and task-oriented dialog

generation (Budzianowski and Vulić, 2019). These

systems typically fine-tune large language models

on a corpus of a task-specific dataset. However,

these techniques have not been investigated for

temporal graph extraction.

This paper focuses on the problem of generation

of an event-level temporal graph for each docu-

ment, and we refer to this task as contextualized

graph generation. We address this open challenge

by proposing a novel reformulation of the task as a

sequence-to-sequence mapping problem (Sutskever

et al., 2014), which enables us to leverage large pre-

trained models for our task. Further, different from

existing methods, our proposed approach is com-

pletely end-to-end and eliminates the need for a

pipeline of sub-systems commonly used by tradi-

tional methods.

We also address a related open challenge, which

is a prerequisite to our main goal: the difficulty of

obtaining a large quantity of training graphs with

https://github.com/madaan/temporal-graph-gen
https://github.com/madaan/temporal-graph-gen

865

Figure 1: Task overview: given a document (left), automatically extract a temporal graph (right).

human-annotated events and temporal relations. To

this end, we automatically produce a large collec-

tion of document-graph pairs by using CAEVO, fol-

lowed by a few rule-based post-processing steps

for pruning and noise reduction. We then encode

the graph in each training pair as a string in the

graph representation format DOT, transforming the

text-to-graph mapping into sequence-to-sequence

mapping. We fine-tune GPT-2 on this dataset of

document-graph pairs, which yields large perfor-

mance gains over strong baselines on system gener-

ated test set and outperforms CAEVO on TimeBank-

Dense (Cassidy et al., 2014) on multiple metrics.

Figure 1 shows an example of the input document

and the generated graph by our system. In sum-

mary, our main contributions are:

1. We present the first investigation on using

large pre-trained language models for contex-

tualized temporal event graph generation by

proposing a new formulation of the problem

as a sequence-to-sequence mapping task.

2. We address the difficulty of obtaining a large

collection of human-annotated graphs, which

is crucial for effective fine-tuning of pre-

trained models, by automatically producing a

collection of 89,000 document-graph pairs.

3. Our experimental results on both the system-

generated test set (which allows us to com-

pare the relative performance of different

models) and a hand-labeled, out-of-domain

dataset (TimeBank-Dense), show the advan-

tage of our proposed approach over strong

baselines. Further, we show that our approach

can help in generating plausible answers for

open ended-temporal questions in a reading

comprehension dataset, Torque (Ning et al.,

2020).

2 Related Work

Temporal Graph Extraction Tempeval-3 (Uz-

Zaman et al., 2013) introduced the task of temporal

graph extraction as “the ultimate task for evaluating

an end-to-end system that goes from raw text to

TimeML annotation”. Notable systems developed

in response include CAEVO (Chambers et al., 2014),

followed by the more recent Cogcomptime (Ning

et al., 2018). Both CAEVO and Cogcomptime use

several statistical and rule-based methods like event

extractors, dependency parsers, semantic role la-

belers, and time expression identifiers for the task.

Our work differs from these systems in both the

methodology and desired result in the following

ways: i) Instead of using specialized sub-systems,

we transform the task into a sequence-to-sequence

mapping problem and use a single language model

to generate such temporal graphs in an end-to-end

fashion from text, subsuming all the intermediate-

steps. ii) We develop our system using a corpus

of 89,000 documents, which is ∼ 300x larger com-

866

pared to datasets used by CAEVO (36 documents)

and Cogcomptime on (276 documents); iii) We re-

move the noisy events included by CAEVO, but do

not limit the extracted events to any specific seman-

tic axis as done by Cogcomptime; and finally, iv)

Our method generates graphs where the nodes are

not simple verbs but augmented event phrases, con-

taining the subject and the object of each verb. We

use CAEVO over Cogcomptime to generate a large-

scale corpus for our task and to evaluate our system

for the following reasons: i) We found CAEVO to be

much more scaleable, a critical feature for our task

of annotating close to 100k documents, ii) CAEVO

over-generates (and not excludes) verbs from its

output, giving us the flexibility to filter out noisy

events without inadvertently missing out on any

critical events. However, our method makes no as-

sumption specific to CAEVO and is adaptable to any

other similar system (including Cogcomptime).

Temporal relation extraction We note that the

problem of temporal graph extraction is different

from the more popular task of Temporal relation ex-

traction (Temprel), which deals with classifying the

temporal link between two already extracted events.

State of the art Temprel systems use neural meth-

ods (Ballesteros et al., 2020; Ning et al., 2019b;

Goyal and Durrett, 2019; Han et al., 2019; Cheng

and Miyao, 2017), but typically use a handful of

documents for their development and evaluation.

Vashishtha et al. (2019) are a notable exception by

using Amazon Mechanical Turks to obtain manual

annotations over a larger dataset of 16,000 sen-

tences. We believe that the techniques presented in

our work can be applied to scale the corpus used

for training Temprel systems.

Language Models for Graph Generation Re-

cently, Bosselut et al. (2019) proposed COMET, a

system that fine-tunes GPT (Radford et al., 2018) on

commonsense knowledge graphs like ATOMIC (Sap

et al., 2019) and conceptnet (Speer et al., 2017) for

commonsense kb completion. Similar to COMET,

we adopt large-scale language models for such a

conditional generation of text. However, our task

differs from COMET in the complexity of both the

conditioning text and generated text: we seek to

generate temporal graphs grounded in a document,

whereas COMET generates a short event/concept

phrase conditioned on a relation and an input

event/concept phrase. Madaan et al. (2020) and

Rajagopal et al. (2021) aim to generate event influ-

ence graphs grounded in a situation. Similar to this

work, these methods rely on pre-trained language

models to generate informative structures grounded

in text. Different from us, these methods break

the generation process into a sequence of natural

language queries. Each query results in an event

node, which are finally assembled into a tree. In

contrast, we propose a method to directly generate

graphs with arbitrary topology from text. Addi-

tionally, the events generated by these methods are

not present in text making event event prediction,

rather than event extraction as their primary focus.

You et al. (2018) formulate graphs as a sequence

for learning generative models of synthetic and

real-world graphs. Similar to their work, we for-

mulate graph generation as an auto-regressive task.

However, our goal is the conditional generation of

temporal graphs, and not learning unconditional

generative distributions. Finally, inspired by re-

cent trends (Raffel et al., 2019), we do not make

any graph specific modifications to the model or

the decoding process and formulate the problem as

a straightforward sequence-to-sequence mapping

task. While our approach does not rely on any

particular language model, it would be interesting

to see the gains achieved by the much larger GPT-

3 (Brown et al., 2020) on the dataset produced by

our method.2

3 Deriving Large-scale Dataset for the

Temporal Graph Generation

Definitions and Notations: Let G(V,E) be a

temporal graph associated with a document D,

such that vertices V are the events in document

D, and the edges E are temporal relations (links)

between the events. Every temporal link in E takes

the form r(eq, et) where the query event eq and the

target event et are in V, and r is a temporal relation

(e.g., before or after). In this work, we undertake

two related tasks of increasing complexity: i) Node

generation, and ii) Temporal graph generation:

Task 1: Node Generation: Let r(eq, et) be an

edge in E. Let Cr be the set of sentences in the

document D that contains the events eq or et or

are adjacent to them. Given a query consisting of

Cr, r, and eq, generate et.

Task 2: Temporal Graph Generation: Given a

document D, generate the corresponding temporal

graph G(E,V).

2Not available for research as of April 2021.

867

Figure 1 illustrates the two tasks. Task 1 is simi-

lar to knowledge base completion, except that the

output events eq are generated, and not drawn from

a fixed set of events. Task 2 is significantly more

challenging, requiring the generation of both the

structure and semantics of G.

The training data for both the tasks consists of

tuples {(xi, yi)}
N
i=1. For Task 1, xi is the con-

catenation of the query tokens (Cr, eq, r), and yi
consists of tokens of event et. For Task 2, xi is

the ith document Di, and yi is the corresponding

temporal graph Gi.

We use the New York Times (NYT) Annotated

Corpus 3 to derive our dataset of document-graph

pairs. The corpus has 1.8 million articles written

and published by NYT between 1987 and 2007.

Each article is annotated with a hand-assigned

list of descriptive terms capturing its subject(s).

We filter articles with one of the following de-

scriptors: {“bomb”, “terrorism”, “murder”, “ri-

ots”, “hijacking”, “assassination”, “kidnapping”,

“arson”, “vandalism”, “hate crime”, “serial murder”,

“manslaughter”, “extortion”}, yielding 89,597 ar-

ticles, with a total of 2.6 million sentences and

66 million tokens. For each document D, we use

CAEVO (Chambers et al., 2014) to extract the dense

temporal graph consisting of i) the set of verbs,

and ii) the set of temporal relations between the

extracted verbs. CAEVO extracts six temporal rela-

tions: before, after, includes, is included, simulta-

neous, and vague.

We process each dense graph extracted by

CAEVO with a series of pruning and augmenta-

tion operations: i) We observed that some of the

most frequent verbs extracted by CAEVO were the

so-called reporting verbs (Liu et al., 2018), like

said, say, and told, which do not contribute to

the underlying events. For example, said formed

nearly 10% of all the verbs extracted by CAEVO

as an event. To remove such noisy events, we re-

move the five verbs with the lowest inverse docu-

ment frequencies, as well as an additional set of

light and reporting verbs (Liu et al., 2018; Re-

casens et al., 2010)4 ii) To make event annota-

tions richer, we follow (Chambers and Jurafsky,

2008), and prefix and suffix every verb with its

3https://catalog.ldc.upenn.edu/LDC2008T19
4The final list of verbs is: i) low idf: “said”, “say”, “had”,

“made”, “told”, ii) light: “appear”, “be”, “become”, “do”,
“have”, “seem”, “get”, “give”, “go”, “have”, “keep”, “make”,
“put”, “set”, “take”, iii) reporting: “argue”, “claim”, “say”,
“suggest”, “tell”.

noun-phrase and object, respectively. This aug-

mentation helps in adding a context to each verb,

thus making events less ambiguous. For instance,

given a sentence: A called B, after which B called

C, CAEVO extracts AFTER(called, called). With

the proposed augmentation, the relation becomes

AFTER(A called B,B called C), clearly differenti-

ating the two different called events. Our notion of

events refers to such augmented verbs. Crucially,

different from prior work, our system is trained to

extract these augmented event phrases. We also

drop all the verbs that do not have either a subject

or an object. iii) We remove the relations extracted

by the statistical sieves if they have a confidence

score of less than 0.50 and retain the rule-based

relations as those were shown to be extracted with

a high precision by Chambers et al. (2014). Finally,

we only retain event-event relations (dropping links

between verbs and time expressions) and drop the

vague relations as they typically do not play any

role in improving the understanding of the tempo-

ral sequences in a document. As Table 1 shows,

pruning noisy verbs and relations yields sparser

and more informative graphs.

Initial Pruned % Reduction

#Relations 27,692,365 4,469,298 83.86

#Events 6,733,396 2,615,296 61.15

Table 1: Effect of pruning operations on the number of

relations and events.

Creating Sub-graphs using Event Communities

We discovered that the (pruned) graph generated

for a given document typically has several sub-

graphs that are either completely disconnected or

have high intra-link density. Further, we found that

each of these sub-graphs are grounded in different

parts of the document. We exploit this phenomenon

to map each sub-graph to its correct context, thus

reducing the noise in the data.

Relying merely on connectivity for creating sub-

graphs is still prone to noise, as largely unrelated

sub-graphs are often connected via a single event.

Instead, we propose a novel approach based on the

detection of event communities to divide a graph

into sub-graphs, such that the events in a sub-graph

are more densely connected to each other. We learn

these event communities using the concept of mod-

ularity, first introduced by (Newman and Girvan,

2004). We defer the derivation of modularity opti-

868

mization to the Appendix.

Datasets for Task 1 and Task 2 After running the

pruning and clustering operations outlined above

on 89k documents, we obtain a corpus of over

890,677 text-graph pairs, with an average of 120.31

tokens per document, and 3.33 events and 4.91

edges per graph. These text-graph pairs consti-

tute the training data for Task 2. We derive the

data for Task 1 from the original (undivided) 89k

graphs (each document-graph pair contributes mul-

tiple examples for Task 1). In Task 1 data, nearly

80% of the queries (Cr, eq, r) had a unique answer

et, and nearly 16% of the queries had two different

true et. We retain examples with multiple true et in

the training data because they help the model learn

diverse temporal patterns that connect two events.

For fairness, we retain such cases in the test set.

Table 2 lists the statistics of the dataset. The splits

were created using non-overlapping documents.

Task train valid test

Task 1 4.26 0.54 0.54

Task 2 0.71 0.09 0.09

Table 2: Dataset statistics (counts in million).

3.1 Graph Representation

We use language models to generate each graph

as a sequence of tokens conditioned on the docu-

ment, thus requiring that the graphs are represented

as strings. We use DOT language (Gansner et al.,

2006) to format each graph as a string. While

our method does not rely on any specific graph

representation format, we use DOT as it supports

a wide variety of graphs and allows augmenting

graphs with node, edge, and graph level informa-

tion. Further, graphs represented in DOT are read-

ily consumed by popular graph libraries like Net-

workX (Hagberg et al., 2008), making it possible

to use the graphs for several downstream applica-

tions. Figure 2 shows an example graph and the

corresponding DOT code. The edges are listed in

the order in which their constituent nodes appear in

the document. This design choice was inspired by

our finding that a vast majority of temporal links

exist between events that are either in the same or

in the adjoining sentence (this phenomenon was

also observed by Ning et al. (2019a)). Thus, list-

ing the edges in the order in which they appear in

the document adds a simple inductive bias of lo-

cality for the auto-regressive attention mechanism,

whereby the attention weights slide from left to

right as the graph generation proceeds. Addition-

ally, a fixed order makes the problem well defined,

as the mapping between a document and a graph

becomes deterministic.

Figure 2: Temporal graph and the corresponding DOT

representation for the sentence: Roma clashed fiercely

with the police, leading to arrests in which Roma ac-

tivists said excessive force was used.

4 Model

The training data X for both Tasks 1 and 2 com-

prises of tuples {(xi,yi)}
N
i=1. For task 1 (node

generation), xi the concatenation of context, the

source, node, and the relation. The target yi con-

sists of the tokens of the target event. For task

2 (graph generation), xi is a document and yi is

the corresponding temporal graph represented in

DOT. We train a (separate) conditional language

model to solve both the tasks. Specifically, given

a training corpus of the form {(xi,yi)}, we aim

to estimate the distribution pθ(yi | xi). Given a

training example (xi,yi) we set ui = xi‖yi
5.

pθ(ui) can then be factorized as a sequence

of auto-regressive conditional probabilities using

the chain rule: pθ(ui) =
∏n

k=1 p(ui,k|ui,<k),
where ui,k denotes the kth token of the ith se-

quence, and ui,<k denotes the sequence of to-

kens {u1, u2, ..., uk−1}. Language models are typ-

ically trained by minimizing a cross-entropy loss

−logpθ(ui) over each sequence ui in X. However,

the cross-entropy loss captures the joint distribu-

tion pθ(xi,yi), and is not aligned with our goal of

learning conditional distribution pθ(yi | xi). To

5‖ denotes concatenation

869

Method Dataset BLEU MTR RG ACC

Seq2Seq TG-Gen (-C) 20.20 14.62 31.95 19.68

Seq2Seq TG-Gen 21.23 16.48 35.54 20.99

GPT-2 TG-Gen (-C) 36.60 25.11 43.07 35.07

GPT-2 TG-Gen 62.53 43.78 69.10 61.35

Seq2Seq TB-Dense (-C) 11.55 9.23 21.87 10.06

Seq2Seq TB-Dense 16.68 12.69 27.75 13.97

GPT-2 TB-Dense (-C) 22.35 15.04 27.73 20.81

GPT-2 TB-Dense 52.21 35.69 57.98 47.91

Table 3: Node Generation (task 1) results.

circumvent this, we train our model by masking

the loss terms corresponding to the input xi, sim-

ilar to Bosselut et al. (2019). Let mi be a mask

vector for each sequence ui, set to 0 for positions

corresponding to xi, and 1 otherwise i.e. mi,j = 1
if j > |xi|, else 0. We combine the mask vec-

tor with our factorization of pθ (ui) to formulate a

masked language modeling loss L, which is min-

imized over the training corpus X to estimate the

optimal θ:

L(X) = −

|X|∑

i=1

|xi|+|yi|∑

j=1

mi,j ∗ log (pθ (ui,j |ui,<j))

Note that the formulation of masked loss is opaque

to the underlying architecture, and can be imple-

mented with a simple change to the loss function.

In practice, we use GPT-2 (Radford et al., 2019)

based on transformer architecture (Vaswani et al.,

2017) for our implementation. Having trained a

pθ for each task, we generate a node (y) given

a query (x) (for Task 1), or a graph (y) given a

document (x) (for Task 2) by drawing samples

from the appropriate pθ(y | x) using nucleus sam-

pling (Holtzman et al., 2019). We provide more

details of our training procedure and the architec-

ture in the Appendix (C.1).

5 Experiments and Results

5.1 Evaluation Datasets

We evaluate our method on two different datasets:

i) TG-Gen: Test split of synthetically created

dataset (Section 3), and ii) TB-Dense: A mixed-

domain corpus, with human-annotated temporal an-

notations. We create TB-Dense from the test splits

of TimeBank-Dense (Cassidy et al., 2014) by apply-

ing the same pre-processing operations as we did

for TG-Gen. TB-Dense forms a very challenging

dataset for our task because of domain mismatch;

our system was trained on a corpus of terrorism-

related events, whereas TB-Dense includes docu-

ments from a wide array of domains, forming a

zero-shot evaluation scenario for our method.

5.2 Implementation Setup

GPT-2: We use GPT-2 medium (355M parame-

ters) for our experiments with 24-layers, a hidden

size of 1024, and 16 self-attention heads. We build

on the implementation by Wolf et al. (2019), using

the default hyperparameters and a block size input

sequence length after tokenization) of 512. For op-

timization, we use AdamW (Loshchilov and Hutter,

2017) with a learning rate of 5e-5, a batch size of

1, and no learning rate scheduling. We also experi-

mented with a block size of 300 and a batch size of

2. We found the results (presented in the appendix)

to be worse, underscoring the importance of using

a larger block size for generating larger outputs.

We generate samples using nucleus sampling using

p = 0.9, and set maximum output length to be

500 for graph generation and 60 foe node genera-

tion. All of our experiments were done on a single

Nvidia GeForce RTX 2080 Ti. The models were

initialized with the pre-trained weights provided

by Radford et al. (2019), and fine-tuned for five

epochs, with a run-time of 48 hours/epoch for Task

1 and 52 hours/epoch for Task 2. We use the last

checkpoint (i.e., at the end of fine-tuning) for all

experiments. Despite the higher perplexity on the

development set, we found the overall performance

of the last checkpoint to be better.

We also experimented with GPT-2 without fine-

tuning (i.e., by directly using pre-trained weights).

The non-finetuned GPT-2 fared poorly for both the

tasks across all the metrics, getting a BLEU score

of near 0 for Task 1. This dismal performance un-

derscores the importance of fine-tuning on the end

task for large-scale pre-trained language models.

Finally, we note that our method does not make

any model-specific assumption, and can be used

with any auto-regressive language model (i.e., a lan-

guage model that generates a sequence of tokens

from left-to-right). We use GPT-2 as a representa-

tive for large pre-trained language models.

Seq2Seq: We train a bi-directional LSTM (Hochre-

iter and Schmidhuber, 1997) based sequence-to-

sequence model (Bahdanau et al., 2015) with global

attention (Luong et al., 2015) and a hidden size of

500 as a baseline to contrast with GPT-2. The to-

870

ken embeddings initialized using 300-dimensional

pre-trained Glove (Pennington et al., 2014).

5.3 Task 1: Node Generation

Paragraph: Mr. Grier, a former defensive lineman for the
New York Giants who was ordained as a minister in 1986,
testified on Dec. 9 that he had visited Mr. Simpson a month
earlier

Table 4: An example of GPT-2 fixing the label given

by CAEVO. Given a query event after “Mr. Grier vis-

ited”, CAEVO incorrectly extracts Mr. Grier ordained,

whereas GPT-2 generates the correct event: Mr. Grier

testified.

Metrics Given a query (Cr, eq, r), with Cr being

the context (sentences containing events eq, et and

their neighboring sentences) and eq as the source

event, Task 1 is to generate a target event et such

that r(eq, et). We format each query as “In the

context of C, what happens r eq?”. We found for-

matting the query in natural language to be empiri-

cally better. Let êt be the system generated event.

We compare et vs. êt using BLEU (Papineni et al.,

2002), METEOR (Denkowski and Lavie, 2011), and

ROUGE (Lin, 2004)6, and measure the accuracy

(ACC) as the fraction of examples where et = êt.

Results on TG-Gen The results are listed in Ta-

ble 3. Unsurprisingly, GPT-2 achieves high scores

across the metrics showing that it is highly effec-

tive in generating correct events. To test the gen-

erative capabilities of the models, we perform an

ablation by removing the sentence containing the

target event et from Cr (indicated with -C). Re-

moval of context causes a drop in performance

for both GPT-2 and Seq2Seq, showing that it is

crucial for generating temporal events. However,

GPT-2 obtains higher relative gains with context

present, indicating that it uses its large architecture

and pre-training to use the context more efficiently.

GPT-2 also fares better as compared with Seq2Seq

in terms of drop in performance for the out-of-

domain TB-Dense dataset on metrics like accuracy

(−21% vs. −33%) and BLEU (−16% vs. −21%),

indicating that pre-training makes helps GPT-2 in

generalizing across the domains.

Human Evaluation To understand the nature of

errors, we analyzed 100 randomly sampled incor-

rect generations. For 53% of the errors, GPT-2

generated a non-salient event which nevertheless

6Sharma et al. (2017), https://github.com/

Maluuba/nlg-eval

had the correct temporal relation with the query.

Interestingly, for 10% of the events, we found that

GPT-2 fixed the label assigned by CAEVO (Table 4),

i.e., et was incorrect but êt was correct.

5.4 Task 2: Graph Generation

Dataset BLEU MTR RG DOT%

Seq2Seq TG-Gen 4.79 15.03 45.95 86.93

GPT-2 TG-Gen 37.77 37.22 64.24 94.47

Seq2Seq TB-Dense 2.61 12.76 28.36 89.31

GPT-2 TB-Dense 26.61 29.49 49.26 92.37

Table 5: Graph string metrics.

Dataset vP vR vF1
eP eR eF1

Seq2Seq TG-Gen 36.84 24.89 28.11 9.65 4.29 4.70
GPT-2 TG-Gen 69.31 66.12 66.34 27.95 25.89 25.22

Seq2Seq TB-Dense 24.86 15.25 17.99 4.7 0.14 0.24
CAEVO TB-Dense 37.53 79.83 48.96 7.95 14.62 8.96
GPT-2 TB-Dense 45.96 48.44 44.97 8.74 8.89 7.96

Table 6: Graph semantic metrics.

Metrics Let Gi(Vi,Ei) and Ĝi(V̂i, Êi) be the

true and the generated graphs for an example i in

the test corpus. Please recall that our proposed

method generates a graph from a given document

as a string in DOT. Let yi and ŷi be the string

representations of the true and generated graphs.

We evaluate our generated graphs using three types

of metrics:

1. Graph string metrics: To compare yi vs. ŷi,

we use BLEU, METEOR, and ROUGE, and also mea-

sure parse accuracy (DOT%) as the % of generated

graphs ŷi which are valid DOT files.

2. Graph structure metrics To compare the struc-

tures of the graphs Gi vs. Ĝi, we use i) Graph

edit distance (GED) (Abu-Aisheh et al., 2015) -

the minimum numbers of edits required to trans-

form the predicted graph to the true graph by ad-

dition/removal of an edge/node; ii) Graph isomor-

phism (ISO) (Cordella et al., 2001) - a binary mea-

sure set to 1 if the graphs are isomorphic (without

considering the node or edge attributes); iii) The

average graph size (|Vi|, |Ei|, |V̂i|, |Êi|) and the

average degree (d(V)).

3. Graph semantic metrics: We evaluate the

node sets (Vi vs. V̂i) and the edge sets (Ei vs. Êi)

to compare the semantics of the true and generated

https://github.com/Maluuba/nlg-eval
https://github.com/Maluuba/nlg-eval

871

graphs. For every example i, we calculate node-set

precision, recall, and F1 score, and average them

over the test set to obtain node precision (vP), re-

call (vR), and F1 (vF). We evaluate the predicted

edge set using temporal awareness (UzZaman and

Allen, 2012; UzZaman et al., 2013). For an exam-

ple i, we calculate eiP =
|Ê−

i
∩Ei

+|

|Ê−

i
|

, eiR =
|Ê+

i
∩Ei

−|

|Ei
−|

where symbol + denotes the temporal transitive

closure (Allen, 1983) of the edge set. Similarly,

− indicates the reduced edge set, obtained by re-

moving all the edges that can be inferred from

other edges transitively. The F1 score eiF1
is the

harmonic mean of eiP and eiR, and these metrics

are averaged over the test set to obtain the tempo-

ral awareness precision (eP), recall (eR), and F1

score (eF1
). Intuitively, the node metrics judge the

quality of generated events in the graph, and the

edge metrics evaluate the corresponding temporal

relations.

Results Tables 5, 7, and 6 present results for

graph generation, and we discuss them next.

Dataset |V| |E| d(V) GED ↓ ISO ↑

True TG-Gen 4.15 5.47 1.54 0 100
Seq2Seq TG-Gen 2.24 2.23 1.12 6.09 32.49
GPT-2 TG-Gen 3.81 4.60 1.40 2.62 41.66

True TB-Dense 4.39 6.12 2.02 0 100
Seq2Seq TB-Dense 2.21 2.20 1.11 6.22 23.08
CAEVO TB-Dense 10.73 17.68 2.76 18.68 11.11
GPT-2 TB-Dense 3.72 4.65 1.75 4.05 24.00

Table 7: Graph structure metrics.

GPT-2 vs. Seq2Seq GPT-2 outperforms Seq2Seq

on all the metrics by a large margin in both fine-

tuned (TG-Gen) and zero-shot settings (TB-Dense).

GPT-2 generated graphs are closer to the true

graphs in size and topology, as shown by lower

edit distance and a higher rate of isomorphism in

Table 7. Both the systems achieve high parsing

rates (DOT %), with GPT-2 generating valid DOT

files 94.6% of the time. The high parsing rates are

expected, as even simpler architectures like vanilla

RNNs have been shown to generate syntactically

valid complex structures like LATEXdocuments with

ease (Karpathy, 2015).

GPT-2 vs. CAEVO We compare the graphs

generated by GPT-2 with those extracted

by CAEVO (Chambers et al., 2014)7 from the

TB-Dense documents. We remove all the vague

7https://github.com/nchambers/caevo

Top 10 Verbs: found, killed, began, called, want,
took, came, used, trying, asked
Randomly Sampled Verbs: shooting, caused,
accused, took, conceived, visit, vowing, play,
withdraw, seems

Table 8: Verbs in GPT-2 generated graphs.

edges and the light verbs from the output of CAEVO

for a fair comparison. Please recall that CAEVO

is the tool we used for creating the training data

for our method. Further, CAEVO was trained using

TB-Dense, while GPT-2 was not. Thus, CAEVO

forms an upper bound over the performance of

GPT-2. The results in Tables 6 and 7 show that

despite these challenges, GPT-2 performs strongly

across a wide range of metrics, including GED,

ISO, and temporal awareness. Comparing the

node-set metrics, we see that GPT-2 leads CAEVO

by over eight precision points (vP), but loses on

recall (vR) as CAEVO extracts nearly every verb

in the document as a potential event. On temporal

awareness (edge-metrics), GPT-2 outperforms both

CAEVO and Seq2Seq in terms of average precision

score eP and achieves a competitive eF1
score.

These results have an important implication: they

show that our method can best or match a pipeline

of specialized systems given reasonable amounts

of training data for temporal graph extraction.

CAEVO involves several sub-modules to perform

part-of-speech tagging, dependency parsing, event

extraction, and several statistical and rule-based

systems for temporal extraction. In contrast, our

method involves no hand-curated features, is

trained end-to-end (single GPT-2), and can be

easily scaled to new datasets.

Node extraction and Edge Extraction The

node-set metrics in Table 6 shows that GPT-2

avoids generating noisy events (high P), and ex-

tracts salient events (high R). This is confirmed

by manual analysis, done by randomly sampling

100 graphs from the GPT-2 generated graphs and

isolating the main verb in each node (Table 8). We

provide several examples of generated graphs in

the Appendix. We note from Table 6 that the rel-

ative difference between the eF1
scores for GPT-2

and Seq2Seq (25.22 vs. 4.70) is larger than the rel-

ative difference between their vF1
scores (66.34 vs.

28.11), showing that edge-extraction is the more

challenging task which allows GPT-2 to take full

advantage of its powerful architecture. We also ob-

serve that edge extraction (eF1
) is highly sensitive

https://github.com/nchambers/caevo

872

Query (C, eq, r) et Explanation

The suspected car

bombings...turning

busy streets...Which

event happened before

the suspected car

bombings?

many cars

drove

Plausible:

The passage

mentions busy

streets and car

bombing.

He...charged...killed

one person. Which

event happened after he

was charged?

He was acquit-

ted

Somewhat

plausible: An

acquittal is

a possible

outcome of a

trial.

Table 9: Sample open-ended questions and the answers

et generated by our system. Note that the answers gen-

erated by our system et are complete event phrases (not

just verbs).

to node extraction (vF1
); for GPT-2, a 27% drop

in vF1
(66.34 on TG-Gen vs. 44.97 on TB-Dense)

causes a 68% drop in eF1
(25.22 on TG-Gen vs.

7.96 on TB-Dense). As each node is connected

to multiple edges on average (Table 7), missing a

node during the generation process might lead to

multiple edges being omitted, thus affecting edge

extraction metrics disproportionately.

5.5 Answering for Open-ended Questions

A benefit of our approach of using a pre-trained lan-

guage model is that it can be used to generate an an-

swer for open-ended temporal questions. Recently,

Ning et al. (2020) introduced Torque, a temporal

reading-comprehension dataset. Several questions

in Torque have no answers, as they concern a time

scope not covered by the passage (the question is

about events not mentioned in the passage). We

test the ability of our system for generating plau-

sible answers for such questions out of the box

(i.e., without training on Torque). Given a (passage,

question) pair, we create a query (C, eq, r), where

C is the passage, and eq and r are the query event

and temporal relation in the question. We then use

our GPT-2 based model for node-generation trained

without context and generate an answer et for the

given query. A human-judge rated the answers gen-

erated for 100 such questions for plausibility, rating

each answer as being plausible, somewhat plausi-

ble, or incorrect. For each answer rated as either

plausible or somewhat plausible, the human-judge

wrote a short explanation to provide a rationale for

the plausibility of the generated event. Out of the

100 questions, the human-judge rated 22 of the gen-

erated answers as plausible and ten as somewhat

plausible, showing the promise of our method on

this challenging task (Table 9).

6 Conclusion and Future Work

Current methods for generating event-level tem-

poral graphs are developed with relatively small

amounts of hand-labeled data. On the other hand,

the possibility of using pre-trained language mod-

els for this task has not received sufficient attention.

This paper addresses this open challenge by first de-

veloping a data generation pipeline that uses exist-

ing IE/NLP/clustering techniques for automated ac-

quisition of a large corpus of document-graph pairs,

and by proposing a new formulation of the graph

generation task as a sequence-to-sequence map-

ping task, allowing us to leverage and fine-tune pre-

trained language models. Our experiments strongly

support the effectiveness of the proposed approach,

which significantly outperforms strong baselines.

We plan to explore techniques for adapting large-

scale language models on unseen domains and at

multiple granularity levels in the future.

Acknowledgments

Thanks to Nathanael Chambers and Dheeraj Ra-

jagopal for the helpful discussion, and to the anony-

mous reviewers for their constructive feedback.

This material is based on research sponsored in

part by the Air Force Research Laboratory under

agreement number FA8750-19-2-0200. The U.S.

Government is authorized to reproduce and dis-

tribute reprints for Governmental purposes notwith-

standing any copyright notation thereon. The views

and conclusions contained herein are those of the

authors and should not be interpreted as necessarily

representing the official policies or endorsements,

either expressed or implied, of the Air Force Re-

search Laboratory or the U.S. Government.

References

Zeina Abu-Aisheh, Romain Raveaux, Jean-Yves
Ramel, and Patrick Martineau. 2015. An exact
graph edit distance algorithm for solving pattern
recognition problems. In An exact graph edit
distance algorithm for solving pattern recognition
problems.

James F Allen. 1983. Maintaining knowledge about
temporal intervals. Communications of the ACM,
26(11):832–843.

873

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-
ton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd International
Conference on Learning Representations, ICLR
2015.

Miguel Ballesteros, Rishita Anubhai, Shuai Wang,
Nima Pourdamghani, Yogarshi Vyas, Jie Ma, Par-
minder Bhatia, Kathleen McKeown, and Yaser Al-
Onaizan. 2020. Severing the edge between before
and after: Neural architectures for temporal ordering
of events. arXiv preprint arXiv:2004.04295.

Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chai-
tanya Malaviya, Asli Çelikyilmaz, and Yejin Choi.
2019. Comet: Commonsense transformers for auto-
matic knowledge graph construction. In ACL.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Paweł Budzianowski and Ivan Vulić. 2019. Hello, it’s
gpt-2–how can i help you? towards the use of pre-
trained language models for task-oriented dialogue
systems. arXiv preprint arXiv:1907.05774.

Taylor Cassidy, Bill McDowell, Nathanel Chambers,
and Steven Bethard. 2014. An annotation frame-
work for dense event ordering. Technical report,
CARNEGIE-MELLON UNIV PITTSBURGH PA.

Nathanael Chambers, Taylor Cassidy, Bill McDowell,
and Steven Bethard. 2014. Dense event ordering
with a multi-pass architecture. Transactions of the
Association for Computational Linguistics, 2:273–
284.

Nathanael Chambers and Dan Jurafsky. 2008. Un-
supervised learning of narrative event chains. In
Proceedings of ACL-08: HLT, pages 789–797.

Nathanael Chambers and Dan Jurafsky. 2009. Unsu-
pervised learning of narrative schemas and their par-
ticipants. In Proceedings of the Joint Conference of
the 47th Annual Meeting of the ACL and the 4th
International Joint Conference on Natural Language
Processing of the AFNLP, pages 602–610.

Fei Cheng and Yusuke Miyao. 2017. Classifying tem-
poral relations by bidirectional lstm over depen-
dency paths. In Proceedings of the 55th Annual
Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 1–6.

Aaron Clauset, Mark EJ Newman, and Cristopher
Moore. 2004. Finding community structure in very
large networks. Physical review E, 70(6):066111.

Luigi Pietro Cordella, Pasquale Foggia, Carlo San-
sone, and Mario Vento. 2001. An improved algo-
rithm for matching large graphs. In 3rd IAPR-TC15
workshop on graph-based representations in pattern
recognition, pages 149–159.

Michael Denkowski and Alon Lavie. 2011. Me-
teor 1.3: Automatic metric for reliable optimiza-
tion and evaluation of machine translation systems.
In Proceedings of the sixth workshop on statistical
machine translation, pages 85–91. Association for
Computational Linguistics.

Nicholas D Duran, Philip M McCarthy, Art C Graesser,
and Danielle S McNamara. 2007. Using temporal
cohesion to predict temporal coherence in narrative
and expository texts. Behavior Research Methods,
39(2):212–223.

Jacqueline Evers-Vermeul, Jet Hoek, and Merel CJ
Scholman. 2017. On temporality in discourse an-
notation: Theoretical and practical considerations.
Dialogue & Discourse, 8(2):1–20.

Emden Gansner, Eleftherios Koutsofios, and Stephen
North. 2006. Drawing graphs with dot.

Tanya Goyal and Greg Durrett. 2019. Embedding
time expressions for deep temporal ordering models.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
4400–4406, Florence, Italy. Association for Compu-
tational Linguistics.

Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart.
2008. Exploring network structure, dynamics, and
function using networkx. In Proceedings of the
7th Python in Science Conference, pages 11 – 15,
Pasadena, CA USA.

Rujun Han, I-Hung Hsu, Mu Yang, Aram Galstyan,
Ralph Weischedel, and Nanyun Peng. 2019. Deep
structured neural network for event temporal re-
lation extraction. In Proceedings of the 23rd
Conference on Computational Natural Language
Learning (CoNLL), pages 666–106.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–
778.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2019. The curious case of neural text
degeneration. arXiv preprint arXiv:1904.09751.

Andrej Karpathy. 2015. The unreasonable effective-
ness of recurrent neural networks. Andrej Karpathy
blog, 21:23.

https://doi.org/10.18653/v1/P19-1433
https://doi.org/10.18653/v1/P19-1433

874

Chen Lin, Dmitriy Dligach, Timothy A Miller, Steven
Bethard, and Guergana K Savova. 2016. Mul-
tilayered temporal modeling for the clinical do-
main. Journal of the American Medical Informatics
Association, 23(2):387–395.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Text summarization
branches out, pages 74–81.

Xiao Ling and Daniel S Weld. 2010. Temporal in-
formation extraction. In AAAI, volume 10, pages
1385–1390.

Zhengzhong Liu, Chenyan Xiong, Teruko Mitamura,
and Eduard Hovy. 2018. Automatic event salience
identification. arXiv preprint arXiv:1809.00647.

Ilya Loshchilov and Frank Hutter. 2017. Decou-
pled weight decay regularization. arXiv preprint
arXiv:1711.05101.

Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. 2015. Effective approaches to attention-
based neural machine translation. In Proceedings
of the 2015 Conference on Empirical Methods in
Natural Language Processing, pages 1412–1421.

Aman Madaan, Dheeraj Rajagopal, Yiming Yang, Ab-
hilasha Ravichander, Eduard Hovy, and Shrimai
Prabhumoye. 2020. Eigen: Event influence gen-
eration using pre-trained language models. arXiv
preprint arXiv:2010.11764.

Juha Makkonen, Helena Ahonen-Myka, and Marko
Salmenkivi. 2003. Topic detection and tracking with
spatio-temporal evidence. In European Conference
on Information Retrieval, pages 251–265. Springer.

Mark EJ Newman. 2004. Fast algorithm for detecting
community structure in networks. Physical review
E, 69(6):066133.

Mark EJ Newman and Michelle Girvan. 2004. Find-
ing and evaluating community structure in networks.
Physical review E, 69(2):026113.

Qiang Ning, Zhili Feng, and Dan Roth. 2019a. A struc-
tured learning approach to temporal relation extrac-
tion. arXiv preprint arXiv:1906.04943.

Qiang Ning, Sanjay Subramanian, and Dan Roth.
2019b. An improved neural baseline for temporal re-
lation extraction. arXiv preprint arXiv:1909.00429.

Qiang Ning, Hao Wu, Rujun Han, Nanyun Peng, Matt
Gardner, and Dan Roth. 2020. Torque: A reading
comprehension dataset of temporal ordering ques-
tions. arXiv preprint arXiv:2005.00242.

Qiang Ning, Ben Zhou, Zhili Feng, Haoruo Peng,
and Dan Roth. 2018. Cogcomptime: A tool
for understanding time in natural language. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 72–77.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic
evaluation of machine translation. In Proceedings
of the 40th annual meeting on association for
computational linguistics, pages 311–318. Associa-
tion for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word
representation. In Empirical Methods in Natural
Language Processing (EMNLP), pages 1532–1543.

Alec Radford, Karthik Narasimhan, Tim Sali-
mans, and Ilya Sutskever. 2018. Improving
language understanding by generative pre-
training. URL https://s3-us-west-2. amazonaws.
com/openai-assets/researchcovers/languageunsupervised/language
understanding paper. pdf.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Lan-
guage models are unsupervised multitask learners.
OpenAI Blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Dheeraj Rajagopal, Aman Madaan, Niket Tandon,
Yiming Yang, Shrimai Prabhumoye, Abhilasha
Ravichander, Peter Clark, and Eduard Hovy. 2021.
Curie: An iterative querying approach for reasoning
about situations.

Marta Recasens, Eduard H Hovy, and Maria Antònia
Martı́. 2010. A typology of near-identity relations
for coreference (nident). In LREC.

Maarten Sap, Ronan Le Bras, Emily Allaway, Chan-
dra Bhagavatula, Nicholas Lourie, Hannah Rashkin,
Brendan Roof, Noah A Smith, and Yejin Choi. 2019.
Atomic: An atlas of machine commonsense for
if-then reasoning. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33,
pages 3027–3035.

Shikhar Sharma, Layla El Asri, Hannes Schulz, and
Jeremie Zumer. 2017. Relevance of unsupervised
metrics in task-oriented dialogue for evaluating nat-
ural language generation. CoRR, abs/1706.09799.

Robyn Speer, Joshua Chin, and Catherine Havasi. 2017.
Conceptnet 5.5: An open multilingual graph of gen-
eral knowledge. In Thirty-First AAAI Conference
on Artificial Intelligence.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le.
2014. Sequence to sequence learning with neu-
ral networks. In Advances in neural information
processing systems, pages 3104–3112.

Naushad UzZaman and James F Allen. 2012.
Interpreting the temporal aspects of language.
Citeseer.

http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
http://arxiv.org/abs/2104.00814
http://arxiv.org/abs/2104.00814
http://arxiv.org/abs/1706.09799
http://arxiv.org/abs/1706.09799
http://arxiv.org/abs/1706.09799

875

Naushad UzZaman, Hector Llorens, Leon Derczyn-
ski, James Allen, Marc Verhagen, and James Puste-
jovsky. 2013. Semeval-2013 task 1: Tempeval-3:
Evaluating time expressions, events, and temporal
relations. In Second Joint Conference on Lexical
and Computational Semantics (* SEM), Volume 2:
Proceedings of the Seventh International Workshop
on Semantic Evaluation (SemEval 2013), pages 1–9.

Siddharth Vashishtha, Benjamin Van Durme, and
Aaron Steven White. 2019. Fine-grained tem-
poral relation extraction. In Proceedings of
the 57th Annual Meeting of the Association for
Computational Linguistics, pages 2906–2919, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is
all you need. In Advances in neural information
processing systems, pages 5998–6008.

Thomas Wolf, L Debut, V Sanh, J Chaumond, C De-
langue, A Moi, P Cistac, T Rault, R Louf, M Fun-
towicz, et al. 2019. Huggingface’s transformers:
State-of-the-art natural language processing. ArXiv,
abs/1910.03771.

Jiaxuan You, Rex Ying, Xiang Ren, William L Hamil-
ton, and Jure Leskovec. 2018. Graphrnn: Generat-
ing realistic graphs with deep auto-regressive mod-
els. arXiv preprint arXiv:1802.08773.

https://doi.org/10.18653/v1/P19-1280
https://doi.org/10.18653/v1/P19-1280

876

A Learning Event Communities Using

Community Detection

In this section, we provide the details on

the community detection algorithm used

by our method. We define the temporal

event communities to be a division of the

temporal graph G(V,E) into sub-graphs

G1(V1,E1),G2(V2,E2), ...,Gk(Vk,Ek) such

that the events in a community (sub-graph) Gi are

more co-referential to each other as opposed to

the other events in the temporal graph. We use

the undirected link between two events ej , ei as

a proxy for them being co-referential, and learn

temporal event communities utilizing the concept

of modularity, first introduced by (Newman and

Girvan, 2004).

Formally, let A be the undirected adjacency

matrix for a temporal graph G(V,E) such that

A(ei, ej) = 1 if ei and ej are connected by a

temporal relation, and 0 otherwise. Further, let

δ(ei, ej) = 1 if events ei, ej belong to the same

temporal community, and 0 otherwise. For a given

δ, we denote the fraction of the edges that exist

between events that belong to the same commu-

nities by fsame =

∑
ei,ej∈E

A(ei,ej)δ(ei,ej)

2|E| . Where

the 2|E| in the denominator is due to the fact that

A treats G as an undirected graph. Let the pop-

ularity p of an event ei be the number of events

that are linked to it i.e. p(ei) =
∑

ej∈E
A(ei, ej).

The probability of randomly picking an event ei

when sampled by popularity is
p(ei)∑

ej∈E
p(ei)

= p(ei)
2|E| .

Thus, if edges are created randomly by sampling

nodes by popularity p of the nodes, the fraction of

edges within the communities, frandom, is given

by

frandom =

∑
ei,ej∈E

p(ei)p(ej)δ(ei, ej)

2|E| ∗ 2|E|

Finally, defining modularity, Q, to be fsame −
frandom:

Q =
1

2|E|
∗

∑

ei,ej∈E

A(ei, ej)−
p(ei)p(ej)δ(ei, ej)

2|E|

We want to learn community assignments δ

that maximize Q. A high Q would promote

fsame > frandom and thereby encourage highly

inter-connected event communities. Calculating

such δ directly is not tractable, since the complexity

of such an operation would be at least exponential

in the number of events (Newman, 2004). We use

the fast implementation provided by (Clauset et al.,

2004) for calculating event communities iteratively.

The algorithm converges at Q 0.3. We use a similar

approximation at test time: given a document D,

we first break it down into sub-documents using

CAEVO and then feed each sub-document to our

method.

B Using a smaller block size

We found that the performance drops when using

a block size of 300 and batch size of 2. Table 10

presents the results.

BLEU MTR RG DOT%

25.01 27.95 60.99 91.71

vP vR vF1
eP eR eF1

70.31 64.75 65.68 29.43 24.83 24.27

Table 10: Results for TG-Gen using a block size of 300

and a block size of 2.

C Masked Language Modeling Using

Transformers

In this section, we expand on the design of the

transformer blocks. For ease of reference, we re-

iterate our training methodology. We train a (sep-

arate) conditional language model to solve both

the tasks. Specifically, given a training corpus of

the form {(xi,yi)}, we aim to estimate the dis-

tribution pθ(yi | xi). Given a training example

(xi,yi) we set ui = xi‖yi
8. pθ(ui) can then be

factorized as a sequence of auto-regressive condi-

tional probabilities using the chain rule: pθ(ui) =∏n
k=1 p(ui,k|ui,<k), where ui,k denotes the kth

token of the ith sequence, and ui,<k denotes the

sequence of tokens {u1, u2, ..., uk−1}. Language

models are typically trained by minimizing a cross-

entropy loss −logpθ(ui) over each sequence ui

in X. However, the cross-entropy loss captures

the joint distribution pθ(xi,yi), and is not aligned

with our goal of learning conditional distribution

pθ(yi|xi). To circumvent this, we train our model

by masking the loss terms corresponding to the in-

put xi, similar to Bosselut et al. (2019). Let mi

be a mask vector for each sequence ui, set to 0
for positions corresponding to xi, and 1 otherwise

8‖ denotes concatenation

877

Figure 3: Event temporal graph and the extracted communities for a sample document. Each community is shown

in different color. The singleton nodes (gray) are dropped. The nodes are only annotated with the verbs for

brevity. The edge labels and directions are not used for community detection.

i.e. mi,j = 1 if j > |xi|, else 0. We combine the

mask vector with our factorization of pθ(ui) to for-

mulate a masked language modeling loss, which is

minimized over the training corpus X to estimate

the optimal θ:

Lmasked(X) = −

|X|∑

i=1

|xi|+|yi|∑

j=1

mi,j∗log(pθ(ui,j |ui,<j))

Note that the formulation of masked loss is opaque

to the underlying architecture, and can be imple-

mented with a simple change to the loss function.

Intuitively, the model is optimized for only the out-

put sequence yi.

C.1 Adapting GPT-2 for Masked Language

Modeling

In practice, we use GPT-2 (Radford et al., 2019)

based on transformer architecture (Vaswani et al.,

2017) for our implementation. An input sequence

ui of length n is first embedded to a continuous rep-

resentation denoted by ui
(0) ∈ R

nd. ui
(0) is then

passed through a series of L transformer blocks

to obtain the output sequence ui
(L) ∈ R

nh. Each

transformer block (Vaswani et al., 2017) consists

of two operations: an auto-regressive version of the

multiheaded self-attention (Vaswani et al., 2017)

operation (AutoRegMultiHead) followed by a feed-

forward operation (FFN). Each of these operations

is surrounded by a residual connection (He et al.,

2016) and followed by a layer normalization (Ba

et al., 2016) operation. Denoting by u
(l−1) the in-

put to the lth transformer block , the operations are

in a transformer block are defined as follows:

ũ
l
attn = AutoRegMultiHead(u(l−1))

u
(l)
att = LayerNorm(ũ

(l)
att + u

(l−1))

ũ
(l)
ffn = FFN(u

(l)
att)

u
(l) = LayerNorm(ũ

(l)
ffn + u

(l)
att)

Where AutoRegMultiHead is an auto-regressive

version of the multiheaded self-attention (Vaswani

et al., 2017) that restricts the attention to the

sequence seen so far (in accordance with the

chain rule), and FFN is a feed-forward network

(MLP). After obtaining ui
(L), we set pφ(ui) =

softmax(ui
(L) ∗We), where We ∈ R

h|V | (|V | is

the size of the vocabulary). Finally, we calculate

the masked loss as L(ui) = mi
T ⊙ log(pφ(ui)),

and the optimal φ is obtained by minimizing

Lmasked(X) = −
∑|X|

i=1 L(ui).

D Dataset Statistics

Tables 11, 12, and 13 list various statistics calcu-

lated from the source data.

E Examples

Figures 4-9 show randomly picked examples from

the test corpus. Each figure shows the text, the

corresponding true graph, and the graph predicted

by GPT-2.

878

Figure 4

Descriptor #Articles

terrorism 40909

murders and attempted murders 25169

united states international relations 17761

united states armament and defense 16785

airlines and airplanes 16103

world trade center (nyc) 15145

demonstrations and riots 14477

hijacking 14472

politics and government 6270

bombs and explosives 5607

Table 11: Top Descriptors for the filtered Dataset. Note

that each article is typically assigned more than one de-

scriptor.

Event verb Raw frequency % Frequency

said 647685 9.60

say 57667 0.86

had 47320 0.70

killed 43369 0.64

told 42983 0.64

found 41733 0.62

made 40544 0.60

war 35257 0.52

get 30726 0.46

make 29407 0.44

Table 12: Most frequent events extracted by CAEVO.

Relation Raw Frequency % Frequency

BEFORE 2436201 54.51

AFTER 1772071 39.65

IS INCLUDED 131052 2.93

SIMULTANEOUS 112509 2.52

INCLUDES 17465 0.39

Table 13: Relation Frequence in our Corpus

Relation Frequency

BEFORE 98715

AFTER 68582

IS INCLUDED 6179

SIMULTANEOUS 6209

INCLUDES 285

Table 14: Edges in Generated Graphs: Top

879

Figure 5

Figure 6

880

Figure 7

Figure 8

881

Figure 9

