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In neuroscience, population coding theory demonstrates that neural assemblies can achieve

fault-tolerant information processing. Mapped to nanoelectronics, this strategy could allow

for reliable computing with scaled-down, noisy, imperfect devices. Doing so requires that the

population components form a set of basis functions in terms of their response functions to

inputs, offering a physical substrate for computing. Such a population can be implemented

with CMOS technology, but the corresponding circuits have high area or energy require-

ments. Here, we show that nanoscale magnetic tunnel junctions can instead be assembled to

meet these requirements. We demonstrate experimentally that a population of nine junctions

can implement a basis set of functions, providing the data to achieve, for example, the

generation of cursive letters. We design hybrid magnetic-CMOS systems based on inter-

linked populations of junctions and show that they can learn to realize non-linear variability-

resilient transformations with a low imprint area and low power.
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T
he challenges to reduce the area and increase the energy
efficiency of microelectronic circuits are increasing dra-
matically. The size of transistors is reaching the nanoscale,

and decreasing their dimensions further, or using emerging
nanometer-scale devices, leads to stochastic behaviors, large
device-to-device variability, and failures1,2. Our current com-
puting schemes are not able to deal well with noisy, variable, and
faulty components. Entire processor chips are rejected based on a
single component failure. However, we know that other forms of
information processing can be extremely resilient to errors.
Operating at the thermal limit, our brain seems to have found an
optimal tradeoff between low-energy consumption and compu-
tational reliability3. It carries out amazingly complex computa-
tions even though its components, neurons, are very noisy4,5.
Figure 1b illustrates a neural firing pattern triggered by a constant
input stimulus: the periodicity of the spike train is typically
blurred by the high level of noise.

A key reason for the resilience of the brain seems to be
redundancy. Measurements of neuronal activity in diverse parts
of the brain such as the retina6, the midbrain7, the motor cortex8

or the visual cortex9 indicate that these parts encode and process
information by populations of neurons rather than by single
neurons. This principle of population coding and its benefits for
the brain have been investigated in numerous theoretical
works10,11. In electronics, mimicking population coding has been
proposed and shown to be effective in circuits using conventional

transistors, but leads to circuits with high area costs due to the
large size of the artificial neurons12,13. It is therefore attractive to
take inspiration from this strategy and compute with populations
of low-area nanoscale electronic devices, even when they exhibit
stochastic or variable behaviors. This approach has recently
inspired pioneering studies of the dynamical response of
ensembles of emerging nanodevices14,15. However, showing that
actual computations can be realized using the physics of popu-
lation of nanodevices remains an open challenge.

Neuroscience studies indicate that, for this purpose, elementary
devices mimicking neurons should have certain properties10. In
particular, a neuron that is part of a population should possess a
tuning curve: on average, it should spike more frequently for a
narrow range of input values, to which it is tuned16,17. Figure 1c
shows data from18 corresponding to spike rate measurements of a
single neuron in vivo. The corresponding tuning curve has a bell-
shape dependence on the drift direction of the input visual sti-
mulus. The measured neuron spikes more frequently when the
drift direction is around −20°: it is in charge of representing the
input over a narrow range of angles. In general, all neurons in a
given population have similar tuning curves of rate versus
amplitude. However, the tuning curves are shifted and distributed
in order to cover the whole range of input amplitudes. The
ensemble of tuning curves in the population then forms a basis set
of functions (bottom panel of Fig. 1e), similar to the sines and
cosines of a Fourier expansion10,19.
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Fig. 1 Neural and superparamagnetic tuning curves for population coding. a Schematic representing information reconstruction from a population of

neurons. Each neuron (color dots) senses a specific range of stimuli (orientations). The represented function H is computed as a weighted sum of the rates

of each neuron. b Sketch of a typical neuron firing pattern. The emitted voltage is plotted versus time. c Tuning curve of a neuron: spiking rate versus

direction of the observed target, reproduced with data from18. Experiment (symbols) and Gaussian fit (solid lines) are shown. d Schematic of a

superparamagnetic tunnel junction. e Polynomial function constructed from a weighted sum of the tuning curves of the population of neurons. f Energy

landscape of the magnetic device. g–i Experimental measurements of the resistance versus time of a superparamagnetic tunnel junction for injected

currents of 50 µA (g), −50 µA (h), and −10 µA (i). j Rate of the superparamagnetic tunnel junction versus current. The experimental results (symbols) and

analytical fit (solid line) are shown
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In the present work, we show that a nanodevice—the super-
paramagnetic tunnel junction—naturally implements neurons for
population coding, and that it can be exploited for designing
systems that can compute and learn. The behavior of the nano-
device directly provides a tuning curve and resembles a spiking
neuron. Without the use of explicit analog-to-digital converters it
transforms an analog input into a naturally digital output that can
then be processed by energy-efficient digital circuits, resulting in a
low area and low energy system. The spiking nature of the neu-
rons gives a stochastic character to the system, which appears a
key element of its energy efficiency and a source of robustness.

After having studied and modeled the tuning curve provided
by superparamagnetic tunnel junctions, we demonstrate experi-
mentally that they can be assembled to implement a physical basis
set of expansion functions and carry out computations. We
simulate larger systems composed of several populations of
superparamagnetic junctions and show that they can be com-
bined in order to learn complex non-linear transformations, and
that the resulting systems are particularly resilient. We propose
and evaluate an implementation associating the nanodevices with
conventional CMOS (complementary metal oxide semi-
conductor) circuits, highlighting the low area and energy con-
sumption potential of the approach.

Results
Tuning curve of a superparamagnetic tunnel junction. Mag-
netic tunnel junctions, schematized in Fig. 1d, are devices com-
posed of two ferromagnets: one with a fixed magnetization and
the other with a free magnetization that can be either parallel (P)
or antiparallel (AP) to the fixed magnet. Large junctions are stable
and used today as non-volatile memory cells in spin-torque
magneto-resistive random access memories (ST-MRAM)20.
However, when the junctions are scaled down, the energy barrier
confining the magnetization in the P or AP states (ΔE in Fig. 1f) is
reduced. For very small lateral dimensions of the junctions
(typically below a few tens of nanometers), thermal fluctuations
can destabilize the magnetic configuration, generating sustained
stochastic oscillations between the P and AP states21–23 (Fig. 1f).
This phenomenon, called superparamagnetism, leads to tele-
graphic signals of the resistance as a function of time through
magneto-resistive effects. These stochastic junctions have recently
attracted interest for novel forms of computing22,24,25. Here, we
experimentally study superparamagnetic junctions with a
Co27Fe53B20 magnetic switching layer of thickness 1.7 nm, and an
area of 60 × 120 nm2 (see Methods for details). Figure 1g–i shows
experimental time traces of a superparamagnetic junction resis-
tance as a function of time. The thermally induced random
resistive switches follow a Poisson process21,23,26. This phenom-
enon presents similarities with the highly stochastic neural firing
illustrated in Fig. 1b, also often modeled as a Poisson random
process22,23.

We propose to combine the thermally induced resistive
switches arising in nanoscale magnetic tunnel junctions with
spin-torque phenomena to emulate the tuning curves of
stochastic spiking neurons. Indeed, when a direct current is
applied across a superparamagnetic tunnel junction, the escape
rates of the Poisson process are modified through spin-transfer
torque (STT)21,27. As observed in Fig. 1g, a positive current
stabilizes the anti-parallel state while a negative current stabilizes
the parallel state (Fig. 1h), resulting in reduced switching rates in
both cases compared to the case where I is close to zero (Fig. 1i).
As a consequence, the rate of the stochastic oscillator varies with
the value of the applied dc current. From such measurements, we
extracted the rate r of the junction at various current values. The
resulting experimental rate versus current curve r(I) is shown in

Fig. 1j. With its bell-shape, it accurately mimics the neural tuning
curve schematized in Fig. 1c. Spin transfer torque theory23 allows
deriving the analytical expression of the rate of a super-
paramagnetic tunnel junction as a function of current:

rðIÞ ¼
r0

cosh ΔE I
kBT Ic

� �

ð1Þ

In Eq. 1 (derived in Methods), kBT is the thermal energy, I the
applied current, and Ic the critical current of the junction. As
shown by the solid line in Fig. 1j, this equation fits well the
experimental result, with ΔE

kBT
� 13, and a critical current Ic of 300

μA. The natural rate r0 ¼ φ0exp �
ΔE
kBT

� �

(with an attempt
frequency φ0 of 1 GHz) is the peak frequency at zero current,
of the order of a few thousand Hertz in the case of the junction of
Fig. 1j. Superparamagnetic tunnel junctions therefore have a well-
defined tuning curve r(I), which allows them to sense a narrow
range of currents around zero current (here around ±50 μA). The
shape of the superparamagnetic tuning curve approximates a
Gaussian function, which is favorable for population coding, as
the ensemble of Gaussian functions with all possible peak
positions forms a well-known basis set10.

Population coding with superparamagnetic tunnel junctions.
Following the basic principles of ref.10, for our approach, we need to
produce a population of superparamagnetic tunnel junctions that
can construct non-linear functions H of its inputs through a simple
weighted sum of the nanodevice non-linear tuning curves ri:

HðθÞ ¼
X

N

i¼1

wiriðθÞ: ð2Þ

Non-linear transformations underlie a wide range of computa-
tions such as pattern recognition, decision making or motion
generation19,28–32. For example, navigating in a crowded room
requires generating complex trajectories to avoid obstacles. The
top panel of Fig. 1e displays an instance of such a trajectory
produced through Eq. 2 using the basis set formed by the tuning
curves in the bottom panel. These outputs are generated by the
ensemble of the neural responses. Therefore, having a full
population rather than a single superparamagnetic tunnel
junction allows for parallel processing of each neuron, as well
as resilience to failure of the devices (see Supplementary Notes 2
and 3 as well as Supplementary Fig. 2 and 3). In addition, the
population outputs correspond to time averages of the stochastic
neural firing patterns, which make them robust to noise. Good
approximations of these output curves can be obtained quickly
and at low energy by averaging the first few observed spikes,
whereas more precision can be gained by increasing the
measurement length.

To build a population, we need to tune each junction to
different ranges of input currents. An elegant solution for this
purpose is to leverage a spintronic effect called spin-orbit torques
(as detailed in Supplementary Note 1 and Supplementary Fig. 1)
33–35. However, shifting the tuning curves can also be achieved by
applying individual current biases Ibias to each junction, so that
the effective current Ieff flowing in a junction is shifted compared
to the common applied current Iapp: Ieff ¼ Iapp � Ibias. This
method has been used in CMOS-only hardware implementations
of population coding12. Figure 2a shows the normalized rates r/r0
of an experimental population of nine junctions obtained with
this method (symbols) and the corresponding fits with Eq. 1
(solid lines). We have chosen the shifts so that the junctions in
the population cooperate to sense a large range of currents

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03963-w ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:1533 |DOI: 10.1038/s41467-018-03963-w |www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


between −300 and +300 μA. As can be observed in Fig. 2a, the
junctions are not identical due to the polycrystalline nature of the
free ferromagnetic layer (see Methods). This variability affects
both the critical current Ic and the energy barrier ∆E, resulting in
the width variations of the tuning curves in Fig. 1a, but also in the
variation of natural rates that for this set of junctions span from a
few Hertz to 70 kHz.

Despite this variability, the experimental basis set of nine
superparamagnetic tuning curves can be used to perform useful
computations. We encode the input to process in the current
applied to the junctions. We use the junctions measured output
rates ri(I). Then this data is used to achieve the transformation to
the output function H by performing a weighted sum through:

HðIÞ ¼
X

9

i¼1

wiriðIÞ ð3Þ

where the optimal weights in Eq. 3 for the desired function H are
obtained through matrix inversion on a computer (see Methods).

Non-linear transformations of inputs as in Eq. 3 are essential in
many applications. A first field of applications is sensors, which
generally require converting a measured quantity into the sought-

after information through a complex equation. For instance, a
thermometer will convert the height of a column of liquid into a
temperature. Similarly, an altimeter measures the local air
pressure that is then converted into the corresponding height
through the barometric equation shown in solid line in Fig. 2b.
We have used our experimental basis set to implement this
equation. As can be seen in Fig. 2b, the output reconstructed from
the experimental data using Eq. 3 (symbols) reproduces the
desired function. Another application making substantial use of
non-linear transformations is motor control. Indeed, directing
robotic arms, guiding vehicles or moving biological fingers
require the generation of complex trajectories. For instance, we
use here our superparamagnetic basis set to create handwriting.
Figure 2c shows that we can successfully output six letters, which
means that our small experimental system of nine junctions could
potentially guide a robot’s arm to write. These results constitute
the proof of concept of computing with electronic nanodevices
through population coding.

A computing unit that can learn. We have seen that the benefit
of representing a value, such as the current I, by a basis set
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Fig. 2 Representing non-linear functions with superparamagnetic tunnel junctions. a Rates versus current for nine superparamagnetic tunnel junctions with

shifted tuning curves. Symbols correspond to experimental data while solid lines are analytical fits with Eq. 1. The switching rate of each junction is

normalized by its natural rate r0. b Example of the altimeter sensor. The solid blue line corresponds to the barometric formula, converting an air pressure

measurement into the local height. The black symbols correspond to the experimental approximation of this function generated with Eq. 3, using the basis

set data from a and performing the weighted sum with a computer. c Six examples of cursive letters (w, i, n, r, u, m) generated from the experimental

junction tuning curves of a following the same procedure as in b
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population is that non-linear transformations on this value, H(I),
can be conducted by operating only linear operations. However,
in order to realize multi-step computations, series of non-linear
transformations are necessary. As a consequence, the result H(I)
of the first transformation should be represented by a basis set as
well, implemented by an output population.

For this purpose, we can take inspiration from biology, where
neurons in different populations are densely connected through
synapses which control the strength of the connection. This
configuration has indeed multiple advantages. In particular, the
weight values can be learnt from example data, and the high
degree of interconnection provides a high resilience to noise and
variability in the synapses and neurons. In neuroscience models,
the rates of an output population are linked to the input rates
through linear weights wij

11,25:

rOUTj ¼
X

N

i¼1

wijr
IN
i ð4Þ

The encoded value Y can then be determined by counting the
switching rates of the output population: Y is equal to the mean of
the values of the stimulus to which the neurons are tuned,
weighted by the spiking rates of the corresponding neurons10,29:

Y ¼

PN
j¼1 Ibiasjr

OUT
j

PN
j¼1 r

OUT
j

ð5Þ

The error of the system is then the distance between H(I) and Y.

To evaluate this approach before designing the full system, we
perform numerical simulations of transformation learning with
two populations of superparamagnetic tunnel junctions (see
Methods). We choose parameters for the junctions that reflect the
experimental values and variability of their energy barrier and
their critical current.

We first focus on an example of a sensory-motor task
(illustrated in Fig. 3a) to explain our system and demonstrate
the transfer of information between two basis sets, implemented
by two different populations. A robot observes an object with a
visual sensor and attempts to grasp it with a gripper. The input
population of junctions receives a current I encoding for the
orientation of the object. The output population represents the
orientation Y of the gripper. We want to find the weights wij

allowing for the orientation Y of the gripper to match the
orientation of the object, and show how they can be learned. For
this purpose, we follow an error and trial procedure, similar to the
one described in ref.36. Originally, the weights are random. At
each trial, the object is presented at a different orientation and the
weights are modified depending on the success of the grasping
(see Methods for quantitative details on weights modifications):

If the gripper succeeds—i.e., if its orientation is close enough to
the orientation of the object to be in the catch zone—the weights
are unchanged.

If the gripper strikes in the up zone, the synaptic weights
connecting the sensor network to motor junctions which are
tuned to orientations above (resp. below) of the gripper are
decreased (resp. increased).

If the gripper strikes in the down zone, the opposite is
implemented.

NOUT output junctions

Catch

Up

Down

Weights

0

5

10

15

20

25

30

D
is

ta
n

c
e

 g
ri
p

p
e

r-
o

b
je

c
t

(%
 o

f 
ra

n
g

e
)

Number of learning steps

NIN input junctions

Input rates rN
IN

IN

Output rates

10
0

5

10

15

20

D
is

ta
n
c
e

 g
ri
p

p
e

r-
o

b
je

c
t

(%
 o

f 
ra

n
g

e
)

Number of input junctions

1 10 100 1000 10,000

100

ba

cr1
IN

r1
OUT rN

O

O

U

U

T

T

Fig. 3 Learning to transfer information between two interconnected populations. a Schematic of the system and associated learning process. b Distance

between the gripper and the object (i.e., grasping error) versus the number of learning steps (populations of 100 junctions). c Distance between the gripper

and the object after 3000 learning steps as a function of the number of junctions in the input population. The output population has 100 junctions. For all

figures, each data point corresponds to the average over 50 trials and the error bar to the associated standard deviation

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03963-w ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:1533 |DOI: 10.1038/s41467-018-03963-w |www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


The key advantage of this learning rule is its simplicity: there is
no need to perform a precise measurement of the error (here
distance between the gripper and the object) as required by most
learning methods in the literature37,38. Note that the proposed
system is independent of this learning rule and that different
algorithms could be used to perform more complex tasks.
Figure 3b shows that the distance between the object and the
gripper is progressively decreased through repeated learning
steps. After 3000 learning steps, the mean error is below 2.5% of
the range: learning is successful. As can be seen in Fig. 3c the
grasping error decreases as the number of junctions in the input
population increases. The precision of the result indeed improves
as the population grows, better approximating an ideal, infinite

basis set. Figure 3c also demonstrates that transfer of information
between populations of different sizes can be achieved, allowing
changes of basis if needed.

The example of the gripper in Fig. 3 shows how we can transfer
information without degradation from one population to a
different one performing a basis change. Now we show that our
system and our simple learning procedure can also transform
information during the transfer between populations, in other
words, realize more complex functions than the identity of Fig. 3.
In Fig. 4a, we illustrate increasingly more complicated transfor-
mations: linear but not identity (double), square, inverse, and sine
of the stimulus. Each can be learned with excellent precision,
similar to the identity.

Furthermore, by adding another matrix of synaptic weights
and another population of junctions after the output of our
system, we can realize transformations in series (see Methods,
Supplementary Note 4 and Supplementary Fig. 4). An example of
this is shown in Fig. 4a, as indicated by the label Series, where the
square of the sine is performed.

The system can also be adapted for learning and performing
tasks involving several inputs. A possible solution to process
multiple inputs with a population is to combine them in a single
input that can then be presented to the superparamagnetic tunnel
junctions, consistently with the approach recently presented in
ref.39. Here we propose a different approach where each input is
sent to a different input population, and the rates originating
from these separate populations are combined into a single neural
network (see Methods, Supplementary Note 4 and Supplementary
Fig. 5). In this way, by using several populations as inputs and
outputs, multi-input multi-output computations, and therefore
transformations in several dimensions can be learned. In
particular, we used this approach to learn the conversion of
coordinates from polar to Cartesian system. The results
corresponding to this task are labeled 2 inputs in Fig. 4a.

The excellent precision of these transformations, obtained with
junction parameters and variability extracted from experiments,
demonstrate the resilience of our system to variability. Additional
simulations reported in Supplementary Note 2 and Supplemen-
tary Fig. 2 indicate that variability of the critical current barely
affects the system. Figure 4b shows the distance between the
object and the gripper as a function of the variability on the
energy barrier (and thus on the natural rate). The level of
variability corresponding to experiments is indicated. We observe
that even larger levels of variability can be tolerated by the system,
which is promising for realizing population coding with ultra-
small junctions despite lithographic defects.

Finally, it should be noted that scaling down the junctions allows
decreasing the energy consumption of a population to tens of
picoJoules, as show on Fig. 4c (see Methods). Furthermore, as typical
in stochastic computing systems40, the precision of the system is
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directly dependent on the observation time and thus on the
consumed energy, allowing choice in a precision-energy tradeoff.

Design of the full system. To evaluate the viability of the
approach, we designed a full system associating super-
paramagnetic tunnel junctions as input neurons, CMOS circuits,
and standard magnetic tunnel junction used as ST-MRAM to
store the synaptic weights wij. These stable junctions can be
fabricated using the same magnetic stacks as the super-
paramagnetic junctions (but a different sizing). The CMOS parts
of the circuit were designed using standard integrated circuit
design tools and the design kit of a commercial 28 nm CMOS
technology (see Methods). A simplified representation of the
system is shown in Fig. 5a.

The system features an ensemble of superparamagnetic tunnel
junctions, to which the stimulus is applied using the current shift
method introduced earlier. For the system, we assumed that the

superparamagnetic junctions were scaled to nanometer sizing (see
Methods). Junctions switching events are detected by a CMOS
circuit to determine the rates ri. It consists of a synchronous low-
power comparator, which compares the voltage across a junction
and the corresponding voltage on a reference resistance (see
Methods), as well as a digital edge detection logic. Each junction
is associated with a digital counter counting the switches. After a
stimulus operation phase, the system can compute its output
using Eq. 4 using integer arithmetic. This is done by a digital
circuit that we designed and is described in Methods. The
synaptic weights wij are stored in stable magnetic tunnel junctions
sized to a 28 nm technology (see Methods). If the system is in a
learning phase, the learning rule is then applied by a digital
circuit, also described in Methods, which reprograms some
ST-MRAM cells. A more detailed presentation of the data path
and of the operation of the system is presented in Supplementary
Note 5 and Supplementary Fig. 6 and 7.
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It is also a possibility to design the system using a single
superparamagnetic junction, and to implement the population
response through time multiplexing. This approach would allow
avoiding the effects of device variability. However, it would also
increase conversion time by the number of input neurons, giving
a very low bandwidth to the system. As the superparamagnetic
junctions have low area and the system features a natural
resilience to device variability, we propose to physically imple-
ment the population with an actual population of junctions.

As presented the circuit features a single input. As explained
earlier, it may be extended to several inputs, following the
principle presented in Supplementary Note 8 and Supplementary
Fig. 11.

Figure 5b shows the circuit area occupied by superparamag-
netic junctions, CMOS, and ST-MRAM on chip, for a system
with 128 inputs and 128 outputs. The total area is very low
(12,000 μm²) showing that the concept is adapted to be used in
low-cost intelligent sensor applications. The area is dominated by
the CMOS circuits, while the area occupied by the super-
paramagnetic junctions is negligible.

Figure 5c shows the energy consumption to perform the
gripper task, for one operation of the gripper, separating the three
phases (observation of the stimulus, computation of Eq. 4,
learning), and the three technologies present in the system.
Results concerning systems with different numbers of inputs and
outputs are presented in Supplementary Note 6 and in
Supplementary Figs. 8, 9 and 10. The total energy is very low:
23 nJ during the learning phase, and 7.4 nJ when learning is
finished.

It is instructive to compare these results with solutions where
neurons would have been implemented with purely CMOS
circuits. A detailed comparison to four different approaches is
presented in Supplementary Note 7 and Supplementary Table 1.
A natural idea is to replace our junctions and their read circuitry
by low-power CMOS spiking neurons, such as those of ref.41,
which provides features similar to our nanodevices (analog input
and spiking digital output). This strategy works but has high area
requirements (higher than 1 mm²), and would consume more
than 330 nJ per operation. Alternative options rely on analog
computation, for example exploiting neurons such as ref.13. Such
solutions require the use of an explicit analog to digital
conversion (ADC), which actually becomes the dominant source
of area and energy consumption. Even extremely energy efficient
ADCs42 require a total of 20 nJ/conversion and an area of 0.2
mm². Finally, a more conventional solution, using a generic
processor and not an application-specific integrated circuit would
have naturally used order-of-magnitudes more energy.

The low-energy consumption of our system arises from a
combination of three major factors. The superparamagnetic
junctions consume a negligible energy (150 pJ), and allow
avoiding the ADC bottleneck present in other approaches by
implementing a form of stochastic ADC in a particularly efficient
manner. The use of a stochastic approach and of integer
arithmetic in the CMOS part of the circuit is particularly
appealing in terms of energy consumption. Finally, associating
both CMOS and spintronic technology on-chip limits data
transfer-related energy consumption.

Discussion
In this work, we show that superparamagnetic tunnel junctions
are promising nanodevices for computing in hardware through
population coding. We experimentally demonstrate that these
components intrinsically mimic the tuning curve of neurons
through their non-linear frequency response to input currents.
We realize a basis set of expansion functions in hardware from a

small population of junctions, and show how they can encode
information and compute by generating complex functions such
as letters. Using a physical model of the superparamagnetic
tuning curves, we demonstrate that combined populations of
junctions can learn non-linear transformations with accuracy,
even with substantial device-to-device variability. Our system acts
as a stochastic computing unit that can be cascaded to perform
complex tasks. The design of the full system associating the
junctions with CMOS circuits and ST-MRAM shows the potential
of the approach for extremely low-area and low-energy
implementation.

Our work reproduces the essence of population coding in
neuroscience, with some adaptations for implementation with
nanoelectronics. In population coding theory, neuronal
correlation11,43, the meaning of the time11, as well as decoding
techniques43 are contentious topics. In our system, these aspects
were guided by the properties of the nanodevices and by circuit
design principles. The input neurons spike in an uncorrelated
fashion, as their noise originates from basic physics. The time is
divided into discrete phases, allowing the use of counters, and
finite state machines in the system. The information is decoded
by counting spikes using simple unsigned digital counters.

It is also important to note that in our system, the junctions act
as a form of spiking neurons that employ rate coding, similarly to
several population coding theories10,11. The spiking nature of the
neurons offers considerable benefits to the full system: it naturally
transforms an analog signal into easy-to-process digital signals.
The stochastic nature of the neurons is one of the keys of the
energy efficiency and of the robustness of the system. It also gives
the possibility for the system to provide an approximate or pre-
cise answer depending on the time and energy budget, similarly
to stochastic computing40,44. The rest of the system is rate based,
which allows learning tasks in a straightforward manner. Another
possibility would have been to perform the entire operation in the
spiking domain, as is common in the neuromorphic engineering
community45–47. However, learning in the spiking regime
remains a difficult problem today48, and involves more advanced
concepts and overheads47. Therefore, our system is designed to
take benefits from both the spiking and the rate-coding
approaches.

In summary, our system mixes biological and conventional
electronics ideas to reach low-energy consumption in an
approach that might presage the future of bioinspired systems.
Our results therefore open the path to building low energy and
robust brain-inspired processing hardware.

Methods
Experiments. Samples: The samples are in-plane magnetized magnetic tunnel
junctions. They were fabricated by sputtering, with the stack: substrate (SiO2)/
buffer layer 35 nm/IrMn 7 nm/CoFe 2.5 nm/Ru 0.85 nm/CoFeB 2.4 nm/MgO-
barrier 1.0 nm/CoFeB 1.7 nm/capping layer 14 nm. The whole stack was annealed
before microfabrication at 300 °C under a magnetic field of 1 Tesla for 1 hour.
Patterning was then performed by e-beam lithography, resulting in nanopillars
with elliptic 60 × 120 nm2 cross-sections.

Measurements: The measurements are performed under a magnetic field that
cancels the stray field from the synthetic antiferromagnet. In Fig. 2a the curves,
initially centered on zero voltage, have been shifted along the x axis (current).

Analytical fits: Equation 2 was used for the analytical expression of the
frequency of the junctions. The parameters ΔE and Ic were chosen for each
junction so to fit best the experimental data. The parameters used are (from left to
right in Fig. 1):

ΔE/kBT= 16.5, 8.87, 18.58, 17.92, 12.95, 18.675, 11.75, 18.35, 12.14
Ic (A)= 5e-4, 8.5e-5, 5.5e-4, 3.8e-4, 2.96e-4, 5.35e-4, 3e-4, 3.6e-4, 4.1e-4
Variability: The variability in the parameters stems from the polycrystalline

structure of the free ferromagnets. Instead of a full layer reversal, only a fraction of
the ferromagnet switches back and forth. This explains why junctions of this size
are unstable and why their parameters vary strongly from device to device.

Finding the weights by matrix inversion: Obtaining Fig. 2 requires using
appropriate weights. Equation 3 can be rewritten as H= wR, where w is the line
vector of the weights and R the matrix of the rates where each column corresponds
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to a junction and each line to a particular current. In consequence, the weights can
be found analytically by w=HR−1. Here the weights are found using the
experimental values for H and R.

In Figs. 3 and 4, the weights are obtained by the learning process and no matrix
inversion is necessary.

Barometric formula: The height is given by z= z1+ T0/A×[1−(p/p1)
1/α]

where α is 5.255, A/T0= 2.26 × 10−5 and p1 and z1 are chosen measure points.
Here we use height= 1+ 0.3×(1−((Idc+ 4.2 × 10−4)/0.1)1/α)) as target

function.

Numerical simulations. Choice of the parameters and variability: For the energy
barrier ΔE we use a uniform distribution, centered around 13.78 kBT and of span of
9.65 kBT (0.35% variability). This corresponds to a natural rate of 518 Hz.

For the critical voltage Vc, we use a Gaussian distribution of mean 0.142 V and
standard deviation 0.037 V (0.26% variability).

These parameters correspond to those extracted from the experiment.
Simulations of a population of junctions: In our simulations, we chose to

control the junctions by voltage, which makes it easy to apply one common
stimulus to all junctions. The behavior of the junctions is modeled by a two-state
Poisson process. The stimuli received by the junctions modify the escape rates of
each state of the process.

φP=AP ¼ φ0exp �
ΔE

kBT
1 ±

Veff

Vc

� �� �

ð6Þ

In the case of the input population, Veff= V−V0 where V is the stimulus
common to all junction and V0 is voltage to which the considered junction is tuned.
Vc is the critical voltage. The probabilities for the junctions to switch during a time
interval dt are:

PP=AP ¼ 1� exp �dtφP=AP

� �

ð7Þ

The numerical simulations are run as follows: At every time step dt= 439 μs
and for each junction the probability to switch state is computed and a random
number is generated to decide if the switch occurs. After 100 time steps, the
frequency of each junction is computed49.

Interconnecting the two populations of junctions: We seek to connect the two
populations of junctions so that the rates of the output junctions obey Eq. 4. To do
so we inverse Eq. 2 to compute the voltage to be applied to each output junction so
that its rate satisfies Eq. 4. We then simulate the population of output junctions as
described above. Here Veff correspond to the computed voltage.

Stimulus range covered by the junctions: The input population of junctions is
assembled so that it can sense voltages over a range spanning here from −0.15 to
+0.15 V. This range thus encodes the possible orientations of the observed object.
Shifting the rates of the junctions in different ways allows for sensing different
ranges, as will be seen for the coordinate transformations.

Learning rule: For all the output junctions j for which the connections to the
input population should be increased, the weights are modified as follows:

8i 2 1;NIN½ �;Wij  Wij þ α
rINi
r0

� �

1

1þ α
ð8Þ

For all the output junctions j for which the connections to the input population
should be decreased, the weights are modified as follows:

8i 2 1;NIN½ �;Wij  Wij � α
rINi
r0

� �

1

1þ α
ð9Þ

r0 is the natural rate of the junctions and α is the learning rate. Low values of α
slow down the learning, while high values of α fasten the learning but limit its
performance. Here we found the value 0.001 to be appropriate for α.

Measure of the error: The error is the absolute value of the difference between
the orientation of the target and the orientation given by the output junctions to
the gripper. It is expressed as a percentage of the range of possible orientations
(here from −0.15 to +0.15 V). It is computed as an average over 50 randomly
chosen trials.

One-dimension coordinate transformations: The task is performed in the same
way as in the catching target case, with the orientation of the object Z being
replaced by the result of the transformation operation T(Z). The distance gripper-
target is computed as the absolute difference between the expected value of the
transformation T(Z) and the numerically computed value. It is expressed as a
percentage of the range of possible expected values. For identity (T(Z)= Z) and
double (T(Z)= 2Z), the stimulus range is −0.15 to +0.15 V. For square (T(Z)=
Z2/0.15) the stimulus range is −0.15 to +0.15 V. For sine (T(Z)= sin(Z π / 0.15)/
0.15), the stimulus range is −0.15 to +0.15 V.

Two-dimensional coordinate transformation: Here the transformations to
perform are x= R cos(φ π/0.6) and y= R sin(φ π/0.6).

The stimulus ranges are 0 to 0.3 V for R and 0 to 0.3 V for φ. The range for both
x and y is 0 to 0.3 V. Four populations of junctions encode the four coordinates R,
φ, x, and y.

The two input populations R and φ are concatenated into a single population.
Its number of junctions is the sum of the number of junctions in each population
NIN=NR+Nφ. Two weights matrices (Wx and Wy) connect the input (R, φ) to the
ouput junctions (x, y). The weights matrices Wx and Wy have the dimensions Nx ×
NIN and Ny ×NIN. Where Nx (Ny) is the number of junction encoding x (y).
Learning of the weights is implemented as described previously.

The distance gripper-target is computed as the absolute 2D distance between
the target and the gripper and is expressed as a percentage of the range for x and y.

Transformations in series: Here we want to perform the square of the sine (T
(Z)= (sin(Z π/0.15)/0.15)2) in two successive steps. We have three populations of
superparamagnetic junctions. The middle population is connected to the input
population by a weight matrix W1 and the output population is connected to the
middle population by a weight matrix W2. W1 and W2 are trained as in the single
transformation case, so that they respectively perform the sine and the square
transformation.

Energy consumption of a population. Power/energy dissipated by the super-
paramagnetic junctions: We consider scaled down junctions with parameters
ΔE= 6kBT and Vc= 0.1 V, shifted by individual voltage biases between −0.1 and
0.1 V. This corresponds to a natural rate of 1.23 MHz.

The power consumption due to the shifting is

Pshift ¼
X

N

i¼1

V2
shift

R
ð10Þ

where N= 100 is the number of junctions, Vshift is the maximal firing voltage for
the i-th junction, and R is the resistance of the junctions.

For a RA= 20 μΩ × cm2 and a d= 7.7 nm diameter the resistance is
R= 424 kOhm.

The power consumption is Pshift= 0.8 μW.
The maximal power consumption for the stimulus is Pstim=N × 0.12/R= 2.4

μW.
So the total power is P= 3.2 μW.
The distance to the target function shown in Fig. 4c is computed through the

same numerical simulation as in the experimental parameter case. Here the time
step is dt= 183 ns.

The energy consumption is the power P multiplied by the duration of the
observation.

Design of the full system. The full system was designed and its performances
were estimated using standard integrated circuit design tools developed by the
Cadence corporation (Virtuoso, Specter, RTL Compiler, ncsim and Encounter),
associated with the design kit of a commercial low power 28 nm technology.

The CMOS digital parts of the system were designed with the Verilog
description language at the register transfer level, and synthesized to the standard
cells provided with the design kit with Cadence RTL Compiler. Overall, the circuits
were optimized for low-area and low-energy consumption, and not for high speed
computation. Their area was estimated using the Cadence Encounter tool. For
estimating their energy consumption, value change dumps files corresponding to
the gripper task were generated using Cadence ncsim and the power consumption
was estimated using Cadence Encounter.

The superparamagnetic junctions were modeled based on the previous Methods
section, assuming d= 11 nm diameter, a size that has been demonstrated
experimentally50. The energy consumption for the detection of the spikes was
based on Cadence Spectre simulation of a simple circuit, presented in
Supplementary Note 5, Supplementary Fig. 7, and based on the stimulus value
corresponding to the highest energy consumption. The stimulus is applied to
reference resistors whose resistance is intermediate between the parallel and anti-
parallel state resistance of the superparamagnetic tunnel junctions, as well on the
superparamagnetic tunnel junction. At each clock cycle, the voltage at the junction
and at the reference resistor is compared by a low-power CMOS comparator
(Supplementary Fig. 7). Simple logic comparing the result of the comparison to the
same result at the previous clock cycle allows detecting the junction switching
events, which are counted by an eight-bit digital counter. (Each junction is
associated with one counter).

At the end of the counting phase, the system then computes Eq. 4 in a
sequential manner, controlled by a finite state machine (Fig. 5a) described in
Supplementary Note 5. The synaptic weights are stored in eight-bit fixed point
representation in an ST-MRAM array. Computation is realized in fixed point using
integer addition and multiplication circuits. The ST-MRAM array was modeled
using assumptions in terms of area and energy consumption as expected for a 28
nm technology51. ST-MRAM read and write circuits are modeled in a behavioral
fashion, using results of ref.52 for evaluating their area and energy consumption.

The learning circuit can be activated after the computation phase optionally.
Based on the learning rule described above, computed in fixed point representation,
the ST-MRAM array is reprogrammed. In order to save energy, ST-MRAM cells
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are read before programming, so that only bit that actually changed are
reprogrammed (a standard technique for resistive memory53).

Data availability. The datasets generated and analyzed during this study are
available from the corresponding author on reasonable request.
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