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Neural-Learning-Based Telerobot Control

With Guaranteed Performance
Chenguang Yang, Senior Member, IEEE, Xinyu Wang, Long Cheng, Senior Member, IEEE,

and Hongbin Ma, Member, IEEE

Abstract—In this paper, a neural networks (NNs) enhanced
telerobot control system is designed and tested on a Baxter
robot. Guaranteed performance of the telerobot control system
is achieved at both kinematic and dynamic levels. At kinematic
level, automatic collision avoidance is achieved by the control
design at the kinematic level exploiting the joint space redun-
dancy, thus the human operator would be able to only concentrate
on motion of robot’s end-effector without concern on possible col-
lision. A posture restoration scheme is also integrated based on a
simulated parallel system to enable the manipulator restore back
to the natural posture in the absence of obstacles. At dynamic
level, adaptive control using radial basis function NNs is devel-
oped to compensate for the effect caused by the internal and
external uncertainties, e.g., unknown payload. Both the steady
state and the transient performance are guaranteed to satisfy a
prescribed performance requirement. Comparative experiments
have been performed to test the effectiveness and to demonstrate
the guaranteed performance of the proposed methods.

Index Terms—Collision avoidance, guaranteed performance,
neural networks (NNs), telerobot control.

I. INTRODUCTION

I
N THE last few decades, the teleoperated robots, also

known as telerobots, have been widely applied for human

unfriendly tasks such as handing radioactive material and

searching in dangerous environment. In comparison to the

fully automatic robot manipulators used to perform rou-

tine task under static and structured environment, telerobots

could work in dynamic and unstructured environments to

perform more diverse tasks. A stereoscopic images processing-

based teleoperated system is proposed in [1], where the

stereoscopic images are displayed to the operator to provide

assistance in manipulative tasks. In [2], an environment to
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synthesize the Internet-based teleoperation systems is studied,

and the identified delay parameters of an Internet segment

are exploited to design a stable controller. In most conven-

tional teleoperation systems, the environmental information

is supposed to be feedback to the operators directly, and

they thus have to take care of every single interaction with

the environment around the manipulator. The operator could

manipulate a telerobot in this manner easily when the environ-

ment is simple, but in a dynamic and uncertain environment,

this approach could result in extreme huge burden to the

operator.

Typically, a telerobot system is subject to two types of

uncertainties that affect the control performance. One is con-

cerned with the external environment around the robot, e.g.,

potential obstacles. The other is concerned with the internal

uncertainties such as unknown dynamics and varying pay-

load. For the external uncertainties, the partial feedback of

telerobot’s environment information to the operator may limit

the application range of a teleoperation system, while com-

prehensive feedback may distract the operator from focusing

on the task. A visual sensing-based teleoperation method is

designed in [5], in which the operator is able to control the

motion of each single joint of the robot manipulator, by trans-

ferring his/her hand-arm motion captured by the vision system

in real time. In such kind of joint-to-joint teleoperation sys-

tem, human operators take full control of the manipulator

including each degree of freedom (DOF). The workload of

the operator is thus imaginably high. Therefore, the shared

control strategy has attracted much attention [3], [4]. In the

shared control framework, a telerobot is partially automati-

cally controlled to assist the neuromotor control of the human

operator.

To decrease the workload of the human operator, we con-

sider to employ the shared control framework, and embed an

automatic collision avoidance mechanism into the teleoper-

ation system, to enable the telerobot safely interact with a

dynamic environment. In this manner, the operator is able to

focus on manipulation of the end-effector of the telerobot,

which could avoid collision automatically with little influence

to the end effector, by using redundancy mechanism. In the

previous studies on manipulator collision avoidance, the redun-

dancy of the manipulator is commonly used. The redundant

manipulators are studied in [6] and [7], in which the sec-

ondary goal is described by a homogeneous solution in the

joint space. The solution is decomposed into a particular and

a homogeneous component, such that the multiple goals can be

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/
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Fig. 1. System diagram.

effectively prioritized. However, the methods mentioned above

may face troubles if an obstacle is too close to the base of the

robot manipulator. The number of the remaining DOF near the

base may not be enough for the manipulator to move along

the direction opposite to the obstacle’s movement. Thus, the

manipulator may encounter a problem of nonsolvable kine-

matics. A dimension reduction method is thus developed in

this paper to solve the this problem and to better exploit the

redundancy mechanism. We also consider restoration of the

manipulator back to the natural posture, when the obstacle

moves far away from the manipulator. For this purpose, a

simulated parallel system is introduced based on the kinemat-

ics the telerobot manipulator. Therefore, the proposed method

could provide a performance guaranteed teleoperation at the

kinematic level in an uncertain environment with dynamic

obstacles.

The internal uncertainties mainly come from the unmod-

eled dynamics [8]–[11]. The dynamic control methods of

a robot manipulator can be categorized as either model-

free control or model-based control. The model-based control

methods usually yield a better control performance [13], while

most model-free approach may not produce a good transient

response. In fact, the control performance heavily depends

on the model accuracy, but a perfect dynamics model of the

robots could never be available in advance. In addition, the

unknown or varying payload makes it impossible to obtain

an accurate dynamics model in advance. To solve such prob-

lems, the approximation-based control methods have been

developed and have been successfully applied on a wide

range of practical systems, e.g., formation control [14], multi-

agent’s consensus control [15], and the robotic manipulator

control [16]. The rationale of these approximation enabled

control methods is that when the system dynamics satisfy cer-

tain conditions, the uncertain nonlinearity can be approximated

by tools such as neural network (NN), polynomial approach,

wavelet network, and fuzzy logic system [12].

In [20], a multilayer feedforward NN control is proposed

for the robot manipulators to compensate for the unknown

dynamics. Due to neural learning process, the transient per-

formance of adaptive NN control is usually not discussed,

while in this paper, we combine adaptive neural control with

an error transformation technique to achieve guaranteed track-

ing performance at the dynamic level. At the kinematic level,

the developed technique ensures obstacle avoidance, and at

dynamic level, the NN-based control design is seamlessly

Fig. 2. Components used in the experiment setup [24].

integrated with control design at the kinematic level. To our

best knowledge, there is little research work in the past to

investigate simultaneously guaranteed control performance at

both kinematic and dynamic levels.

The control strategies designed at both kinematics and

dynamics levels are shown in Fig. 1. The design at the kine-

matic level is to generate a reference trajectory in the joint

space for the end-effector of the manipulator to follow opera-

tor’s command and to simultaneously achieve collision avoid-

ance. The goal of design at the dynamic level is to ensure that

the reference trajectory can be tracked satisfying a specified

performance requirement in the presence uncertainties.

II. PREPROCESSING

A. System Components

As illustrated in Fig. 2, a human operator teleoperates the

telerobot manipulator by sending command trajectory to its

end-effector using the Omni joystick connected to the master

computer. One of the Baxter robot’s arms is used as telerobot

manipulator. All the seven joints (as shown in Fig. 5) of the

manipulator will be employed in the experiment. The robot

manipulator connected to a slave computer works together

with a Kinect sensor to detect obstacles in the surrounding

environment.

The Kinect sensor is a red, green, blue plus depth (RGB-D)

image sensor developed by Microsoft, as shown in Fig. 3(b). It

contains a RGB camera and a depth sensor based on inferred

projector. From both the RGB and depth images, we are able

to generate a colored 3-D point cloud, such that we could use

the Kinect sensor to detect the surrounding environment of the

telerobot.

The 6-DOF SensAble Omni joystick (SensAble haptic tech-

nologies), as shown in Fig. 3(a), is used in this paper. The
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Fig. 3. Devices used in the teleoperation system. (a) Omni joystick.
[Captured from: http://www.geomagic.com/]. (b) Kinect sensor. [Captured
from: http://www.microsoft.com/].

Fig. 4. Setup of the Kinect sensor.

first three joints decide the Cartesian space position of the

tip/end-effector. The last three joints decide its orientation in

the Cartesian space.

B. Workspace Matching

To make best use of the manipulator work space, the

workspace matching between the robot and the Omni joy-

stick is carried out, to make the scaled workspace of the Omni

joystick to overlap with the workspace of the telerobot manip-

ulator as much as possible. The point cloud of the end-effector

points of both input device and manipulator is created based

on Monte Carlo method. The matching process follows our

previous work in [22]:

xd =

⎡

⎣

cos β − sin β 0

sin β cos β 0

0 0 1

⎤

⎦ × (Smxm + Tm) (1)

where xd = [xd yd zd]T with unit m is the Cartesian position

of the manipulator’s end-effector, and xm = [xm ym zm]T with

unit mm is the Cartesian position of the Omni joystick’s tip.

The revolution angle β = (π/4) is about the Z-axis of robot

manipulator’s base frame. The scaling factors and translations

are chosen as Sm = diag{0.0041, 0.0040, 0.0041} and Tm =

[0.701, 0.210, 0.129]T .

C. Coordinate Transformation

As shown in Fig. 4, a Kinect sensor is set up to detect the

obstacles around the robot manipulator. To enable obstacle

detection and collision avoidance, it is important to establish

a transformation matrix T between the coordinate frames of

Fig. 5. Illustrations of the collision points pcr and pco and of the Baxter
arm’s joints.

the robot manipulator and of the Kinect. The T matrix can

be obtained by a calibration method proposed in our previous

work [23].

First, we consider four noncollinear points, and measure

their coordinates under both the robot coordinate frame and

the Kinect coordinates frame. Let us denote XYZ as the coor-

dinate frame of the robot, and X′Y ′Z′ as the coordinate frame

of the Kinect. Denote the coordinates of the four points as

(x1, y1, z1), (x2, y2, z2), (x3, y3, z3), (x4, y4, z4) under coordi-

nate frame XYZ, and as (x′
1, y′

1, z′
1), (x′

2, y′
2, z′

2), (x′
3, y′

3, z′
3),

(x′
4, y′

4, z′
4) under coordinate frame X′Y ′Z′, respectively. Based

on these coordinates, we calculate the transformation matrix T

T =

⎡

⎢

⎢

⎣

x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4

1 1 1 1

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

x′
1 x′

2 x′
3 x′

4

y′
1 y′

2 y′
3 y′

4

z′
1 z′

2 z′
3 z′

4

1 1 1 1

⎤

⎥

⎥

⎦

−1

. (2)

The coordinate transformation between these two coordi-

nates is obtained by [x y z 1]T = T[x′ y′ z′ 1]T .

D. Identification of Collision Points

First, the continuous k-means clustering method is used to

over-segment the point cloud obtained from Kinect into super-

pixels. The superpixels on the robot will be identified using the

robot skeleton model built according to its kinematics. Each

robot manipulator’s link is regarded as a segment in the 3-D

space, as shown in Fig. 5. Based on the forward kinematics,

the coordinates of each joint, namely, the Cartesian position

of the endpoints of each segment can be calculated in the

following manner:

iXo = 0A1
1A2 · · · n−1AiXi (3)

where iXo = [ixo,
nyo,

nzo, 1]T and Xi = [xi, yi, zi, 1]T are

augmented position vectors in the Cartesian space. The matri-

ces j−1Aj are the homogeneous transform matrices between

consecutive links [25]. Based on the segmented point cloud,

we could easily generate a 3-D model of the robot in real-

time [26], i.e., the red 3-D model consisting of spheres in

Fig. 6.

The surrounding points of the 3-D model in the point cloud

can be seen as obstacles. The collision points, pcr and pco,

are shown in Fig. 5. These two points, the former one on the
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Fig. 6. Illustration of obstacle detection. The red 3-D model consisting of
spheres is a simple 3-D model of the robot. The green points in the point
cloud denote the obstacle. The blue and red points represent the collision
points for the left and the right arms, respectively. The black line indicates
the distance measured in between the robot manipulator and the obstacle.

TABLE I
NOMENCLATURE FOR DESIGN AT KINEMATIC LEVEL (i = 1, 2, 3)

robot and the latter one on the obstacle, if of shortest distance

d in between the robot manipulator and the obstacle.

As this paper does not focus on the obstacle detection

method, the detection result is directly provided in Fig. 6,

where the red 3-D model is the 3-D model of the robot, the

green points in the point cloud denote the obstacle, the blue

and the red points represent the collision points on the left and

the right arms, respectively. The black line segments show the

distance in between the robot manipulator and the obstacle.

III. CONTROL STRATEGY AT KINEMATIC LEVEL

The control to be designed at the kinematic level aims to

generate a reference trajectory θ̇d in the joint space, such that

the manipulator could avoid potential collision, as shown in the

left dashed box in Fig. 1. More specifically, the control goal

is to make the telerobot manipulator’s end-effector accurately

follow reference trajectory in the Cartesian space commanded

by the operator, while simultaneously avoid the obstacle auto-

matically. For the convenience of the readers, the notations

used in this section are presented in Table I.

A. Collision Avoiding

Without loss of generality, in this paper we only focus on

the cases of collision avoidance that could be achieved using

kinematic redundancy mechanism, i.e., the joint motion in the

null space of Jacobian Je. Let us now consider one arm of the

robot, the kinematics of which is given by

ẋe = Jeθ̇ (4)

where the definitions of the joint velocity θ̇ , the end-effector

velocity ẋe, and the Jacobian matrix Je are provided in Table I.

The Je matrix can be described as

Je = [Je1, Je2, . . . , Jen]

where Jei, 1 = 1, 2, . . . , n, is the ith column of Je.

The first goal of control design at the kinematics level is

to find joint velocities for the manipulator’s end-effector to

follow the desired position xd commanded by the operator

in the Cartesian space. In order to achieve that, a closed-loop

kinematic control law is designed in Cartesian space as below:

ẋe = ẋd + Keex (5)

where ex = xd − xe is the position error for the end-effector

in the Cartesian space, defined as the difference between the

desired position and the actual position. The positive definite

Ke is a gain matrix to be specified by the designer.

The second goal is to avoid any potential collision with min-

imal effect on the first goal. This can be achieved by exploiting

the kinematic redundancy mechanism of the manipulator in

the joint space. If the DOF number of a manipulator is larger

than the dimension number of the velocity of the end-effector,

then the manipulator is regarded as of kinematic redundancy.

The inverse kinematics of a kinematically redundant manipu-

lator is not well defined because there are an infinite number

of solutions. Using the pseudo-inverse of the Jacobian matrix

J† defined in Table I, we give a general inverse kinematics

solution as

θ̇ = J†ẋ +
(

I − J†J
)

z (6)

where z is a vector to be used for collision avoidance

design [6].

When the collision points are close to the manipulator arm,

the manipulator could simply move toward the opposite direc-

tion of the obstacle’s velocity. The desired avoiding velocity

ẋo must satisfy the kinematic constraint described by

ẋo = Joθ̇ (7)

where the Jacobian matrix of the collision point Jo is defined

in Table I. To reduce computational complexity, Jo can be

simply chosen in the manner

Jo = [Je1, . . . , Jel, 0, . . . , 0]

in which the first l columns are taken from Je, and the rest n−l

columns are simply zero vectors, where l ≤ n is the number

of joints that are above the potential collision point pcr.

As mentioned above, the collision avoiding velocity can be

designed to make the collision point pcr move toward the direc-

tion opposite to the obstacle velocity’s direction, as graphically

illustrated in Fig. 7. It is reasonably to assume that the colli-

sion point pcr should move faster when the obstacle is closer.

Thus, we design the collision avoiding velocity ẋo as

ẋo =

⎧

⎨

⎩

0, d ≥ do

γ (d)vmax, dc < d < do

vmax, d ≤ dc

(8)
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Fig. 7. Illustration of the collision avoiding strategy. (a) Decision of a ten-
tative avoiding velocity ẋo (8). (b) Alternative avoiding velocity ẋ′

o satisfying

ẋ′
o = Joθ̇ and ẋ′

o − ẋo fall onto the normal plane No of ẋo.

where γ (d) = ((do − d)/(do − dc)), d = ‖pcr − pco‖ is

defined as the distance in between the obstacle and the robot

manipulator; vmax = vmax(pcr − pco)/d is the maximum avoid-

ing velocity vector with opposite direction to the obstacle

velocity’s direction.

Remark 1: Instead of using the potential field [21] which

needs to generate a force vector to be embedded into joint

torque input, we employ a simple yet efficient algorithm (8) to

decide the avoiding velocity at the kinematic level rather than

at the dynamic level. In comparison to the method proposed

in [21], our proposed method is of less computational load

and easier to be implemented. Moreover, a restoring control

will also be developed later such that the manipulator restores

the natural posture when the obstacle is gone.

B. Dimension Reduction Method

Consider that when the potential collision point is too close

to the manipulator’s base, i.e., shoulder mount point, there may

be not enough number of DOF left for the robot to achieve the

avoiding velocity ẋo, which is of 3-D in the Cartesian space.

The rank number of Jacobian matrix Jo could be smaller than

the number of dimension of ẋo, e.g., if a potential collision

point falls in between the Baxter arm’s elbow joint E1 and

its shoulder joint S0, then the rank number of Jo will be only

2, i.e., only two columns are nonzero vectors. In this case,

Fig. 8. Simulated parallel system. The skeleton of the actual manipulator
is represented by the solid black line, and the dashed black line represent an
artificial manipulator simulated in the parallel system.

there may be no solution for the inverse problem of (7) given

a 3-D ẋo.

However, there always exists an alternative avoiding veloc-

ity ẋ′
o such that: 1) the solution θ̇ satisfying ẋ′

o = Joθ̇ exists

and 2) the vector (ẋ′
o − ẋo) falls onto the normal plane No of

ẋo. As shown in Fig. 7(b), the tentative avoiding velocity ẋo

can then be regarded as a projection of ẋ′
o about the normal

direction of the plane No, and thus the alternative avoiding

velocity ẋ′
o will a play similar role as ẋo, to drive the manip-

ulator away from a coming obstacle. Consider there is a right

angle between vector ẋo and vector (ẋ′
o − ẋo). The following

equality holds:

ẋT
o

(

ẋ′
o − ẋo

)

= 0. (9)

Substituting ẋ′
o = Joθ̇ into (9), we have

ẋT
o ẋo = ẋT

o Joθ̇ . (10)

Consider that (10) is a scalar equation, e.g., ẋT
o ẋo is just a a

scalar. Therefore, even if the rank number of Jo reduces to 1,

the inverse problem of (10) is still solvable. In the following

design, we will replace (7) by (10). This dimension reduction

method ensures the inverse kinematics solution of θ̇ always

exist and thus allow us to more efficiently use the redundancy

mechanism of the manipulator.

C. Restoring Control

To eliminate the effect caused by the obstacle when it is

gone, ideally the manipulator should restore its natural pos-

ture once the obstacle has been removed. We design a parallel

system of the manipulator, based on its kinematics, and then

simulate its motion in real time ignoring the effect of the obsta-

cle, as shown in Fig. 8. The motion of the simulated artificial

manipulator in the parallel system is described by

θ̇ r = J†
e(θr)ẋe (11)

where given the actual manipulator’s end effector’s posi-

tion, the joint velocities θ̇ r of the parallel system are simply

calculated from the inverse kinematics.

Consider the Baxter arm’s joints shown in Fig. 5. It is

observed that the posture of the arm is decided only by the
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position of three joints, namely S1, E1, and W1, the Cartesian

positions of which are denoted as xr1, xr2, and xr3, respec-

tively. In the restoring process, each of these three joints on

the real manipulator is supposed to move to coincide with

the same joints of the parallel system. The aforementioned

dimension reduction method is applied here as well to avoid

the kinematics nonsolvable problem and achieve the position

control of all joints simultaneously. The manipulator needs to

satisfy (4) and (12) when there is no obstacle around
⎡

⎣

ẋr1

ẋr2

ẋr3

⎤

⎦

T⎡

⎣

ẋr1

ẋr2

ẋr3

⎤

⎦ =

⎡

⎣

ẋr1

ẋr2

ẋr3

⎤

⎦

T⎡

⎣

Jr1

Jr2

Jr3

⎤

⎦θ̇ (12)

where the Jacobian matrices [JT
r1

, JT
r2

, JT
r3

]T , and joint veloc-

ities [ẋT
r1

, ẋT
r2

, ẋT
r3

]T are defined in Table I. Define ẋr =

[ẋT
r1

, ẋT
r2

, ẋT
r3

]T and Jr = [JT
r1

, JT
r2

, JT
r3

]T . Then (12) can be

rewritten as

ẋT
r ẋr = ẋT

r Jrθ̇ . (13)

The restoring velocity ẋr is designed based on the feedback

position errors, as below:

ẋr = Krer (14)

where er = [eT
r1

, eT
r2

, eT
r3

]T is vector of position error between

simulated artificial manipulator and actual manipulator, and

the positive definite gain matrix Kr is to be specified by the

designer.

D. Control Design at Kinematic Level

Let us combine the inverse kinematics general solution (6),

the dimension reduction equations (10) and (12), then we have

the following equations:

ẋT
o JoJ†

e ẋe + ẋT
o Jo

(

I − J†
eJe

)

zo = ẋT
o ẋo (15)

ẋT
r JrJ

†
e ẋe + ẋT

r Jr

(

I − J†
eJe

)

zr = ẋT
r ẋr. (16)

The solutions of zo and zr can be derived from (15) and (16),

as given in the following equations:

zo =
[

ẋT
o Jo

(

I − J†
e Je

)]†(

ẋT
o ẋo − ẋT

o JoJ†
e ẋe

)

(17)

zr =
[

ẋT
r Jr

(

I − J†
e Je

)]†(

ẋT
r ẋr − ẋT

r JrJ
†
e ẋe

)

. (18)

In order to smoothly switch in between the obstacle avoid-

ance and the restoration, we employ a weighted sum of (17)

and (18), and integrate it into the design of the desired joint

velocities as

θ̇d = J†
e ẋe +

(

I − J†
e Je

)

[αzo + (1 − α)zr] (19)

where the weight factor α is chosen in [0, 1], depending on

the distance in between the obstacle and the manipulator, as

α =

⎧

⎪

⎨

⎪

⎩

0, d ≥ do

do − d

do − dr

, dr < d < do

1, d ≤ dr

(20)

where dr is the distance threshold that the manipulator start

to restore its original pose.

The control strategy at the kinematic level can be obtained

by substituting (5) into (19), as

θ̇d = J†
e(ẋd + Keex) +

(

I − J†
e Je

)

[αzo + (1 − α)zr]. (21)

Lemma 1: Consider the desired velocity θ̇d defined in (21).

If joint velocity θ̇ completely follows θ̇d, then the end-

effector’s position error ex will asymptotically converge to

zero.

Proof: See the Appendix.

IV. CONTROL STRATEGY AT DYNAMICS LEVEL

The control strategy at dynamics level aims to make sure the

manipulator follow the joint space trajectory generated from

the kinematics level, as shown in Fig. 1. The radial basis func-

tion NN (RBFNN) is used to compensate for the unknown

dynamics, especially that caused by the unknown payload,

to guarantee the steady state performance of the controller.

An error transformation method is employed in the design to

guarantee the transient performance.

A. Radial Basis Function NN

The effectiveness of the linear-in-parameter RBFNN has

been extensively tested by a large number of researchers, and

it is theoretically proved that RBFNN is able to approximate

any continuous function φ(θ) : Rm → R arbitrarily close on

a compact set �z ⊂ Rm as [27], [28]

φ(θ) = WTZ(θ) + εφ, ∀θ ∈ �θ (22)

where W = [ω1, ω2, . . . , ωl]
T ∈ Rl is the ideal NN weight

vector of constant elements, θ ∈ �θ ⊂ Rm is the input

vector, εφ is the bounded approximation error, and Z(θ) =

[z1(θ), z2(θ), . . . , zl(θ)]T ∈ Rl is basis function with zi(θ)

chosen as Gaussian functions as below [29]

zi(θ) = exp

[

−(θ − µi)
T(θ − µi)

η2
i

]

, i = 1, 2, . . . , l (23)

where vector µi = [µi1, µi2, . . . , µim]T ∈ Rm represents the

note centers and ηi the variance. The value of the ideal weight

vector W minimizes the approximation error εz for all θ ∈ �θ

in the following manner:

W
def
= arg min

W′∈Rl

{

sup

∣

∣

∣
φ(θ) − W′TS(θ)

∣

∣

∣

}

, θ ∈ �θ . (24)

If the number of NN node l is sufficiently large and node

centers µi are appropriately chosen, the approximation error

|εz| could be reduced arbitrarily small.

B. Control Design at Dynamic Level

1) Error Transformation and Joint Position Control Loop:

Let us define the joint angle tracking error eθ = θ − θd,

and then employ the following error transformation func-

tions [12], [30]:

eθ i(t) = ρ(t)Ri

(

Pi

(

eθ i(t)

ρ(t)

))

, i = 1, 2, . . . , n (25)
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where

Ri(x) =

⎧

⎪

⎨

⎪

⎩

ex − δ

1 + ex
, if eθ i(0) ≥ 0

δex − 1

1 + ex
, if eθ i(0) < 0

(26)

and Pi(·) defined below is the inverse function of Ri(·)

Pi(x) =

⎧

⎪

⎨

⎪

⎩

ln
x + δ

1 − x
, eθ i(0) ≥ 0

ln
x + 1

δ − x
, eθ i(0) < 0

(27)

with ρ(t) denoting the tracking performance requirement,

which is defined as

ρ(t) = (ρ0 − ρ∞)e−pt + ρ∞ (28)

where parameters δ, ρ0, ρ∞ < ρ0 and p used above are pos-

itive constants to be specified by the designer, depending on

the requirement of the tracking performance.

The joint position control loop aims to generate the desired

joint angular velocities and to guarantee the transient perfor-

mance of the manipulator. Define ηi(t) as

ηi(t) = Pi

(

eθ i(t)

ρ(t)

)

. (29)

Then the joint position control loop is designed as

vdi(t) = −k1ρ(t)ηi(t) + θ̇di(t) +
ρ̇(t)

ρ(t)
eθ i(t). (30)

Lemma 2 [12], [30]: If ηi(t) is bounded, the tracking per-

formance can be tailored by the performance requirement

function ρ(t).

Proof: From the definition of Ri(·), we have

− δ < Ri(·) < 1, if eθ i(0) ≥ 0

−1 < Ri(·) < δ, if eθ i(0) < 0. (31)

If ηi(t) is bounded, then from the definition of ηi(t), we

have

− δρ(t) < eθ i(t) < ρ(t), if eθ i(0) > 0

−ρ(t) < eθ i(t) < δρ(t), if eθ i(0) < 0. (32)

Thus, ρ(t) can be seen as the bounding envelope of the

error eθ i(t). For the transient performance, the maximal ampli-

tude of overshoot is bounded by δρ0 and the amplitude of

maximal tracking error in the stable phase is bounded by

max{ρ∞, δρ∞}.

The 5% settling time, i.e., the required time for the tracking

error to reach and stay within a 100% ± 5% range is bounded

by (max{1, δ}/p) ln(ρ0 − ρ∞/1.05ρ∞). Therefore, ρ(t) actu-

ally regulates both the transient and steady performance.

Consider a Lyapunov function V1 = (1/2)ηT(t)η(t), which

will be used later for stability analysis. Its derivative is

given by

V̇1 =
ηT(t)Ṗ(η(t))ev(t)

ρ(t)
− k1η

T(t)Ṗ(η(t))η(t) (33)

where

Ṗ(η(t)) = diag
(

Ṗ1(R1(η1(t))), . . . , Ṗn(Rn(ηn(t)))
)

vd = [vd1, vd2, . . . , vdn]T

ev = θ̇ − vd. (34)

2) Neural-Learning and Joint Velocity Control Loop:

The dynamics of the robot manipulator can be described as

M(θ)θ̈ + C
(

θ , θ̇
)

θ̇ + G′(θ) + τext = τ (35)

where M(θ) is the manipulator inertia matrix, C(θ , θ̇) is the

Coriolis matrix for the manipulator, G′(θ) is the gravity terms

and τext denotes the external torque caused by payload. For

convenience, let us define G(θ) = G′(θ) + τext.

The velocity control loop is used to achieve the desired joint

angular velocities vd by applying the control torque τ .

Design the control torque input as follows:

τ = −k2ev + M̂v̇d + Ĉvd + Ĝ + f̂ −
Ṗ(η(t))η(t)

ρ(t)
(36)

where Ĝ(θ), M̂(θ), Ĉ(θ , θ̇), and f̂ are the estimates of G(θ),

M(θ), C(θ , θ̇), and f , respectively, and f defined later in (41)

is a function of θ , θ̇ , vd, and v̇d.

The closed-loop dynamics can then be formulated as

follows:

Mėv + Cev + k2ev +
Ṗ(η(t))η(t)

ρ(t)
− f̂

= −
(

M − M̂
)

v̇d −
(

C − Ĉ
)

vd −
(

G − Ĝ
)

. (37)

Applying NN approximation technique, we have

M(θ) = WT
MZM(θ) + εM(θ)

C
(

θ , θ̇
)

= WT
CZC

(

θ , θ̇
)

+ εC

(

θ , θ̇
)

G(θ) = WT
GZG(θ) + εG(θ)

f = WT
f Zf

(

θ , θ̇ , vd, v̇d

)

+ εf

(

θ , θ̇ , vd, v̇d

)

(38)

where WM ∈ Rnl×n, WC ∈ R2nl×n, WG ∈ Rnl×n, and Wf are

the ideal NN weight matrices defined as

WM =
[

WMi,j

]

, WC =
[

WCi,j

]

WG = diag
(

WGi

)

, Wf = diag
(

Wfi

)

(39)

where WMi,j
∈ Rl, WCi,j

∈ R2l, WGi
∈ Rl, and Wfi ∈ Rl, i =

1, 2, . . . , n, j = 1, 2, . . . , n, as weight vectors defined in (24),

are used to approximate element Mi,j(θ) ∈ R, Ci,j(θ) ∈ R, and

Gi(θ) ∈ R, respectively.

The matrices of radial basis functions, namely, ZM(θ),

ZC(θ , θ̇), ZG(θ), and Zf (θ) are designed as follows:

ZM(θ) = diag(Zθ , . . . , Zθ ) ∈ Rnl×n

ZC

(

θ , θ̇
)

= diag

([

Zθ

Z
θ̇

]

, . . . ,

[

Zθ

Z
θ̇

])

∈ R2nl×n

ZG(θ) =
[

Zθ
T , . . . , Zθ

T
]T

∈ Rnl×n

Zf

(

θ , θ̇ , vd, v̇d

)

=
[

Z̄T, . . . , Z̄T
]T

∈ R4nl×n (40)
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where Zθ = [z1(θ), z2(θ), . . . zl(θ)]T ∈ Rl, Z
θ̇

=

[z1(θ̇), z2(θ̇), . . . zl(θ̇)]T ∈ Rl, Zvd
= [z1(vd),

z2(vd), . . . zl(vd)]
T ∈ Rl, Zv̇d

= [z1(v̇d), z2(v̇d), . . . zl(v̇d)]
T ∈

Rl, and Z̄ = [Zθ
T , Z

θ̇
T , Zvd

T , Zv̇d

T ]T ∈ R4l, with zi,

i = 1, 2, . . . , l defined in (23). The NN-based estimates of

G(θ), M(θ), C(θ , θ̇), and

f = εM v̇d + εCvd + εG (41)

can be written as follows:

M̂(θ) = ŴT
MZM(θ)

Ĉ
(

θ , θ̇
)

= ŴT
CZC

(

θ, θ̇
)

Ĝ(θ) = ŴT
GZG(θ)

f̂ = ŴT
f Zf

(

θ , θ̇ , vd, v̇d

)

. (42)

By substituting (42) into (37), we have

Mėv + Cev + k2ev +
Ṗ(η(t))η(t)

ρ(t)

= −W̃T
MZM v̇d − W̃T

CZCvd − W̃T
GZG − W̃T

f Zf − εf

(43)

where W̃(·) = W(·) − Ŵ(·).

Let us consider a second Lyapunov function as

V2 =
1

2
eT

v Mev +
1

2
tr
(

W̃T
MQMW̃M

)

+
1

2
tr
(

W̃T
CQCW̃C + W̃T

GQGW̃G + W̃T
f Qf W̃f

)

(44)

where QM, QC, QG, and Qf are positive definite weight matri-

ces to be specified. Note that
˙̃

W(·) = −
˙̂

W(·), we see the

derivative of V can be written as

V̇2 = −eT
v k2ev − eT

v εf −
eT

v Ṗ(η(t))η(t)

ρ(t)

− tr

[

W̃T
M

(

ZM v̇deT
v + QM

˙̂
WM

)]

− tr

[

W̃T
C

(

ZCvdeT
v + QC

˙̂
WC

)]

− tr

[

W̃T
G

(

ZGeT
v + QG

˙̂
WG

)]

− tr

[

W̃T
f

(

Zf eT
v + Qf

˙̂
Wf

)]

. (45)

The neural learning law is thus designed as follows:

˙̂
WM = −Q−1

M

(

ZM v̇deT
v + σMŴM

)

˙̂
WC = −Q−1

C

(

ZCvdeT
v + σCŴC

)

˙̂
WG = −Q−1

G

(

ZGeT
v + σGŴG

)

˙̂
Wf = −Q−1

f

(

Zf eT
v + σf Ŵf

)

(46)

where σM , σC, σG, and σf are positive parameters to be

specified by the designer.

In the following analysis, the boundness of η(t) is estab-

lished, such that both transient and steady state performance of

the robot manipulator can be guaranteed. Now, let us consider

an overall Lyapunov function as

V = V1 + V2. (47)

The derivative of V is

V̇ = −k1η
T(t)Ṗ(η(t))η(t) − eT

v k2ev − eT
v εf

+ tr
[

σMW̃T
MŴM

]

+ tr
[

σCW̃T
CŴC

]

+ tr
[

σGW̃T
GŴG

]

+ tr
[

σf W̃T
f Ŵf

]

. (48)

According to the definition of Ṗ(η(t)), we have

ηT(t)Ṗ(η(t))η(t) ≥ (2)/(1 + δ)‖η(t)‖2. Consider the

following inequality obtained by Young’s inequality:

tr
[

W̃T
(·)Ŵ(·)

]

≤ −
1

2

∥

∥

∥
W̃(·)

∥

∥

∥

2

F
+

1

2

∥

∥W(·)

∥

∥

2

F
. (49)

Then (48) can be further derived as

V̇ ≤ −
2k1

1 + δ
‖η(t)‖2 −

(

k2 −
1

2

)

‖ev‖
2 + ̺

−
σM

2

∥

∥

∥
W̃M

∥

∥

∥

2

F
−

σC

2

∥

∥

∥
W̃C

∥

∥

∥

2

F
−

σG

2

∥

∥

∥
W̃G

∥

∥

∥

2

F
−

σf

2

∥

∥

∥
W̃f

∥

∥

∥

2

F

(50)

where ̺ = (σM/2)||WM||2F + (σC/2)||WC||2F + (σG/2)

||WG||2F + (σf /2)||Wf ||
2
F + (1/2)ǫ2

f
with ǫf the upper limit

of ‖εf ‖ over �.

Obviously, if W̃M, W̃C, W̃G, W̃f , η(t), and ev satisfy the

following inequality:

σM

∥

∥

∥
W̃M

∥

∥

∥

2

F
+ σC

∥

∥

∥
W̃C

∥

∥

∥

2

F
+ σG

∥

∥

∥
W̃G

∥

∥

∥

2

F
+ σf

∥

∥

∥
W̃f

∥

∥

∥

2

F

2

+
2k1

1 + δ
‖η(t)‖2 +

(

k2 −
1

2

)

‖ev‖
2 ≥ ̺ (51)

then we have V̇ ≤ 0.

Using the LaSalle’s theorem and Lemma 1, it is easy to

establish stability and convergence results in the following

Theorem 1.

Theorem 1: Consider the closed-loop dynamics system

consisting of telerobot open loop dynamics (35), the torque

control input defined in (36) with neural learning law spec-

ified in (46). Semi-global uniformly boundedness of all the

closed-loop signals is guaranteed given bounded θd and θ̇d.

Particularly, the error signals η(t) and ev will converge to an

invariant set �s ⊆ � defined

�s =

{

(

‖η(t)‖, ‖ev‖, ‖WM‖, ‖WC‖, ‖WG‖,
∥

∥Wf

∥

∥

)

|

×
σM

∥

∥

∥
W̃M

∥

∥

∥

2

F

2̺
+

σC

∥

∥

∥
W̃C

∥

∥

∥

2

F

2̺
+

σG

∥

∥

∥
W̃G

∥

∥

∥

2

F

2̺

+
σf

∥

∥

∥
W̃f

∥

∥

∥

2

F

2̺
+

2k1

(1 + δ)‖̺
‖η(t)‖2

+
(2k2 − 1)

2̺
‖ev‖

2 ≤ 1

}

. (52)
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Fig. 9. Experiment setup for the unknown system dynamics estimation.

Fig. 10. Reference joint angles θd and the actual joint angles θ without
the neural-learning. The dashed and solid lines indicates reference and actual
joint angles, respectively. The lines of different colors indicate different joints.

V. EXPERIMENT STUDIES

A. Test of Neural-Learning Performance

The first group of experiments mainly test the compensa-

tion of the effect caused by the unknown dynamics and the

uncertain payload. As shown in Fig. 9, the Baxter right arm’s

end-effector is controlled to move along a fixed trajectory

specified by

xd(t) =

⎡

⎣

0.6 + 0.1 sin(2π t/2.5)

−0.4 + 0.3 cos(2π t/2.5)

0.2

⎤

⎦. (53)

A payload is held by the gripper, which has a weight of 1.3 kg.

In order to achieve a high precision of the approximation of

the 7-DOF robot dynamics, we choose three nodes for each

input dimension, and employ totally l = 37 NN nodes for

neural networks M̂(θ) = ŴT
M

ZM(θ) and Ĝ(θ) = ŴT
G

ZG(θ),

2l NN nodes for neural network Ĉ(θ) = ŴT
C

ZC(θ)T and 4l NN

nodes for neural network f̂ = ŴT
f

Zf (θ, θ̇, vd, v̇d)
T . While the

NNs weight matrix are initialized as ŴM(0) = 0 ∈ R
nl×n,

ŴC(0) = 0 ∈ R
2nl×n, ŴG(0) = 0 ∈ R

nl×n, and Ŵf (0) = 0 ∈

R
4nl×n, where l = 2187 and n = 7.

Two comparative experiments are performed to verify the

performance of the proposed neural-learning based controller.

In the first experiment, the manipulator with payload is con-

trolled by the controller without neural learning, while in the

second experiments, the proposed neural learning is enabled.

For the first experiment, the reference joint angles θd and

the actual joint angles θ are shown in Fig. 10; the joint angle

errors eθ are shown in Fig. 11. We see that the joint angle

errors are relatively high due to the heavy payload.

Fig. 11. Joint angle errors eθ without the neural-learning. The lines of
different colors indicate different joints.

Fig. 12. Compensation torque TNN generated by the neural learning. The
lines of different colors indicate different joints.

Fig. 13. Reference joint angles θd and the actual joint angles θ with the
neural-learning. The dashed and solid lines indicates reference and actual joint
angles, respectively. The lines of different colors indicate different joints.

Fig. 14. Joint angle errors eθ with the neural-learning. The lines of different
colors indicate different joints.

The experiment results with the proposed neural learning

are shown in Figs. 12–14, where Fig. 12 shows the compen-

sation torque TNN = M̂v̇d + Ĉvd + Ĝ + f̂ . When the payload

is attached to the end effector, its gravity effect was more

obvious than the dynamic uncertainties of the robot manipu-

lator. Therefore, we particularly show the NN weight of ŴG

in Fig. 15. Fig. 13 shows the reference and actual joint angles

and Fig. 14 shows the joint angle errors. We see that at the

beginning, the compensation torque is zero and the joint angle

error is as large as the results shown in Fig. 11. While later

the weight matrices show the trend of convergence. Variance

of same periodicity as the reference trajectory can be found in

the compensation torque TNN. Along with the increment of the
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Fig. 15. Norm of each column vector of the NN weight ŴG, corresponding

to each row of Ĝ.

Fig. 16. Experiment results of the tracking performance test. Joint angle (a)
without error transformation method, (b) error without error transformation
method, (c) with the error transformation method, and (d) error with the error
transformation method.

compensation torque, the joint angle errors reduce quickly and

become satisfactory after a few cycles, as shown in Fig. 14.

B. Test of Tracking Performance

The second group of experiments mainly focus on the test

of tracking performance of the dynamics controller. The end-

effector of the manipulator is controlled to move along a

straight line between two points, P1 : (0.6,−0.2, 0.2) and

P2 : (0.6,−0.6, 0.2). Two comparative experiments are per-

formed, with and without the error transformation method.

The results of without the error transformation method are

shown in Fig. 16(a) and (b). The results with the proposed

error transformation method are shown in Fig. 16(c) and (d).

Results of only one joint are shown as the results of other

joints are very similar. In order to compare the performance

between these two experiments, same performance functions

ρ(t) are drawn in Fig. 16(b) and (d). We see that the over-

shoot in the experiment without the error transformation is

much larger and the settling time is much longer than the

experiment with the error transformation method. It is worth

to mention that the joint angle error of the experiment with the

proposed method never exceeds the performance requirement

during the transient process, as shown in Fig. 16(d). It means

that the transient performance satisfies the prescribed require-

ment (28) with parameters δ = 1, ρ0 = 0.15, ρ∞ = 0.02, and

p = 1.5.

Fig. 17. Set-up of the collision avoidance experiment.

Fig. 18. Video frames of the collision avoidance experiments. (a) Without
collision avoidance. (b) With collision avoidance.

C. Test of Collision Avoidance

In this group of experiments, the collision avoidance perfor-

mance is tested. The manipulator is teleoperated by a human

operator to move an object between two fixed positions A and

B, as indicated by the red cross and the blue cross on the desk

in Fig. 17, in which the green box is the object to be manip-

ulated. Two experiments are performed, with and without the

proposed collision avoidance method.

The test results are shown in Figs. 18 and 19. We see that

when the robot elbow comes close to the obstacle, the manipu-

lator controlled without the collision avoidance method collide

with the obstacle and consequently cannot fulfil the task. In

the contrast, the manipulator equipped with the proposed col-

lision avoidance method can adjust its posture to avoid the

obstacle and able to complete the task.
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Fig. 19. Time series of the posture of the manipulator. The black lines indi-
cates the manipulator arm, and the red box indicates the obstacle. (a) Without
collision avoidance. (b) With collision avoidance.

Fig. 20. Video frames of the restoring control experiment. (a) t = 36 s.
(b) t = 38 s. (c) t = 39 s. (d) t = 43 s.

D. Test of Restoration Function

In the last experiment, the restoration function is tested.

For ease of test, the operator holds the joystick statically such

that the manipulator’s end-effector is maintained at the fixed

position, while the obstacle is moving in a dynamic manner.

The test results are shown in Fig. 20. We see in the figure

that when the obstacle is moving close to the manipulator,

its elbow moves down in order avoid possible collision. It

is noted that there is nearly no change of the end-effector’s

position during the collision avoidance. When the obstacle

moves away, the manipulator automatically restores back to

its previous posture.

VI. CONCLUSION

In this paper, a telerobot control method with guaranteed

performance at both kinematic and dynamic levels is devel-

oped. On the kinematic level, a dimension reduction method

is developed to overcome the kinematics nonsolvable problem

while the manipulator is avoiding obstacle, and to achieve a

more efficient use of the redundancy. A simulated parallel sys-

tem of the manipulator is designed to achieve restoration back

to the natural pose in the absence of obstacle. The human

operator may not need to consider the surrounding obstacles

any more when teleoperating the end-effector of the manipu-

lator. On the dynamic level, a neural-learning based controller

is designed to compensate for the uncertainties of manipu-

lator dynamics and the payload. Both transient and steady

state control performance are guaranteed by implementing

the error transformation method. Extensive experiments have

been performed on an arm of the Baxter robot to demonstrate

the performance of our developed methods, which could be

widely used for various types of applications of robot manip-

ulators, for wide range of tasks such as exploration, rescue,

and medical surgery.

APPENDIX

PROOF OF LEMMA 1

Proof: Following our previous work in [24], we choose a

positive definite Lyapunov function V(ex) = (1/2)ex
TKeex,

the derivative of which is V̇ = ex
TKeẋd −ex

TKeẋe. Combining

it with (4), we have

V̇ = ex
TKeẋd − ex

TKeJeθ̇d. (54)

where θ = θd is assumed. With the desired joint velocity θ̇d

given in (21), the above equation becomes

V̇ = ex
TKeẋd − ex

TKeJe

[

J†
e(ẋd + Keex)

+
(

I − J†
e Je

)

[αzo + (1 − α)zr]
]

.

(55)

Noting that JeJ†
e results in an identity matrix, we could even-

tually arrive at V̇ = −ex
TKeJeJ†

eKeex ≤ 0 which implies ex

asymptotically converge to zero.
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