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What neural mechanisms underlie the ability to attend to a complex
object in the presence of competing overlapping stimuli? We evalu-
ated whether object-based attention might involve pattern-specific
feedback to early visual areas to selectively enhance the set of low-
level features corresponding to the attended object. Using fMRI and
multivariate pattern analysis, we found that activity patterns in early
visual areas (V1–V4) are strongly biased in favor of the attended
object. Activity patterns evoked by single faces and single houses
reliably predicted which of the 2 overlapping stimulus types was
being attended with high accuracy (80–90% correct). Superior
knowledge of upright objects led to improved attentional selection in
early areas. Across individual blocks, the strength of the attentional
bias signal in early visual areas was highly predictive of the modu-
lations found in high-level object areas, implying that pattern-specific
attentional filtering at early sites can determine the quality of object-
specific signals that reach higher level visual areas. Through compu-
tational modeling, we show how feedback of an average template to
V1-like units can improve discrimination of exemplars belonging to
the attended category. Our findings provide a mechanistic account of
how feedback to early visual areas can contribute to the attentional
selection of complex objects.

Keywords: fMRI, fusiform face area, human visual cortex, multivariate
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Introduction

According to prominent theories of object-based attention, the
attentional system is predisposed to select entire visual objects
during top-down enhancement (Duncan 1984; Kahneman
et al. 1992; Baylis and Driver 1993; Blaser et al. 2000; Driver
et al. 2001; Scholl 2001). The ability to enhance the visual rep-
resentation of entire objects, even in the presence of spatially
overlapping distractors, may be particularly useful for dis-
tinguishing objects in cluttered real-world scenes (Peelen et al.
2009; Cohen et al. 2011). For example, consider a predator at-
tempting to identify its prey hiding in a thicket of ferns. In
such situations, object-based attention could be used to selec-
tively enhance the relevant portions of the image belonging to
the partially hidden animal, and to suppress information from
competing objects, such as the leafy branches that lie before or
around the attended object.

Most neural investigations of object-based attention have
relied on simple stimuli, such as intersecting lines, simple shapes,
or overlapping sets of moving dots, which can be readily segmen-
ted and perceptually organized based on their spatiotemporal
continuity. These studies suggest that top-down feedback to early
visual areas is important for the attentional selection of simple
objects or perceptual groups (Roelfsema et al. 1998; Valdes-
Sosa et al. 1998; Blaser et al. 2000; Muller and Kleinschmidt
2003; Schoenfeld et al. 2003; Fallah et al. 2007; Ciaramitaro
et al. 2011; Hou and Liu 2012).

However, real-world stimuli such as people, vehicles, or
buildings are far more complex in their featural and spatial
characteristics. Correspondingly, a more sophisticated mechan-
ism appears necessary to explain how top-down attention can
enhance the representation of a complex object when it
appears in the presence of a competing overlapping distractor.
In this case, object-based selection would need to be informed
by high-level knowledge regarding the detailed visual structure
of the attended object; otherwise, there would be little basis for
distinguishing the features of one object from those of another
under conditions of spatial overlap (see Fig. 1a). Only a few
studies have investigated this more challenging form of object-
based attentional selection, focusing on the modulatory effects
of attention in high-level object areas and the activation of fron-
toparietal control networks during this top-down selection
process (O’Craven et al. 1999; Serences et al. 2004; Furey et al.
2006). However, recent work by Al-Aidroos et al. (2012) has
provided evidence to suggest that feedback to early visual
areas may also contribute to the attentional selection of
complex objects. They found that the functional connectivity
between category-selective object areas and early visual areas
was reliably modulated, depending on whether participants
were attending to faces or scenes presented under conditions
of spatial overlap. These findings suggest a possible role for
early visual areas in the attentional selection of complex
objects; however, it is unclear what types of visual signals
might be enhanced in these early areas to mediate this selec-
tion process.

The goal of our study was to determine whether object-
based attention might rely on pattern-specific feedback to
early visual areas to selectively enhance the set of low-level fea-
tures corresponding to the attended object. Although early
visual areas are primarily tuned to local features and insensi-
tive to complex object properties, we hypothesized that attend-
ing to 1 of 2 overlapping objects may depend on selectively
enhancing the visual representations of the local features cor-
responding to the attended object. This hypothesis leads to the
following predictions. First, when covert attention is directed
toward 1 of 2 overlapping objects, activity patterns in early
visual areas should be biased toward the pattern that would
result if the attended stimulus were presented in isolation.
Such a prediction can be viewed as an extension of the biased
competition model (Desimone and Duncan 1995). Second, if
feedback to early visual areas contributes to the attentional se-
lection of object-relevant signals, then the strength of this
pattern-specific attentional bias signal in early visual areas
should be predictive of the strength of attentional modulation
found in high-level object areas. Such functional coupling
would imply that early-stage attentional filtering can determine
the quality of object-selective information that ultimately
reaches higher level visual areas. Finally, we predicted that at-
tentional modulation in early visual areas should be reliant
upon high-level object knowledge, such that relevant features
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can be attentionally selected more effectively when objects are
presented in a familiar way.

We used functional magnetic resonance imaging (fMRI) and
multivariate pattern analysis (Tong and Pratte 2012) to investi-
gate the functional role of early visual areas in object-based at-
tention. Across multiple experiments, we evaluated whether
activity patterns in early visual areas were reliably biased in
favor of the attended object category when participants viewed
overlapping face–house images (Fig. 1a). We devised a novel
correlational analysis to test for functional coupling between
selective attentional bias signals in low-level visual areas and

high-level object-selective areas. In Experiment 2, we evalu-
ated whether attending to face or house in overlapping face–
house blends involves biased patterns of activity in early visual
areas that resemble those evoked under stimulus-driven con-
ditions by unattended faces or houses. In Experiment 3, we in-
vestigated the spatial specificity of these attentional bias effects
in early visual areas by manipulating the location of attended
objects. In Experiment 4, we investigated the potential contri-
butions of high-level knowledge to object-based attention, by
testing whether the presentation of objects in a familiar orien-
tation leads to more efficient attentional selection in early
visual areas.

To complement this experimental work, we developed a
computational model to gain insight into how high-level
feedback to early visual areas might benefit performance at
this object-based attention task. We show that feedback of an
“average” object template (i.e., average face or house) to V1
complex units can provide a sufficiently specific yet flexible
attentional template for improving the visual discrimination
between multiple exemplars from the attended category.
Taken together, our findings provide a mechanistic account of
how feedback to early visual areas can contribute to the atten-
tional selection of complex objects.

Materials and Methods

Participants
A total of 10 healthy observers, aged 23–32, participated in one or
more of the following experiments, with 6 observers in Experiment 1
(observers 1, 2, 3, 4, 5, 6), 5 observers in Experiment 2 (1, 2, 4, 5, 7), 5
observers in Experiment 3 (1, 3, 7, 8, 9), and 5 observers in Experiment
4 (1, 2, 3, 7, 10). Each experiment took place in a separate MRI scan-
ning session. The study was approved by the Vanderbilt University
Institutional Review Board, and all participants provided informed
written consent.

Stimuli
Visual stimuli were generated by a Macbook Pro computer running
Matlab, and displayed on a rear-projection screen using an Eiki LC-X60
LCD projector with a Navitar zoom lens. The stimuli were comprised
33 faces and 33 houses, centrally presented in an 8.3°-diameter
window on a white background. Images of Caucasian male faces were
obtained from a database provided by the Max Planck Institute for Bio-
logical Cybernetics in Tübingen, Germany (Troje and Bulthoff 1996),
and adapted for this study. House stimuli were adapted from original
photographs taken by the authors. All images were cropped and
resized to control for the position of the objects within the circular
presentation window. House images were centered and resized so that
each contained a central door of fixed size. This manipulation regular-
ized each image so that it contained a roughly equal portion of each
house’s porch. Face images were cropped to contain the internal fea-
tures of the face and centered with the fixation point lying on the nose
region. Luminance values for all images (faces and houses) were first
equated for mean and standard deviation. Finally, the relative contrast
between stimulus types was adjusted to equate difficulty in the behav-
ioral task. Behavioral piloting revealed faces presented at 62% contrast
and houses at 38% allowed performance at near ceiling levels in both
tasks.

Face–house blends were constructed by combining individual faces
and houses, and calculating the luminance-based average of each face–
house pair. During the experiment, a color cue (red/green) at fixation
indicated whether the participant should attend to face or house when
presented with blended stimuli. The correspondence between fixation
color and the attended category was reversed halfway through the
experiment for each participant, to ensure that the color cue was not
predictive of the attended object category.

Figure 1. Experimental design and results of fMRI decoding. (a) Examples of trial
sequences for the 4 experimental conditions: single faces, single houses, attended
faces, and attended houses. Color of fixation point indicated the target object category
in “attended” blocks. (Here, red indicates attend face and green indicates attend
house; note that color assignment rule was switched halfway through the experiment.)
Observers performed a same–different matching task for sequential stimuli within the
target (face or house) class. Sequential pairs of objects in each class matched on 50%
of trials. (b) Object decoding performance for areas V1 through V4 and pooled FFA/
PPA. Mean accuracy of object decoding for single faces versus houses (red circles),
attended faces versus houses (green squares), and generalization performance across
conditions (black triangles). Linear support vector machines were used to classify
multivoxel patterns of activity with mean amplitude removed, using the 125 most
visually responsive voxels in each area. Error bars indicate ± 1 SEM. Decoding for FFA
alone was 98 ± 1% for single objects, 95 ± 2% for attended, and 92± 3% for
generalization. For PPA, decoding was 99 ± 0.3% for single objects, 95 ± 2% for
attended, and 95 ± 2% for generalization.
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Design for Experiment 1
In the main experiment, there were 4 experimental conditions that re-
quired observers to report whether sequential pairs of task-relevant
objects were same or different on each 2-s trial (Fig. 1a). Experimental
conditions occurred in 16-s blocks (8 trials per block), in a randomized
order with 12 blocks in each run. Observers were instructed to main-
tain fixation on a central dot (12-min arc diameter) throughout each
experimental run, and eye position was monitored with an Applied
Science Laboratories EYE-TRAC 6 MRI-compatible eye-tracking system.
Participants completed 16 experimental runs to obtain 48 blocks for
each condition. Two additional runs served as functional localizers,
during which subjects viewed 16-s blocks of faces or houses (presen-
tation rate, 2.5 items/s) while performing a 1-back matching task.

Experiment 2
The purpose of this experiment was to evaluate the similarity of activity
patterns evoked by attended and unattended stimuli. Participants per-
formed 11–12 experimental runs involving unattended single objects,
11–12 runs involving attention directed to face–house blends, and 2
visual localizer runs. Stimuli were identical to those used in Exper-
iment 1, with the exception that a larger fixation bull’s eye of 1° visual
angle was used so that legible letters could be presented within the fix-
ation dot for the rapid serial visual presentation (RSVP) task.

For “attended object” runs, subjects attended to faces or houses
within the face–house blends and performed the visual discrimination
task, while ignoring the stream of RSVP letters presented within the
fixation dot. For “unattended object” runs, single faces or single houses
were displayed during each stimulus block while observers had to
attend to letters at central fixation and to press one of 2 keys indicating
whenever the target letters “J” or “K” appeared. Nontarget letters
consisted of the remaining 24 letters. Letters were presented at a rate of
6–8 items/s, with targets appearing at random times within the se-
quence, on average once every 2 s. Subjects were required to perform
the letter detection/identification task at an accuracy level of 60% or
higher, otherwise the rate would be slowed from 8 to 6 items/s.

Experiment 3
The purpose of this experiment was to examine the position specificity
of the attentional bias effects in early visual areas. Each observer par-
ticipated in 16 experimental runs (8 runs for each of 2 stimulus
locations) and 2 functional localizer runs. Stimuli were presented
either above and to the left of fixation, or below and to the right of fix-
ation, centered at 4.3° horizontal eccentricity and 2.8° vertical eccentri-
city. Stimulus size remained the same as in previous experiments. Only
face–house blends were presented, and observers were centrally cued
to attend to faces or houses at the beginning of each 16-s stimulus
block.

Experiment 4
In this experiment, face–house blends were presented upright or
upside-down to evaluate the influence of high-level object knowledge
on the efficacy of attentional selection in early visual areas. Participants
performed a total of 16 experimental runs and 2 visual localizer runs.
This experiment relied on an event-related design, with each run con-
sisting of 24 test trials and 6 blank trials that occurred in a randomized
order. Each test trial lasted 6 s (see Fig. 7a), beginning with a central
color cue (2 s) indicating whether to attend to face, followed by the
brief presentation of the first face–house blend (133 ms) and a visual
mask (67 ms), an interstimulus interval (400 ms), and the second face–
house blend (133 ms) and visual mask (67 ms). Participants had to
report within the response period (3.2 s) whether same or different
items were presented within the attended object category. Multiple
visual mask images were created by blending 2 Fourier phase-
scrambled images (1 face, 1 house) drawn from the original set of
stimuli. Face–house blends were randomized for orientation, appear-
ing either upright or inverted with equal likelihood. Thus, there were 4
trial types: attend face/upright, attend house/upright, attend face/
inverted, attend house/inverted, and each trial type occurred 6 times
per run in a randomly generated order.

MRI Acquisition
Scanning was performed on a 3.0-Tesla Philips Intera Achieva MRI
scanner using an 8-channel head coil at the Vanderbilt University Insti-
tute of Imaging Science. A high-resolution 3D anatomical T1-weighted
scan was acquired from each participant (FOV 256 × 256, 1 × 1 × 1 mm
resolution, TR 7.992 ms, TE 3.69 ms, flip angle 7°). To measure BOLD
contrast, standard gradient-echo echo planar T2*-weighted imaging
was used to collect 28 slices perpendicular to the calcarine sulcus,
which covered the entire occipital lobe as well as the posterior parietal
and temporal cortex (TR 2000 ms; TE 35 ms; flip angle 80°; FOV
192 × 192; slice thickness, 3 mm with no gap; in-plane resolution,
3 × 3 mm). Participants used a custom-made bite bar system to stabilize
head position, which minimized total head displacement across the
session to <1.2 mm on average.

Functional MRI Data Preprocessing
All fMRI data underwent 3D motion correction using FSL software.
This was followed by slice scan-time correction to correct for the differ-
ent times of slice acquisition, and linear trend removal to eliminate
slow drifts in signal intensity, performed using Brain Voyager software
(Brain Innovation). No spatial or temporal smoothing was directly
applied to the data. The fMRI data were aligned to retinotopic mapping
data collected from a separate session. All automated alignment was
subjected to careful visual inspection and manual fine-tuning to correct
for potential residual misalignment. Rigid-body transformations were
performed to align fMRI data to the within-session 3D anatomical scan,
and then to the 3D anatomical data collected from the retinotopy
session. After across-session alignment, fMRI data underwent Talairach
transformation and reinterpolation using 3 × 3 × 3 mm voxels. This pro-
cedure allowed us to delineate individual visual areas on flattened cor-
tical representations and to restrict the selection of voxels around the
gray–white matter boundary.

Regions of Interest
Functionally defined regions of interest consisted of visual areas V1,
V2, V3, V3A, V4, FFA, and PPA. A separate experimental session was
used to collect data for retinotopic mapping, following established
methods (Sereno et al. 1995; Engel et al. 1997). While maintaining
fixation, subjects viewed “traveling wave” stimuli consisting of rotat-
ing wedges and expanding rings, which were used to construct
phase-encoded retinotopic maps of polar angle and eccentricity,
respectively. Boundaries between retinotopic visual areas V1 through
V4 were delineated on flattened cortical representations based on re-
versals in polar-angle phase encoding, and informed by inspection of
the eccentricity maps as well. Foveal representations of V1, V2, and V3
were delineated by extending the boundaries between these areas, in
the dorsal and ventral portions, through the foveal confluence (Schira
et al. 2009). The fusiform face area (FFA) was localized by identifying
the set of contiguous voxels in the fusiform gyrus that responded sig-
nificantly more to faces than houses on the functional localizer runs
(Kanwisher et al. 1997), using a minimum statistical threshold of
P < 0.001. The parahippocampal place area (PPA) was identified as the
set of contiguous voxels in the region of the parahippocampal cortex
that responded significantly more to houses than faces using a similar
threshold (Epstein and Kanwisher 1998). Additional analyses were per-
formed on visually responsive regions in the posterior parietal cortex.
This region was localized by selecting all contiguous voxels in the pos-
terior parietal cortex that were reliably activated during the functional
localizer runs, focusing on regions clearly anterior to the occipital-
parietal fissure. This typically encompassed portions of the intraparie-
tal sulcus and the superior parietal lobe (see Fig. 4).

Voxels used for decoding analysis were selected bilaterally from
the cortical surface for each defined visual area. First, voxels near the
gray–white matter boundary were identified within each visual area
using retinotopic or functional maps delineated on a flattened cortical
surface representation. Next, voxels were sorted according to the
reliability of their responses (based on a t-statistic) to 2 separate locali-
zer runs in which single faces or houses were displayed in separate
blocks at a rate of 2.5 items/s. These stimuli appeared at the same
size and location as those in the specified experiment. To facilitate
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comparison of decoding performance across visual areas, we aimed to
select an equal number of voxels from each area while ensuring that
these selected voxels were highly responsive to the visual localizer
stimulus. We used the 125 most active voxels from each of areas V1
through V4 and also from the FFA and PPA regions combined. Note
that the size of the visual areas varied across individuals and, in some
cases, fewer than 125 voxels were available in areas V3A and V4.

Owing to peripheral presentation of stimuli in Experiment 3, the ac-
tivated region in the retinotopic visual cortex was comparatively
smaller in this study. We defined 2 separate regions of interest for each
visual area, corresponding to the 2 retinotopic locations of the stimuli,
and selected all voxels that responded to either location during the
functional localizer runs, based a statistical threshold of T > 2.58,
P < 0.01 2-tailed. For each visual area, we combined these activated
regions in the 2 hemispheres into a single region of interest, prior to
performing our classification analysis.

Amplitude Estimation
A general linear model (GLM) was used to estimate the response ampli-
tudes for each stimulus block in an fMRI run. GLM predictors were de-
termined by convolving the boxcar stimulus time course with a
standard gamma function to account for the BOLD hemodynamic
response. Amplitudes for each block were estimated by applying the
GLM to the z-transformed time series of each voxel. For decoding
analysis, an fMRI data sample consisted of the spatial pattern of ampli-
tudes for all selected voxels within a given region of interest and the
experimental condition or “label” associated with that particular stimu-
lus block. To minimize the potential contribution of gross amplitude
changes, we subtracted the mean amplitude from the spatial pattern of
activity in each region of interest, for each fMRI data sample.

In Experiment 4, a GLM was used to estimate the response ampli-
tude for each stimulus trial. To provide more stability for classification
analysis, we created fMRI samples based on the mean responses from
3 trials of the same condition within a run; otherwise, the decoding
analysis was performed in the same manner.

Decoding Analysis
We used support vector machines to obtain linear discriminant func-
tions to distinguish between activity patterns corresponding to face
and house. To evaluate decoding performance, we used an iterative
leave-one-run-out procedure for cross-validation, so that independent
fMRI samples were used for training and testing each classifier. Classifi-
cation accuracy provided a measure of the amount of discriminating
information that was available in the patterns of activity for a region of
interest. Classification accuracy was assessed separately for single
faces/houses and for attended faces/houses. Generalization perform-
ance was assessed by training a classifier in one experimental con-
dition and testing it on the other (e.g., train single face–house and test
attend face–house), with performance averaged across both directions
of generalization.

We conducted additional analyses to confirm that our classification
analysis was not biased, by conducting permutation tests on fMRI
samples, using randomized labels with 1000 iterations per participant.
The results closely approximated a binomial distribution with 0.5 prob-
ability, as was evaluated by a Kolmogorov–Smirnov statistical test. We
also evaluated whether the application of a t-test to binomial classifi-
cation results would inflate the likelihood of Type I errors. For our ran-
domized label data with 1000 iterations per subject, we observed a
false-positive rate of 0.058 at the 1-tailed t-value cutoff for P < 0.05, and
a false-positive rate of 0.031 at the 1-tailed t-value cutoff for P < 0.025,
indicating minimal inflation of false-positive estimates. Thus, the stat-
istical approach taken here was robust and rigorous.

Analysis of Correlations Between Attentional Bias Signals
in Low- and High-Level Visual Areas
We measured the strength of the attentional bias signal on individual
stimulus blocks for low-level areas (V1–V4 pooled) and high-level
areas (FFA/PPA pooled). Because of the large cortical size of areas
V1–V4 combined, we used the 400 most visually active voxels in this

region for pattern analysis. First, we trained a classifier on fMRI
samples for single faces and houses, and then used this classifier to de-
termine the distance between the decision boundary and each fMRI
sample obtained in the attention (face–house blend) condition. The
bias effect of attention for each stimulus block was determined based
on the Euclidean distance of the fMRI sample from the classifier
decision boundary in normalized units (positive values, face bias;
negative values, house bias, see Fig. 2). We evaluated whether this
measure of attentional bias strength was reliably correlated between
low-level areas (V1–V4 pooled) and high-level areas (FFA and PPA
pooled) across individual stimulus blocks. We also performed this
same correlational analysis on visually active regions in the posterior
parietal cortex, to determine whether object-selective attentional bias
signals in this region might be also be correlated with the bias signals
observed in early visual areas. Finally, we measured the correlations
between the attentional bias signals in the FFA/PPA region and those
in individual early visual areas, using 125 voxels for each region (see
Fig. 3).

Gabor Wavelet PyramidModel
We used a Gabor wavelet pyramid (Lee 1996) to simulate the responses
of arrays of V1 simple cells as well as complex cells, to evaluate the
visual similarity of the exemplars within each object category. Some
degree of shared visual similarity would allow for robust generalization
between the early visual activity patterns evoked by a set of single
faces viewed in one stimulus block and a separate set of faces viewed
in another stimulus block. The pyramid consisted of Gabor wavelets at
4 levels of size/spatial frequency (3 cycles per receptive field), 8 orien-
tations, and 2 phases, which were tiled evenly across the image.
Simple-cell responses were half-wave rectified; complex-cell responses
were derived from pairs of simple cells (same orientation, 90° phase
difference) by squaring and then summing their individual responses.
By applying this V1 model to our stimulus set of 33 faces and 33
houses, we could calculate the pattern of feedforward responses to
single stimuli and determine the pairwise correlations between
responses for all possible stimulus pairs within each stimulus class.

For simulated simple cells, the mean pairwise correlation was 0.39
and 0.19 for the stimulus set of faces and houses, respectively. For
simulated complex cells, the mean pairwise correlation was 0.63 and
0.39 for faces and houses, respectively.

Computational Modeling of an Attentional Template
We further used the Gabor model to determine whether attentional
feedback of an average face (or house) template might improve the
ability to classify V1 activity patterns according to the individual exem-
plar that appeared within face–house blends. The attentional feedback
was implemented by a multiplicative gain mechanism, in which an
average face or house template was multiplied with the pattern of feed-
forward responses to a face–house blend and scaled by a gain factor of
20%, before determining the combined pattern of feedforward and
feedback responses.

For each simulated trial, the face and house stimuli were randomly
assigned to separate subsets, which we used to calculate the average
V1 responses to 11 faces or 11 houses (attentional template), to train a
simple linear classifier on 10 different face–house blends (training set),
and to test the classifier at discriminating an “old” face or house, ran-
domly selected from the training set, but now presented with a new
distractor from the other category. The classifier was based on a
1-nearest-neighbor measure of correlation to evaluate the similarity of
responses to the training and test stimuli. We adopted a 10-alternative
forced choice procedure to enhance the difficulty of discrimination
and to better evaluate the potential benefits of attentional feedback.
Varying levels of independent Gaussian noise was added to each V1
unit’s response to simulate internal noise in the visual system and to
evaluate the robustness of any observed effects. The mean noise ampli-
tude was systematically increased from 0 to 20 times that of the mean
response across all V1 units. We measured the effects of attentional
feedback applied to simple cells, complex cells, both cell types, or
neither, by classifying activity patterns across the entire simulated V1
population. The attentional template always matched the category of
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the target to be identified, and was applied during both training and
test. Each data point in Figure 8 was generated by calculating the
overall percentage of correct discriminations using each of the 33 faces
(or houses) as target, and repeating this procedure 100 times for each
object category and noise level.

Results

Behavioral Results
In the main experiment, participants performed very well at
the same–different judgment task for all experimental con-
ditions (mean ± SD accuracy: face only, 97 ± 1% correct; house
only, 98 ± 1% correct; attend face, 94 ± 3% correct, attend
house, 95 ± 1% correct). Although discrimination performance
was impaired by the presence of an overlapping spatial distrac-
tor (F1,5 = 40.5, P < 0.01), participants discriminated changes in
the attended object category with high accuracy, suggesting
that they could attend selectively to task-relevant objects.

In Experiment 2, participants were presented with face–
house stimuli while a series of letters appeared within the
central fixation point at a rapid rate (6–8 items/s). Participants
had to discriminate either the object stimuli or the letters in sep-
arate runs. Behavioral discrimination of the attended objects was
somewhat poorer than in Experiment 1, presumably because of
the flashing central letters (attend face 79 ± 6%, attend house
85 ± 4% for same–different judgment task). Performance at the
letter detection/identification task led to a mean accuracy of
70 ± 21%, which was far from ceiling, implying that the task was
attentionally demanding.

In Experiment 3, the behavioral task was also made more
challenging due to the peripheral presentation of the face–
house blends (mean ± SD accuracy: face upper left 72 ± 7%,
house upper left 79 ± 4%, face lower right 76 ± 5%, house
lower right 86 ± 8%). No statistically reliable differences were
observed between locations or object types.

In Experiment 4, participants performed the same–different
discrimination task on face–house blends that appeared either
upright or inverted. Behavioral performance revealed a
reliable face-inversion effect (mean ± SD accuracy: upright
faces 83 ± 5%, inverted faces 72 ± 5%, upright houses 89 ± 4%,
inverted houses 88 ± 3%), as was indicated by a statistical main
effect of stimulus inversion (F1,4 = 23.8, P < 0.05), object type
(F1,4 = 17.5, P < 0.05), as well as an interaction between inver-
sion and object type (F1,4 = 10.6, P < 0.05).

fMRI Results for Experiment 1
Multivoxel pattern analysis was performed to examine the
hypothesis that attention directed to 1 of 2 overlapping objects
should bias the pattern of cortical activation to more closely
resemble the pattern that would be evoked if the attended
object were viewed in isolation. Such bias effects would
support the predictions of the biased competition model of at-
tention (Desimone and Duncan 1995), but under novel con-
ditions in which the competing stimuli occupy a common
spatial location.

First, we evaluated whether single faces and single houses
led to distinct patterns of activity throughout the visual hierar-
chy. Classification was performed on fMRI activity patterns
evoked by the 2 object types in individual visual areas. As ex-
pected, activity patterns in early retinotopic visual areas led to
near-perfect decoding (93–100% correct classification, chance

level 50%) of the stimulus category being viewed for each of
areas V1 through V4 (Fig. 1b, red curve). These results indicate
that the local feature content in our face stimuli and house
stimuli led to highly distinguishable patterns of activity in the
early visual areas, as was predicted by our results obtained
from simulated visual responses using a Gabor wavelet model
(see Materials and Methods).

We applied the same analysis to object-selective areas that
respond preferentially to faces and houses, focusing on the
FFA and PPA, respectively. Activity patterns from the FFA and
PPA were combined to obtain a compound face–house discri-
minating signal from these category-selective object areas. The
pooled information from these areas accurately predicted
whether faces or houses were being viewed. Given the cat-
egory selectivity of these higher level visual areas, the accurate
decoding exhibited by these regions can be attributed to sensi-
tivity to higher order object properties.

To test for bias effects of attention, we evaluated whether a
linear classifier could decode when subjects were attending to
faces or houses while viewing the face–house blends. Because
the same stimuli were presented in both conditions, reliable
decoding of the attended object category would indicate
top-down biasing of cortical activity. Activity in the FFA and
PPAwas strongly modulated by the attentional task, as was ex-
pected (O’Craven et al. 1999; Serences et al. 2004), allowing
for highly accurate decoding of the attended object category.
Of particular interest, we found that activity patterns in early
visual areas also led to highly reliable decoding of the attended
object category (Fig. 1b, green curve). Reliable bias effects
were found in individual areas for each of the 6 subjects tested
(classification exceeded 75% accuracy for 35 of 36 individual
classification tests, P < 0.001, 2-tailed binomial test). Infor-
mation about the attended object predominated in the detailed
activity patterns; classification accuracy was poor when
applied to the mean fMRI amplitude in early visual areas, and
substantially better when applied to the multivariate pattern of
activity (with mean amplitude removed). We also performed a
generalization analysis to evaluate whether these bias effects
of attention resembled the patterns of activity evoked by single
objects. Analyses indicated that classifiers trained on indepen-
dent faces and houses could effectively predict the attended
object category when subjects viewed face–house blends, and
vice versa (Fig. 1b, black curve). Generalization performance
was comparable to that of training and testing with the atten-
tion condition alone. Thus, by attending to 1 of 2 overlapping
objects, the activity pattern resulting from the 2 simultaneously
viewed objects was strongly biased in the direction of the
activity pattern that would be observed if the attended item
were viewed alone. These findings support the notion that
object-based attention involves biased competition, operating
at early sites of the visual pathway.

Functional Associations Between Visual Areas
The purpose of this analysis was to determine whether the
strength of the pattern-specific attentional bias found in early
visual areas might be correlated with the attentional biasing of
activity found in high-level object areas. For each visual area,
we calculated the hyperplane that distinguished between the
activity patterns evoked by single faces and single houses, and
then for each block involving face–house blends, we deter-
mined the absolute distance and the direction (faces, positive;
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houses, negative) in which the cortical activity pattern was
biased away from this hyperplane during the performance of
the selective attentional task. Next, we performed an analysis to
determine whether the attentional signals we observed in early
visual areas were correlated with the bias signals found in high-
level object-selective areas, based on activity patterns pooled
across areas V1 through V4. A positive result would imply a
functional relationship between these areas during object-
based attentional selection.

The results indicated that the bias signal found in high-level
object areas was highly correlated with the strength and categ-
orical direction of attentional bias found in early visual areas
V1–V4 (Fig. 2). Critically, reliable correlations between atten-
tional signals across brain areas could be seen within each
attention condition for each of the 6 participants, that is when
subjects carried out a common task of attending to faces (red
ellipses) or houses (blue ellipses). Thus, when subjects attend
repeatedly to a particular object category, one can nonethe-
less observe large block-by-block variations in the efficacy of
object-based attentional selection in high-level areas, and these

modulations are strongly predicted by the degree of attentional
selection found in early visual areas. This functional rela-
tionship was also observed when we performed the same cor-
relational analysis between individual early visual areas and
the FFA/PPA region of interest (Fig. 3).

Searchlight Analysis of Correlated Modulations with
Attentional Bias Signal in V1–V4
We performed a multivariate searchlight analysis (Kriegeskorte
et al. 2006) to explore whether any other brain areas showed
pattern-specific modulations that correlated with the strength
and direction of attentional modulations in early visual areas.
This pattern analysis depended on a local region’s sensitivity to
both the magnitude of attentional modulation and the object
category being attended on individual face-blend blocks. For
each iteration of the searchlight, we measured the attentional
bias signal in a local 3 × 3 × 3 voxel region for all stimulus
blocks, and then determined whether within-category (face or
house) bias was correlated (R) with bias in V1–V4.

Figure 2. Relationship between the attentional bias signal in low-level and high-level visual areas for each of 6 observers. Scatter plots show the degree of attentional bias in favor
of “face” or “house” for individual stimulus blocks while subjects attended to faces (red circles) or houses (blue diamonds). Bias strength for each stimulus block reflects the
Euclidean distance of this fMRI sample from the classifier decision boundary in normalized units (positive values, face bias; negative values, house bias). Plots show bias strength for
400 voxels from V1 to V4 pooled (abscissa) and for the pooled FFA/PPA region (ordinate). Correlations between low-level and high-level areas were calculated separately for attend
face blocks (red ellipse) and attend house blocks (blue ellipse), to reveal functional relationships between brain areas when observers performed a common attentional task.
Correlations for data combined across the 2 attentional tasks are also shown (black ellipse). Ellipses depict variance along the first and second principal components to 2 standard
deviations. All data points depict generalization performance; the classifier was trained with fMRI activity for single faces and houses, and then tested with attended faces and
houses.

Cerebral Cortex April 2015, V 25 N 4 1085

 at Jean and A
lexander H

eard L
ibrary on M

arch 18, 2015
http://cercor.oxfordjournals.org/

D
ow

nloaded from
 

http://cercor.oxfordjournals.org/


As expected, strong correlations from this searchlight analy-
sis emerged within early visual areas V1–V4, confirming the ef-
ficacy of this approach. Outside of V1–V4, the searchlight
analysis revealed reliable modulations in the ventral occipito-
temporal cortex around the FFA and PPA, as well as more re-
stricted regions in the posterior parietal lobe (Fig. 4).

We also performed a modified searchlight analysis to deter-
mine whether any brain areas exhibited changes in amplitude
that predicted the magnitude of attentional bias in areas
V1–V4, independent of the object category being attended.
Previous research has shown widespread changes in brain acti-
vity during fluctuations of general attentiveness or vigilance
(Weissman et al. 2006), and in theory, such fluctuations could
potentially account for the correlated attentional signals that
we found across low- and high-level visual areas. For the modi-
fied searchlight analysis, we correlated the mean BOLD ampli-
tude in local 3 × 3 × 3 voxel regions with the magnitude of
attentional bias in areas V1–V4, and performed this local analy-
sis repeatedly throughout the scanned volume. The resulting
individual maps of correlation values were statistically evalu-
ated at the group level by performing a t-test on Fisher’s
z-corrected values for all voxels, using false discovery rate to
correct for multiple comparisons (Genovese et al. 2002). Em-
ploying a statistical threshold of P < 0.05, we found that there
were no local regions that displayed a reliable relationship
with the magnitude of attentional bias in V1–V4. The com-
bined results of the 2 searchlight analyses suggest that the
strong functional coupling we found between early visual
areas and higher level areas depends on selective attentional
bias effects in favor of one object category or the other, rather
than on nonspecific effects of vigilance or alertness.

Posterior Parietal Cortex
We performed an additional region-of-interest analysis on visu-
ally active voxels in the posterior parietal cortex, because of
the positive results found in this region based on the group

searchlight analysis. Here, we selected all contiguous posterior
parietal voxels that were significantly activated by the func-
tional localizer runs during which participants performed dis-
crimination tasks involving the same face and house stimuli.

Activity patterns in this parietal region accurately discrimi-
nated between attended faces and houses (mean classification
accuracy, 92%). Overall, the attentional bias signal in this region
correlated quite well with the attentional bias signal found in
early visual areas (mean R = 0.38 and 0.39 for attend face and
attend house, respectively). The positive results found here are
consistent with previous reports of shape-selective processing
in the parietal cortex (Sereno and Maunsell 1998; Konen and
Kastner 2008).

Figure 4. Regions with attentional bias signals correlated with bias in V1–V4.
Searchlight analyses were conducted to detect block-by-block variations in local
activity patterns that predicted the strength and categorical direction of attentional bias
in early visual areas. Pattern classification was applied to local 3× 3× 3 voxel regions,
and this local searchlight analysis was performed repeatedly throughout the entire
scanned cortex (occipital, posterior parietal, and temporal regions). For each iteration
of the searchlight, within-category (face or house) bias was correlated (R) with bias in
V1–V4 (cf. Fig. 2). Correlation maps for attend face and attend house were averaged
for each subject, and aligned in Talairach space for group analysis. Group-based
statistical maps were calculated by performing a t-test on all Fisher’s z-corrected
voxels, using false discovery rate to correct for multiple comparisons (Genovese et al.
2002). The color-coded statistical map above shows the mean correlation strength
(blue to green, R=0.06–0.60, P< 0.025 corrected) with attentional bias signals in
V1–V4 (shaded region) plotted on the flattened cortex of a representative subject, with
functionally defined visual areas delineated for that subject.

Figure 3. Relationship between the attentional bias signal in individual low-level and
high-level visual areas. Mean correlations across subjects between the attentional bias
strength in the FFA/PPA and those in individual retinotopic areas (V1, V2, V3, V3A, and
V4). Correlations for attended faces (squares), and attended houses (circles) remain
strong across visual areas. The correlation for combined data (triangles) reflects both
within-condition correlations as well as the overall classification accuracy in the
respective brain areas.
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In comparison, however, the attentional bias signal was more
strongly correlated between early visual areas and the FFA/PPA
regions (mean R = 0.65 and 0.66 for attend face and attend
house, respectively). Statistical comparisons were performed by
applying a t-test to Fisher’s z-transformed correlation values,
which indicated significantly stronger correlations between V1–
V4 and FFA/PPA than between V1–V4 and posterior parietal
cortex when participants attended to houses (T(5) = 4.49,
P < 0.01), and a marginally significant differencewhen attending
to faces (T(5) = 2.39, P = 0.06). Stronger correlations suggest
stronger functional coupling between early visual areas and the
FFA/PPA region, which could reflect both the consequences of
early stage attentional filtering on the visual signals that sub-
sequently reach these higher level object areas as well as the
top-down influence of FFA/PPA on early visual areas. Indeed,
bidirectional interactions between low- and high-level visual
areas are believed to be important for effective visual processing
according to interactive models (Lamme and Roelfsema 2000;
Lee and Mumford 2003; Tong 2003).

In addition, the attentional bias signal in PPC correlated
moderately with the attentional bias signal found in FFA/PPA
(mean R = 0.35 and 0.29 for attend face and attend house,
respectively). Future work is needed to tease out the collective
attentional relationship between the 3 interconnected areas.
The above analyses indicate that we find strongest correlations
between early visual areas and FFA/PPA.

Control Analyses
Multiple control analyses were performed to address whether
these correlated modulations between low- and high-level
visual areas might instead be attributable to nonattentional
factors such as head motion, eye movements, or fluctuations in
general alertness. First, we analyzed eye-position signals to de-
termine whether they reliably distinguished between attending
to faces or houses. Reliable eye-tracking data were successfully

obtained for 4 of the 6 subjects who participated in Experiment
1. (Technical difficulties prevented the collection of reliable
signals from the infrared camera from the remaining 2 sub-
jects.) Eye positions were generally well centered at fixation,
with mean horizontal (x) and vertical (y) positions of 0.11° and
0.19°, respectively. We performed statistical comparisons to
determine whether eye position might differ between the
single face and single house conditions, or between the attend
face and attend house conditions (see Table 1). We also sub-
mitted the eye-tracking data as input to a linear classifier to de-
termine whether small shifts in eye position could be a reliable
predictor of the target condition. Input to the classifier con-
sisted of the mean horizontal and vertical positions of the eye
over each experimental block, their product, as well as the
standard deviations in eye position.

For 3 of 4 subjects, we found no reliable differences in eye
position for any comparisons between conditions. One of the
4 subjects did show statistically reliable differences in eye
position between single faces and houses and also between
attended faces and houses, but even here, eye-position differ-
ences were quite modest and <0.5° of shift. Classification ana-
lyses indicated that eye-position shifts from only the fourth
subject were predictive of the target object category. However,
given that all of our subjects showed highly reliable effects of
object-based attention in every visual area tested, the lack of
reliable eye-position shifts in most of our subjects indicates
that this was not an important or necessary factor for reliable
fMRI decoding.

Moreover, our analyses of head motion data, eye-position
data, and the frequency/duration of eye blinks failed to reveal
reliable correlations with the magnitude of attentional bias in
early visual areas. Previous neuroimaging studies have demon-
strated widespread changes in cortical responses during lapses
of visual attention, including diminished activity throughout
visual cortex and compensatory increases in parietal control-
related activity (Weissman et al. 2006). However, our modified
searchlight analysis failed to reveal any brain regions that pre-
dicted the magnitude of attention modulation in early visual
areas, independent of the attended object category. Taken to-
gether, these control analyses indicate that nonattentional
factors cannot readily account for the strong functional coup-
ling that was found across distinct levels of the visual hierar-
chy. Instead, the strong functional coupling between areas can
be better attributed to fluctuations in the efficacy of a common
object-based attentional mechanism.

Experiments 2–3: Spatial and Featural Specificity
of Object-Based Attentional Signals
The first experiment revealed discriminating patterns of
top-down attentional bias in early visual areas when partici-
pants attended to either faces or houses in the overlapping
face–house blends. In Experiment 2, we further compared the
patterns of activity evoked by unattended faces and houses
with those observed during object-based attention. In the unat-
tended condition, participants had to discriminate letters pre-
sented at central fixation while task-irrelevant faces or houses
were presented in the region surrounding the fixation point.
Activity patterns evoked by unattended faces and houses could
reliably predict the attended target when observers viewed
face–house blends in separate experimental runs (Fig. 5).
These findings suggest that the attentional bias found in early

Table 1
Analysis of eye-position data

Subject 1 2 3 4

(a) Differences in eye position for single face and single house
Mean ΔX (°) 0.08 0.14 −0.22 0.01
t-Test (ΔX) 1.18 1.06 −1.40 0.02
P 0.24 0.29 0.17 0.98
Mean ΔY (°) 0.05 0.01 −0.04 0.34
t-Test (ΔY) 0.27 0.07 −0.44 2.93
P 0.79 0.94 0.66 <0.01
DF 62 62 58 60
Eye-position decoding accuracy (%) 48.4 50 53.3 66.1
P n.s. n.s. 0.52 <0.01

(b) Differences in eye position for attend face and attend house
Subject 1 2 3 4
Mean ΔX (°) 0.19 0.22 0.09 0.44
t-Test (ΔX) 1.31 1.77 0.88 2.49
P 0.20 0.08 0.38 0.02
Mean ΔY (°) 0.08 −0.20 0.07 0.45
t-Test (ΔY) 0.36 −1.14 0.57 3.77
P 0.72 0.26 0.57 0.00
DF 62 62 58 61
Eye-position decoding accuracy (%) 56.2 54.6 53.3 82.5
P 0.26 0.38 0.52 <0.001

Note: Vertical (x) and horizontal (y) differences in eye position between single-face and
single-house conditions (a), and between attend face and attend house conditions (b). Differences
reported in degrees of visual angle; statistical comparisons performed using t-tests. Also, a linear
classifier was trained to decode object category based on mean and standard deviation of
eye-position values for each stimulus block. Deviations from 50% chance-level decoding accuracy
was evaluated using a 2-tailed binomial test.
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visual areas serves to enhance the stimulus representation of
the attended object.

We conducted a third experiment to determine whether
these object-specific bias signals were spatially specific to the
retinotopic regions receiving direct stimulation or whether they
might also be found in unstimulated portions of the visual field.
Recent neuroimaging studies have suggested that feature-based
attention and attention directed to different object classes can
lead to widespread modulatory effects in early visual areas,
even in unstimulated regions such as the foveal confluence
(Serences and Boynton 2007; Williams et al. 2008; Jehee et al.
2011). Might such a global modulatory effect account for the
object-discriminating signals found in this study?

In Experiment 3, observers maintained central fixation while
face–house blends were presented peripherally in either the
upper left or lower right visual quadrant. For early visual areas
(V1–V3), classifiers trained on activity patterns for one location
led to much better prediction of attended objects when the test
stimuli were presented at same location in comparison to the
other stimulus location (Fig. 6a). The positional specificity of
these attentional bias effects in V1–V3 sharply contrasted with
the position-invariant effects found in the FFA/PPA region.
However, we also observed a modest degree of generalization
across changes in position, with statistically significant or mar-
ginally significant effects found in early visual areas. These
results imply the presence of both position-specific and
position-general components of the attentional feedback
signal, with position-specific feedback signals providing the
majority of the discriminating information in early visual areas.

We performed further decoding analyses of the foveal rep-
resentation of areas V1–V3, which were delineated based on
individual retinotopic maps obtained in these subjects.
Because the face–house blends were presented away from the
fovea in this experiment, they would be expected to minimally
activate this region. Decoding of the attended object was gen-
erally poor for the foveal representation in early visual areas,
and fell to chance levels in V1, indicating that the unstimulated

foveal region did not show much evidence of top-down feed-
back of object information (Fig. 6b). Moreover, generalization
performance was at chance level for foveal regions of V1, V2,
and V3, indicating that the information contained in these
feedback signals were quite specific to the retinal position of
the attended object. The above findings show that object-based
attention primarily involves the enhancement of the local fea-
tures belonging to the attended object, and that these highly
specific bias effects can be distinguished from previous reports
of global top-down modulations (Serences and Boynton 2007;
Williams et al. 2008; Jehee et al. 2011).

Experiment 4: Contributions of High-Level Object
Knowledge
In Experiment 4, we investigated whether greater familiarity
with an object might lead to more efficient object-based

Figure 5. Object decoding performance for attended and unattended objects. Mean
accuracy of decoding for attended faces versus attended houses while viewing face–
house blends (squares), unattended single faces versus single houses while
performing a challenging letter detection task at central fixation (diamonds), and
generalization performance across attended and unattended tasks (triangles). Error
bars indicate ± 1 SEM. Decoding accuracy significantly exceeded chance-level
performance for every visual area and experimental condition.

Figure 6. Object-based attention across changes in retinotopic location. Mean
accuracy of decoding the attended object for face–house blends presented in the
upper left (circles) or lower right visual field (squares). Accuracy of generalization
performance across changes in position (triangles). (a) Decoding performance in visual
areas V1–V4 and FFA/PPA for retinotopic regions corresponding to the 2 stimulated
locations. All conditions displayed above-chance decoding (by 1-tailed t-test), with the
exception of generalization for V1 and V3A, which reached marginal significance
(P= 0.07 and P= 0.09, respectively). Decoding was significantly greater for either
location when compared with generalization across locations for every area except
FFA/PPA. (b) Decoding performance for the foveal representation in areas V1–V3,
shown for individual and combined areas. Statistical reliability of generalization
performance for foveal regions of V1, V2, V3, and V1–V3 combined was indicated by
P-values of 0.21, 0.31, 0.07, and 0.09, respectively. Error bars indicate ± 1 SEM.
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attentional selection in early visual areas, by manipulating
object orientation. We hypothesized that under challenging
viewing conditions, high-level object knowledge might be
especially helpful to the top-down selection process.

Observers were randomly cued to attend to faces or houses
at the beginning of each trial, and then viewed brief presenta-
tions of upright or upside-down blends that were immediately
followed by masking noise patterns (Fig. 7a). Prestimulus cues
indicated the object category to be attended but did not indicate
the object’s orientation. This randomized trial design required
the use of rapid event-related fMRI, which led to generally
lower but still reliable levels of decoding performance.

Behavioral performance indicated an advantage for stimuli
presented in a familiar upright orientation, specifically for
upright faces when compared with inverted faces (83% and
72% correct, respectively). Decoding analyses revealed that
activity patterns in early visual areas reliably predicted the at-
tended object category for upright stimuli but not for inverted
stimuli, with overall better performance found for upright
objects (Fig. 7b). These results indicate that object familiarity
facilitates the efficiency of this attentional selection process in
early visual areas. This suggests that the attentional feedback
to early visual areas was informed by high-level areas with rel-
evant object knowledge. Although the source of this feedback
cannot be conclusively determined based on correlational
measures of brain activity, possible sources identified in this
study include the FFA/PPA region, other portions of the
ventral temporal cortex, and regions of the posterior parietal
cortex.

Given that we found better behavioral performance for
upright than inverted faces, but no reliable difference in per-
formance for upright and inverted houses (89% and 88%
correct, respectively), one might also ask whether this category-
specific behavioral benefit was also evident in the pattern of
fMRI results. Our experimental design relied on decoding
which of 2 overlapping object types was being attended; thus,
decoding would be expected to improve if top-down knowl-
edge led to enhanced attentional selection of only one or both
object types. It would be interesting for future studies to investi-
gate whether attentional selection of faces is specifically en-
hanced by upright presentation, when compared with the
attentional selection of other categories of objects. One possi-
bility is that current results are largely driven by the well-
documented face-inversion effect (Valentine 1988; McKone
and Yovel 2009), which is known to disrupt both perceptual
and recognition processes.

Modeling of Pattern-Specific Feedback to Early
Visual Areas
We developed a computational model to understand how feed-
back to early visual areas might improve performance at this
object-based attention task. The problem can be understood as
follows. If an observer is trying to discern the unique identify-
ing information about a face that is partially masked by an
overlapping house, what type of attentional feedback might
enhance the visual system’s representation of the attended
object? For example, if high-level areas make a very specific
prediction about the face’s structural identity for determining
feedback, then activity patterns in early visual areas will simply
be biased to conform with this initial prediction. Such highly
specific feedback could lead to “confirmation bias,” with

minimal information to be gained if the identity prediction
proves correct, and with incorrect predictions leading to
biased activity patterns that could result in error. To reduce
bias, an alternative strategy might be to use the average of
many faces as an attentional template for feedback. However,
how would feedback of a single average face template improve
the visual system’s ability to discriminate between multiple
individual faces?

We investigated the effects of pattern-specific feedback
using a Gabor wavelet pyramid (Lee 1996) to simulate the
responses of an array of V1 simple cells and complex cells. We
hypothesized that feedback of an average face (or house) tem-
plate might be beneficial if that feedback signal can success-
fully generalize across local variations in the position of
discriminating features across the stimuli in each set. For
example, the dark edge created by an eyebrow will vary in pos-
ition somewhat from face to face. Whereas simple cells are
phase-specific in their orientation preference and may respond
poorly to an eyebrow shifted in position, a horizontally tuned
complex cell would respond well if that eyebrow appeared
anywhere within its receptive field. As a consequence, we

Figure 7. Experimental design and fMRI results for face–house blends presented
upright or inverted. (a) Examples of trial sequences in Experiment 4; pairs of upright or
inverted face–house blends were briefly displayed for a same–different judgment task.
Color of fixation point indicated whether to attend to faces or houses; orientation of
stimuli was randomized and could not be anticipated. (b) Accuracy of decoding
attention to faces or houses, plotted separately for upright objects (squares) and
inverted objects (diamonds) for each visual area. Error bars indicate ± 1 SEM. The
rapid event-related trial design led to lower overall levels of classification performance.
Nonetheless, we found a general advantage for upright stimuli. Upright stimuli could be
classified reliably in every visual area tested (P<0.05), but for inverted stimuli only,
the FFA/PPA performed at above-chance levels. Analysis of variance revealed a main
effect between upright and inverted classification (F1,4 = 12.99, P<0.05), with
specific comparisons revealing better decoding for upright stimuli in area V1
(P<0.05) and marginal effects in V2 and V4 (P< 0.10).
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hypothesized that feedback to phase-invariant complex cells
might provide sufficient flexibility to allow an average atten-
tional template to successfully generalize from one sample
stimulus to another.

We compared the performance of a Gabor pyramid of
simple cells and complex cells on the ability to classify V1
activity patterns according to the individual face or house that
appeared within face–house blends. (Classification can be con-
sidered a form of readout performed by the output layer). For
each simulation, the face and house stimuli were randomly as-
signed to separate subsets, which were used to generate a tem-
plate of averaged V1 responses to faces or houses, and to train
a simple linear classifier on multiple face–house blends (see
Materials and Methods for details). The classifier was then
tested at discriminating a target face or house from the training
set, but in the presence of a new superimposed distractor from
the other category.

The results of our simulation analysis indicated that feedback
of an average template to V1 complex cells, which have modest
positional invariance, improved the visual system’s ability to
distinguish between individual exemplars belonging to the at-
tended category (Fig. 8). By contrast, feedback to V1 simple
cells failed to improve discrimination performance in a consist-
ent manner, because this highly specific attentional template
failed to generalize well across variations between exemplars.
These findings demonstrate how top-down feedback of a single
template pattern to early visual units can improve the visual
system’s ability to distinguish between stimuli belonging to the
attended category. Note that here we adopted the simplest
possible architecture, akin to a 2-layer network with an input
layer of V1 units and an object representation layer. Of course,
one could incorporate a greater degree of positional and

featural invariance by introducing intermediate layers to this
network. For example, a prominent feedforward model of
object recognition includes an intermediate V4-like layer whose
units are sensitized to combinations of V1 complex cell
responses and are more invariant than the V1 units (Riesenhu-
ber and Poggio 1999). If object-specific feedback were realized
through such a multilayer network, an even broader population
of V1 units would be modulated, thereby allowing for better
generalization across different examples of the object category.
For the present study, our goal was to characterize the potential
benefits of attentional feedback to early visual units using the
simplest possible architecture for our model.

Discussion

This study provides compelling evidence of how pattern-
specific feedback to early visual areas contributes to the atten-
tional selection of complex objects. In areas V1–V4, activity
patterns evoked by face–house blends were strongly biased by
object-based attention in favor of the item that was voluntarily
attended. The efficacy of this early attentional selection was
highly correlated with the degree of attentional bias found in
high-level object-selective areas, with robust effects observed
in every participant. These results imply that pattern-specific
attentional filtering at early sites can determine the quality of
object-specific signals that ultimately reach higher level visual
areas. Moreover, we found that high-level object knowledge,
namely greater familiarity with upright objects, contributed to
the efficiency of this selection process in early visual areas.

Our findings represent an advance over previous theories
andmodels of object-based attention (Duncan 1984; Kahneman
et al. 1992; Baylis and Driver 1993; Logan 1996; Behrmann
et al. 1998; Blaser et al. 2000; Driver et al. 2001; Scholl 2001;
van Der Velde and de Kamps 2001). Most previous models
have not specified the mechanism by which attention might
select among competing overlapping objects, nor have they
addressed what types of feedback might be most effective for
discriminating the attended object. Through computational
modeling, we demonstrated how feedback of an average face
(or house) template to V1 complex units can improve the visual
system’s ability to distinguish between individual exemplars
within the attended category. Feedforward models of object
recognition have highlighted the importance of complex cell-
like computations for acquiring invariance to image variations
of objects (Riesenhuber and Poggio 1999). Here, we show how
feedback to complex units can allow for more flexible, adaptive
top-down selection of a target object. Taken together, our fMRI
and modeling results provide a mechanistic account for under-
standing how specific patterns of feedback to early visual areas
can contribute to object-based attentional selection.

Although the focus of the current study was to investigate
the neural mechanisms of object-based attention, there have
also been recent reports of top-down effects in early visual
areas during object recognition tasks. Following successful rec-
ognition of an ambiguous Mooney image, activity patterns in
early visual areas become more stable and reliable (Hsieh et al.
2010; Gorlin et al. 2012), and more closely resemble the activity
pattern evoked by the unambiguous grayscale version of that
stimulus. In addition, some studies have reported evidence of
more abstracted object information in early visual areas. For
example, Williams et al. (2008) found that activity patterns in
the foveal visual cortex could distinguish between different

Figure 8. Accuracy of model performance with object-based attentional feedback to
V1 simple or complex units. Model accuracy at classifying the identity of the attended
object in face–house blends, using 10-alternative forced choice discrimination of
simulated V1 responses. In comparison to no feedback (black curve), attentional
feedback of an average face or house template to complex-cell units (red curve) led to
better discrimination of individual exemplars from the attended category, across
varying levels of independent Gaussian noise. By contrast, feedback to simple cell units
failed to improve performance consistently (blue curve). Shaded regions indicate 95%
confidence intervals, based on 200 simulations of 33 trials per noise level.
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object categories appearing in the periphery, and that these
activity patterns remained stable across changes in object
location (Williams et al. 2008). This work suggested that
top-down object processing can lead to a position-invariant
feedback signal in the foveal representation of early visual
areas. In the present study, we observed far better decoding of
the attended object at the peripheral stimulus location than in
the unstimulated foveal visual cortex, and moreover, generaliz-
ation across changes in location led to near-chance levels of
performance. It is possible that our study found minimal evi-
dence of position-invariant object information because we used
strict retinotopic mapping methods to delineate foveal regions
of V1–V3, whereas such mapping was not performed by Wil-
liams and colleagues. However, another important distinction
was that our task required attending selectively to an object in
the presence of competing overlapping distractors. Based on
our modeling work, we would expect that object-based atten-
tional feedback in early visual areas should exhibit a consider-
able degree of positional specificity, similar to the specificity of
complex cells.

In conclusion, our approach of using fMRI pattern classifi-
cation not only allowed us to isolate object-discriminating
activity throughout the visual hierarchy, but also proved useful
for comparing the strength of object-selective attentional
modulation across areas with distinct visual tuning properties.
Previously, we have used fMRI decoding to show that feature-
based attention leads to reliable modulations in early visual
areas (Kamitani and Tong 2005; Jehee et al. 2011), and such
methods have been successfully applied to investigate atten-
tional modulation of high-level object areas (Peelen et al. 2009;
Reddy et al. 2009; Cukur et al. 2013). Here, we applied a
common pattern classification framework to measure the
strength of attentional bias signals in both low- and high-level
visual areas, and to investigate their functional relationship.
Our results suggest that object-based attention relies on the
feedback of pattern-specific information to early visual areas,
to enhance visual system’s ability to distinguish the attended
object in the presence of competing overlapping distractors.
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