
HAL Id: hal-03942106
https://inria.hal.science/hal-03942106

Submitted on 16 Jan 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Neural Mesh-Based Graphics
Shubhendu Jena, Franck Multon, Adnane Boukhayma

To cite this version:
Shubhendu Jena, Franck Multon, Adnane Boukhayma. Neural Mesh-Based Graphics. ECCV 2022
Workshops, Oct 2022, Tel-Aviv, Israel. pp.739-757, �10.1007/978-3-031-25066-8_45�. �hal-03942106�

https://inria.hal.science/hal-03942106
https://hal.archives-ouvertes.fr

Neural Mesh-Based Graphics

Shubhendu Jena, Franck Multon, Adnane Boukhayma

Inria, Univ. Rennes, CNRS, IRISA, M2S, France

Abstract. We revisit NPBG [2], the popular approach to novel view
synthesis that introduced the ubiquitous point feature neural render-
ing paradigm. We are interested in particular in data-efficient learn-
ing with fast view synthesis. We achieve this through a view-dependent
mesh-based denser point descriptor rasterization, in addition to a fore-
ground/background scene rendering split, and an improved loss. By train-
ing solely on a single scene, we outperform NPBG [2], which has been
trained on ScanNet [9] and then scene finetuned. We also perform com-
petitively with respect to the state-of-the-art method SVS [42], which has
been trained on the full dataset (DTU [1] and Tanks and Temples [22])
and then scene finetuned, in spite of their deeper neural renderer.

1 Introduction

Enabling machines to understand and reason about 3D shape and appearance is
a long standing goal of computer vision and machine learning, with implications
in numerous 3D vision downstream tasks. In this respect, novel view synthesis
is a prominent computer vision and graphics problem with rising applications in
free viewpoint, virtual reality, image editing and manipulation, as well as being a
corner stone of building an efficient metaverse. The introduction of deep learning
in the area of novel view synthesis brought higher robustness and generalization
in comparison to earlier traditional approaches. While the current trend is learn-
ing neural radiance fields (e.g. [29, 56, 61]), training and rendering such implicit
volumetric models still presents computational challenges, despite recent efforts
towards alleviating these burdens (e.g. [17, 25, 49, 62]). An appealing alternate
learning strategy [2,41,42,53], achieving to date state-of-the-art results on large
outdoors unbounded scenes such as the Tanks and Temples dataset [22], consists
of using a pre-computed geometric representation of the scene to guide the novel
view synthesis process. As contemporary successors to the original depth warp-
ing techniques, these methods benefit from a strong geometry prior to constrain
the learning problem, and recast its 3D complexity into a simpler 2D neural
rendering task, providing concurrently faster feed-forward inference.

Among the latter, NPBG [2] is a popular strategy, being core to several
other neural rendering based methods (e.g. [35,37,60,64]). Learnable descriptors
are appended to the geometry points, and synthesis consists of rasterizing then
neural rendering these features. It is practical also as it uses a lightweight and
relatively simpler architecture, compared to competing methods (e.g. [41, 42]).

2 S. Jena et al.

Our motivation is seeking a data-efficient, fast, and relatively lightweight
novel-view synthesis method. Hence we build on the idea of NPBG [2], and
we introduce several improvements allowing it to scale to our aforementioned
goals. In particular, and differently from NPBG [2]: We introduce denser ras-
terized feature maps through a combination of denser point rasterization and
face rasterization; We enforce view-dependency explicitly through anisotropic
point descriptors; As the foreground and background geometries differ notice-
ably in quality, we propose to process these two feature domains separately to
accommodate independently for their respective properties; Finally, we explore
a self-supervised loss promoting photo-realism and generalization outside the
training view corpus. The improvement brought by each of these components is
showcased in Table 3.

By training simply on a single scene, our method outperforms NPBG [2],
even though it has been additionally trained on ScanNet [9] and then further
fine-tuned on the same scene, in terms of PSNR, SSIM [58] and LPIPS [66], and
both on the Tanks and Temples [22] (Tab. 1) and DTU [1] (Tab. 2) datasets.
The performance gap is considerably larger on DTU [1]. Our data efficiency is
also illustrated in the comparison to state-of-the-art method SVS [42] (Tab. 1
2). We achieve competitive numbers despite their full dataset trainings, their
deeper convolutional network based neural renderers, and slower inference. We
also recover from some of their common visual artifacts as shown in Figure 6.

2 Related Work

While there is a substantial body of work on the subject of novel view synthesis,
we review here work we deemed most relevant to the context of our contribution.

Novel view synthesis. The task of novel view synthesis essentially involves
using observed images of a scene and the corresponding camera parameters to
render images from novel unobserved viewpoints. This is a long explored prob-
lem, with early non deep-learning based methods [7, 11, 15, 24, 46, 69] using a
set of input images to synthesize new views of a scene. However, these meth-
ods impose restrictions on the configuration of input views. For example, [24]
requires a dense and regularly spaced camera grid while [10] requires that the
cameras are located approximately on the surface of a sphere and the object is
centered. To deal with these restrictions, unstructured view synthesis methods
use a 3D proxy geometry of the scene to guide the view synthesis process [5,23].
With the rise of deep-learning, it has also come to be used extensively for view
synthesis, either by blending input images to synthesize the target views [16,54],
or by learning implicit neural radiance fields followed by volumetric rendering
to generate the target views [29], or even by using a 3D proxy geometry rep-
resentation of the scene to construct neural scene representations [2,32,41,42,53].

View synthesis w/o geometric proxies. Early deep-learning based approaches
combine warped or unwarped input images by predicting the corresponding

Neural Mesh-Based Graphics 3

blending weights to compose the target view [8, 54]. Thereafter, several ap-
proaches came up leveraging different avenues such as predicting camera poses [67],
depth maps [19], multi-plane images [12, 68], and voxel grids [20]. Recently, im-
plicit neural radiance fields (NeRF) [29] has emerged as a powerful represen-
tation for novel view synthesis. It uses MLPs to map spatial points to volume
density and view-dependent colors. Hierarchical volumetric rendering is then
performed on the predicted point colors to render the target image. Some of the
problems associated with NeRF [29] include higher computational cost and time
of rendering complexity, the requirement of dense training views, the lack of
across-scene generalization, and the need for test-time optimization. A number
of works [3, 13, 18, 26, 30, 40, 59, 62, 63] have tried addressing these limitations.
In particular, Spherical Harmonics [51] have been used to speed up inference
of Neural Radiance Fields by factorizing the view-dependent appearance [62].
Nex [59] introduced a related idea, where several basis functions such as Hemi-
spherical harmonics, Fourier Series, and Jacobi Spherical Harmonics were inves-
tigated, and concluded that learnable basis functions offer the best results. Some
other methods, like pixelNeRF [63], GRF [55], IBRNet [57] and MVSNeRF [6]
proposed to augment NeRFs [29] with 2D and 3D convolutional features col-
lected from the input images. Hence, they offer forward pass prediction models,
i.e. test-time optimization free, while introducing generalization across scenes.
While these methods are promising, they need to train on full datasets to gen-
eralize well, while at the same time evaluating hundreds of 3D query points per
ray for inference similar to NeRF [29]. Hence, both training and inference often
takes quite long for these methods. We note that besides encoders [6,55,57,63],
implicit neural representations can also be conditioned through meta-learning
e.g. [33, 48,50].

View synthesis using geometric proxies. Different from the work we have
discussed so far, several recent methods utilize a geometric reconstruction of the
scene to construct neural scene representations and consequently use them to
synthesize target views. These geometric proxies can either be meshes [41,42,53]
or point clouds [2,27,34,52]. SVS [42] and FVS [41] utilize COLMAP [44,45] to
construct a mesh scaffold which is then used to select input views with maxi-
mum overlap with the target view. FVS [41] then uses a sequential network based
on gated recurrent units (GRUs) to blend the encoded input images. SVS [42]
operates on a similar principle except that the geometric mesh scaffold is used
for on-surface feature aggregation, which entails processing or aggregating direc-
tional feature vectors from encoded input images at each 3D point to produce
a new feature vector for a ray that maps this point into the new target view.
Deferred neural rendering (DNR) [53] proposes to learn neural textures encod-
ing the point plenoptic function at different surface points alongside a neural
rendering convolutional network. It is infeasible for very large meshes due to
the requirement of UV-parametrization. On the other hand, NPBG [2] operates
on a similar idea by learning neural descriptors of surface elements jointly with
the rendering network, but uses point-based geometry representation instead of

4 S. Jena et al.

Fig. 1: Overview: An automatic split of the scene geometry is used to raster-
ize foreground/background mesh-borne view-dependent features, through both
point based and mesh based rasterizations. A convolutional U-Net [43] maps the
feature images into the target image.

meshes. Similarly, [27, 52] use COLMAP [44, 45] to reconstruct a colored point
cloud of the scene in question, which is used alongside a neural renderer to ren-
der target images. Our method combines both approaches in the sense that it
uses both point cloud and mesh representation of the scene as geometric proxies.
Like NPBG [2], we also learn neural descriptors of surface elements, but since
point clouds of large unbounded scenes are often sparse, using meshes helps in
enhancing the richness of the rasterized neural descriptors. Hence, using both
point clouds and meshes help us in achieving a balance between accuracy and
density of the rasterized scene neural descriptors, which we will explain in detail
in the upcoming sections and also through an ablative analysis.

3 Method

Given a set of calibrated images of a scene, our goal is to generate novel views
from the same scene through deep learning. To this end, we design a forward
pass prediction method, expected to generalize to target views including and
beyond input view interpolation. Using a geometry proxy of the scene, we set
view-dependent learnable descriptors on the vertices, and we split the scene
automatically into a dense foreground and a sparser background. Each of these
areas are rasterized through PyTorch3D’s point based and mesh based rasteriza-
tions [39]. A convolutional neural renderer translates and combines the resulting
image features into the target color image. Figure 1 illustrates this pipeline. Our
method can be trained on a single scene by fitting the point descriptors and
learning the neural renderer weights jointly. It can also benefit from multi-scene
training through the mutualization of the neural renderer learning. We present
in the remaining the different components of our method.

Neural Mesh-Based Graphics 5

Fig. 2: We introduce denser feature images compared to NPBG [2]. Left: NPBG’s
rasterization. Center: Our point based rasterization. Right: Our mesh based
rasterization. Top row shows feature PCA coefficients. Bottom row shows the
resulting rasterization mask (Occupied/unoccupied pixels).

Preprocessing We need to obtain a geometry representing the scene from the
training images as a preprocessing stage. Standard structure-from-motion (SfM)
and multi-view stereo (MVS) pipelines can be used to achieve this [44, 45]. In
this respect, we chose to use the preprocessed data from SVS [42] and FVS [41],
and so the preprocessing steps are identical to these methods. The first step
involves running structure-from-motion [44, 45] on the images to get camera
intrinsics {K} and camera poses as rotation matrices {R}, and translations
{T}. The second step involves running multi-view stereo on the posed images,
to obtain per-image depth maps, and then fusing these into a point cloud. Finally,
Delaunay-based triangulation is applied to the obtained point cloud to get a 3D
surface mesh M. These steps are implemented following COLMAP [44,45].

3.1 Dual Feature Rasterization

Given a target camera pose R ∈ SO(3), T ∈ R3, the rendering procedure starts
with the rasterization of learnable mesh features into the target image domain.
The mesh M consists here of vertices (i.e. points) P = {p1, p2, ..., pN} with
neural point descriptors K = {k1, k2, ..., kN}, and faces F = {f1, f2, ..., fM}.

We noticed initially that having denser feature images improves the perfor-
mance of the neural rendering. Hence, differently from NPBG [2], we use the
PyTorch3D [39] renderer which allows us to obtain denser feature images for
point cloud based rasterization. Furthermore, we notice additionally that using
PyTorch3D’s mesh based rasterization provides even denser feature images (c.f.
Fig.2). Hence, we propose to rasterize the scene geometry features using both
modes.

Point Cloud based Rasterization PyTorch3D [39] requires us setting a ra-
dius r in a normalized space which thresholds the distance between the target
view pixel positions {(u, v)} and the projected 3D points of the scene onto the
target view, i.e. {Π(p) : p ∈ P}. If this distance is below the threshold for a given

6 S. Jena et al.

pixel (u, v), we consider this point to be a candidate for that pixel, and we fi-
nally pick the point pu,v with the smallest z coordinate in the camera coordinate
frame. This writes:

Pu,v = {p ∈ P : ||Π(p)− (u, v)||2 ≤ r}. (1)

pu,v = argmin
p∈Pu,v

pz, where p = (px, py, pz). (2)

The neural descriptor of the chosen point pu,v is projected onto the corresponding
pixel position to construct the rasterized feature image. We set a radius of r =
0.006 to achieve a balance between accuracy of the projected point positions and
the density of the rasterized feature images. The feature descriptors for each pixel
are weighed inversely with respect to the distance of the projected 3D point to
the target pixel, which can be expressed as wu,v = (1− ||Π(pu,v)− (u, v)||22)/r2
where ||Π(pu,v)− (u, v)||2 < r. Finally the point feature image {kptu,v} can hence
be expressed as follows:

kptu,v = wu,v ×K(pu,v), (3)

where K(pu,v) is the neural descriptor of mesh vertex pu,v.

Mesh based Rasterization On the other hand, the mesh rasterizer in Py-
Torch3D [39] finds the faces of the mesh intersecting each pixel ray and chooses
the face with the nearest point of intersection in terms of the z-coordinate in
camera coordinate space, which writes:

Fu,v = {f ∈ F : (u, v) ∈ Π(f)}. (4)

fu,v = argmin
f∈Fu,v

f̂z, where f̂ = (f̂x, f̂y, f̂z). (5)

f̂ represents here the intersection between ray (u, v) and face f in camera co-
ordinate frame. Finally, to find the feature corresponding to each pixel, the
barycentric coordinates of the point of intersection f̂u,v of the face fu,v with the
corresponding pixel ray are used to interpolate the neural point descriptors over
the face. By noting (pi, pj , pk) as the vertices making up face fu,v, the mesh
feature image {kmesh

u,v } can be expressed as follows:

kmesh
u,v = αK(pi) + βK(pj) + γK(pk), (6)

where (α, β, γ) are the barycentric coordinates of f̂u,v in fu,v.

While we expect the point cloud rasterization to be more accurate, the mesh
rasterization provides a denser feature image, albeit less accurate and fuzzier due
to the dependence on the quality of the geometric triangulation being used. The
final feature image combines the best of both worlds as it consists of the mesh and
point feature rasterized images concatenated together, i.e. ku,v =

[
kptu,v, k

mesh
u,v

]
.

Neural Mesh-Based Graphics 7

Fig. 3: Differently from NPBG [2], we introduce mesh-based view-dependent fea-
ture rasterization. We learn per-point Spherical Harmonic coefficients, interpo-
lated via the barycentric coordinates of the ray-face intersection.

3.2 Anisotropic Features

Novel view synthesis entails learning scene radiance functions as perceived ap-
pearance can vary according to the viewing angle. While the neural point descrip-
tors in NPBG [2] are not view direction dependent per se, the neural rendering
convolutional network could in theory model such view-dependency, even with-
out taking the camera parameters of the target view explicitly as input. That is,
the spatial disposition and neighborhood of these rasterized descriptors in image
domain depends on the target view. However, incorporating view dependency
in the geometry descriptors by design is bound to improve this aspect within
such novel view synthesis strategy. Hence, we define anisotropic neural point
descriptors in this work, and we implement this idea efficiently using Spher-
ical Harmonics (SH). Spherical Harmonics have been long used as a popular
low-dimensional representation for spherical functions to model e.g. Lambertian
surfaces [4, 38] or even glossy surfaces [51]. They have been also recently in-
troduced as a means of alleviating the computational complexity of volumetric
rendering of implicit neural radiance fields (NeRFs) [62].

We adapt our point descriptors to auto-decode Spherical Harmonic coeffi-
cients rather than point features directly. Reformulating our earlier definition, a
descriptor for a point (i.e. vertex) p can be expressed now as the set of coeffi-
cients:

K(p) =
(
kl,mp

)−l≤m≤l

0≤l≤lmax
, (7)

where kl,m ∈ R8, 8 being the desired final feature dimension. We use 3 SH bands
hence lmax = 2.

Evaluating a view dependent point feature consists of linearly combining the
Spherical Harmonic basis functions Φm

l : [0, 2π]2 → R evaluated at the viewing

angle corresponding to a viewing direction d⃗. The rasterized point feature at
pixel (u, v), as introduced in equation 3, can thus be finally expressed as:

kptu,v = wu,v ×
∑
l

∑
m

kl,mpu,v
Φm
l (d⃗). (8)

8 S. Jena et al.

Fig. 4: COLMAP [44,45] geometry for scene “Truck” of Tanks and Temples [22].
Left: Point cloud. Right: Mesh.

We recall that in concordance with definitions in the previous section (3.1), pu,v
is the point-rasterized vertex at location (u, v).

Similarly, the rasterized mesh feature at pixel (u, v), as introduced in equation
6, can be expressed as:

kmesh
u,v =

∑
l

∑
m

(αkl,mpi
+ βkl,mpj

+ γkl,mpk
)Φm

l (d⃗). (9)

Here again, (pi, pj , pk) is the triangle rasterized at pixel (u, v), and α, β, γ are
the barycentric coordinates of the ray intersection with that triangle. Figure 3
illustrates the former equation.

We note the the view direction d⃗ for a pixel (u, v) can be expressed as a
function of the target camera parameters as follows:

d⃗ = RK−1

u
v
1

+ T. (10)

The rasterized view-dependent feature images (ku,v =
[
kptu,v, k

mesh
u,v

]
) are sub-

sequently fed to a U-Net [43] based convolutional renderer to obtain the final
novel rendered images. We will be detailing upon this neural renderer next.

3.3 Split Neural Rendering

Upon observing the geometry obtained from running COLMAP [44, 45], espe-
cially on large unbounded scenes, such as the scenes in the Tanks and Temples
dataset [22], the reconstruction is considerably more dense, detailed and precise
for the main central area of interest where most cameras are pointing, as can be
seen in Figure 4. The remaining of the scene geometry is sparse and less accu-
rate. Hence, we argue that feature images rasterized from these foreground and
background areas lie in two relatively separate domains, as the former is richer
and more accurate than the latter.

As such, we propose to split the proxy geometry into a foreground and back-
ground sub-meshes (c.f. Figure 1). The split is automatically performed following

Neural Mesh-Based Graphics 9

Fig. 5: Left: Foreground rasterization. Right: background rasterization. Top row:
Mesh based rasterization. Bottom row: Point based rasterization. We visualize
feature PCA coefficients.

NeRF++ [65]. Essentially, the center of the foreground sphere is approximated
as the average camera position (T̄), and its radius is set as 1.1 times the distance
from this center to the furthest camera: rfg = max(||T − T̄ ||2). We separately
rasterize the features from both areas (c.f. Figure 5), and we process these fore-
ground and background feature images with two separate yet identical encoders,
focusing each on processing feature images from their respective domains. While
there are 2 separate encoders, the features share a single decoder with skip con-
nections coming in from both encoders. Other than these aspects, our neural
renderer follows the multi-scale architecture in NPBG [2].

3.4 Hybrid Training Objective

We experiment with a mix of supervised and self-supervised losses for training
our method: L = Lrec + LGAN. The loss is used to perform gradient descent on
the parameters θ of the neural renderer fθ and the scene point descriptors K
jointly.

Supervised loss The supervised loss follows the perceptual reconstruction loss
in NPBG [2], where we urge the network to reproduce the available groundtruth
images (Igt) in feature space, i.e.:

Lrec =
∑
l

||Ψl(fθ({ku,v}))− Ψl(Igt)||1. (11)

fθ({ku,v}) is the output image from our network using rasterized features {ku,v}.
Ψl represents the lth feature map from a pretrained VGG19 network [47], where
l ∈ {’conv1 2’,’conv2 2’,’conv3 2’, ’conv4 2’,’conv5 2’}.

Unsupervised loss We introduce a GAN [14] loss to encourage the photo-
realism of the generated images and also improve generalization outside the

10 S. Jena et al.

training camera view-points. Specifically, with our entire model so far being the
generator, we use a discriminator based on the DCGAN [36] model. Besides
sampling from the training cameras, we additionally sample artificial views fol-
lowing RegNeRF [31]. We note that for these augmented views we do not have
a target ground-truth image, and hence only the GAN loss is back-propagated.
To obtain the sample space of camera matrices, we assume that all cameras
roughly focus on a central scene point T̄ , as described in Section 3.3. The
camera positions T̃ are sampled using a spherical coordinate system as fol-
lows: T̃ = T̄ + r̃[sin θ sinϕ, cos θ, sin θ cosϕ], where r̃ is sampled uniformly in
[0.6rfg, rfg], rfg being the foreground radius as defined in Section 3.3. ϕ is sam-
pled uniformly in [0, 2π]. θ is sampled uniformly around the mean training cam-
era elevation within ± 1.5 its standard deviation. For a given camera position,
the camera rotation is defined using the camera “look-at” function, using target
point T̄ and the up axis of the scene.

4 Results

Datasets To demonstrate the effectiveness of our approach for novel view syn-
thesis in the context of large unbounded scenes, we choose the Tanks and Tem-
ples dataset [22]. It consists of images in Full HD resolution captured by a
high-end video camera. COLMAP [44,45] is used to reconstruct the initial dense
meshes/point clouds as well as to obtain the camera extrinsics and intrinsics for
each scene. For quantitative evaluation, we follow the protocol in FVS [41] and
SVS [42]. 17 of the 21 scenes are used for training and for the rest of the scenes,
i.e., “Truck”, “Train”, “M60”, and “Playground”, the images are divided into a
fine-tuning set and a test set. We also compare our method to prior approaches
on the DTU [1] dataset, which consists of over 100 tabletop scenes, with the
camera poses being identical for all scenes. DTU [1] scenes are captured with a
regular camera layout, which includes either 49 or 64 images with a resolution
of 1200× 1600 and their corresponding camera poses, taken from an octant of a
sphere. We use scenes 65, 106 and 118 for fine-tuning and testing purposes and
the others are used for training. For scenes 65, 106 and 118, of the total number
of images and their corresponding camera poses, 10 are selected as the testing
set for novel view synthesis and the rest are used for fine-tuning.

Training procedures We perform two types of training. In full training, we
follow FVS [41] and SVS [42] and jointly optimize the point neural descriptors of
the training scenes along with the neural renderer. To test on a scene, we use the
pretrained neural renderer and fine-tune it while learning the point descriptors
of that scene, using the fine-tuning split. In single scene training, we perform
the latter without pretraining the neural renderer.

For single scene trainings, we train our network for 100 epochs regardless of
the scene. For full training, we pretrain our neural renderer for 15 epochs on
all training scenes followed by fine-tuning the entire network for 100 epochs as
before on specific scenes. For all our experiments, we use a batch size of 1 with

Neural Mesh-Based Graphics 11

(a) Ours (b) SVS [42] (c) NeRF++ [65] (d) GT

Fig. 6: Qualitative comparison on Tanks and Temples [22].

Adam [21] optimizer, and learning rates of 10−1 and 10−4 for the point neural
descriptors and the neural renderer respectively.

Methods Truck M60 Playground Train
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

LLFF [28] 10.78 0.454 60.62 8.98 0.431 71.76 14.40 0.578 53.93 9.15 0.384 67.40
EVS [8] 14.22 0.527 43.52 7.41 0.354 75.71 14.72 0.568 46.85 10.54 0.378 67.62

NeRF [29] 20.85 0.738 50.74 16.86 0.701 60.89 21.55 0.759 52.19 16.64 0.627 64.64
NeRF++ [65] 22.77 0.814 30.04 18.49 0.747 43.06 22.93 0.806 38.70 17.77 0.681 47.75

FVS [41] 22.93 0.873 13.06 16.83 0.783 30.70 22.28 0.846 19.47 18.09 0.773 24.74
SVS [42] 23.86 0.895 9.34 19.97 0.833 20.45 23.72 0.884 14.22 18.69 0.820 15.73

NPBG [2] 21.88 0.877 15.04 12.35 0.716 35.57 23.03 0.876 16.65 18.08 0.801 25.48
Ours (Single) 23.88 0.883 17.41 19.34 0.810 24.13 23.38 0.865 23.34 17.35 0.788 23.66
Ours (Full) 24.03 0.888 16.84 19.54 0.815 23.15 23.59 0.870 22.72 17.78 0.799 24.17

Table 1: Quantitative comparison on Tanks and Temples [22]. Deeper shades
represent better performance.

Metrics We report our performance for view synthesis, in line with previous
seminal work, using three image fidelity metrics, namely Peak signal-to-noise
ratio (PSNR), structural similarity (SSIM) [58] and learned perceptual image
patch similarity (LPIPS) [66].

Quantitative comparison For our method, we show both single scene train-
ing (Ours (Single)) and full dataset training (Our (Full)) results. We relay the
performances of methods [2, 8, 28,29,41,42,65] as reported in SVS [42].

Table 1 shows a quantitative comparison of our method with the recent state-
of-the-art on Tanks and Temples [22]. Most methods underperform on these chal-

12 S. Jena et al.

(a) Ours (Full) (b) Ours (Single) (c) NPBG [2] (Full) (d) NPBG [2] (Single)

Fig. 7: Qualitative comparison on DTU [1].

Methods 65 106 118
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

LLFF [28] 22.48/22.07 0.935/0.921 9.38/12.71 24.10/24.63 0.900/0.886 13.26/13.57 28.99/27.42 0.928/0.922 9.69/10.99
EVS [8] 23.26/14.43 0.942/0.848 7.94/22.11 20.21/11.15 0.902/0.743 14.91/29.57 23.35/12.06 0.928/0.793 10.84/25.01

NeRF [29] 32.00/28.12 0.984/0.963 3.04/8.54 34.45/30.66 0.975/0.957 7.02/10.14 37.36/31.66 0.985/0.967 4.18/6.92
FVS [41] 30.44/25.32 0.984/0.961 2.56/7.17 32.96/27.56 0.979/0.950 2.96/6.57 35.64/29.54 0.985/0.963 1.95/6.31
SVS [42] 32.13/26.82 0.986/0.964 1.70/5.61 34.30/30.64 0.983/0.965 1.93/3.69 37.27/31.44 0.988/0.967 1.30/4.26

NPBG [2] 16.74/15.44 0.889/0.873 14.30/19.45 19.62/20.26 0.847/0.842 18.90/21.13 23.81/24.14 0.867/0.879 15.22/16.88
Ours (Single) 26.78/20.85 0.957/0.925 9.64/12.91 29.98/25.40 0.931/0.909 12.75/13.70 31.43/26.52 0.946/0.931 11.73/11.13
Ours (Full) 28.98/22.90 0.970/0.943 7.15/11.13 30.67/25.75 0.939/0.917 12.10/13.10 32.39/27.97 0.956/0.941 10.62/10.07

Table 2: Quantitative comparison on DTU [1]. Left/Right: View interpola-
tion/extrapolation. Deeper shades represent better performance.

lenging large unbounded scenes apart from NPBG [2], FVS [41] and SVS [42].
Although they could achieve promising results with only single scene training,
methods based on volumetric neural rendering (NeRF [29] and NeRF++ [65])
are famously computationally expensive to train and render. Even by training
on a single scene only, our method outperforms NPBG [2] in almost all scenes.
We note that the neural renderer of NPBG [2] here was pretrained on Scan-
Net dataset [9]. Our method produces competitive results with respect to the
best performing methods on this benchmark, i.e. FVS [41] and SVS [42]. It is
interesting to observe in particular that with merely single scene training, our
method outperforms the state-of-the-art SVS on scene “Truck”, while coming
as a close second in almost all other scenes in PSNR and SSIM [58]. FVS [41]
and SVS [42] perform exceedingly well in all metrics but require training on the
entire dataset, with a considerably larger training time than our single scene
training. In particular, their lower LPIPS values could be attributed to the use
of a considerably deeper neural renderer than ours, consisting of 9 consecutive
U-Nets [43]. Ours is a much lighter single U-Net [43].

Table 2 reports quantitative comparison on the DTU [1] dataset. We use
the view interpolation and extrapolation setting, as adopted by SVS [42] and

Neural Mesh-Based Graphics 13

Fig. 8: Red, Blue and Green histograms for images in the “Truck” scene of Tanks
and Temples [22] for our method, SVS [42] and the groundtruth.

FVS [41] for a fair comparison with other methods. The setting comprises of 6
central cameras to evaluate view interpolation and 4 corner cameras to evaluate
view extrapolation. As has been observed from the experiments conducted in
SVS [42], LLFF [28] and EVS [8] perform decently on DTU [1], while NeRF [29],
FVS [41] and SVS [42] excel on it. NPBG [2], on the other hand, performs very
poorly due to lack of data per scene (approximately 39 images) making the
point feature autodecoding less efficient. Our method, despite using point feature
autodecoding equally, gains considerably on NPBG [2] and performs relatively
close to FVS [41]. Again, as observed for the Tanks and Temples [22] dataset, our
method is able to rapidly train for a single scene and perform relatively well, and
close to methods which have been trained and finetuned on the entire dataset
such as FVS [41] and SVS [42], which makes it very practical in the sense that
it is able to achieve reasonable results with limited training time and data.

Qualitative comparison Qualitative results on Tanks and Temples [22] of
some of the competitive contemporary methods are summarized in Figure 6. In
general, we notice that SVS [42] excels in the synthesis quality of the novel views.
This is also reflected in the LPIPS [66] metric, where SVS [42] performs better
than the competition. NeRF++ [65] on the other hand tends to underperform
and produces blurs and artifacts, particularly if we look at the results of the
“M60” and “Train” scenes.

Although SVS [42] performs well overall, especially in background regions, it
tends to display an unnatural “smoothing effect” on the image in certain regions,
such as the rocks indicated in the “Train” scene or in the track of the tank in the
“M60” scene. We suspect that this is due to their neural renderer which contains
9 consecutive U-Nets [43], which might cause the view-dependent feature tensor
to be oversmoothed. Furthermore, SVS [42] results sometimes contain major ar-
tifacts like holes, missing structures or transparent parts in certain regions, such
as the ones indicated in the “M60”, “Truck” and “Playground” scenes respec-
tively in Figure 6. Another potential issue that we observed was an apparent
color shift in some of the results of SVS [42]. To investigate this, we plot sepa-
rate color histograms of the synthesized outputs of SVS [42], our method and the
target images for the “Truck” scene in Figure 8. We notice in this figure that the
histogram of the images synthesized by our method matches that of the target
images more closely than those synthesized by SVS [42]. Overall, our method
tends to display less of the color shifts and holes/artifacts that SVS [42] seems to
exhibit despite lower scores with respect to the evaluation metrics, particularly
for LPIPS [66].

14 S. Jena et al.

Methods Truck M60 Playground Train
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

Original NPBG 21.55 0.807 27.58 17.48 0.757 33.39 22.26 0.808 28.79 16.08 0.697 34.58
Bigger radius 22.26 0.832 23.55 18.76 0.784 28.73 22.61 0.821 26.62 16.15 0.717 30.89
With mesh 22.70 0.850 20.76 19.95 0.811 24.26 22.78 0.838 25.22 15.75 0.730 29.01
Dir. features 23.40 0.872 18.57 19.26 0.810 24.05 23.27 0.857 24.42 17.13 0.782 24.79
Split scene 23.64 0.880 17.99 19.03 0.812 24.04 23.32 0.865 23.11 17.37 0.787 24.13

Ours (Single) 23.88 0.883 17.41 19.34 0.810 24.13 23.38 0.865 23.34 17.35 0.788 23.66

Table 3: Quantitative ablation on Tanks and Temples [22]. Best/second best perfor-
mances are emboldened/underlined respectively.

Next, we present some qualitative results on DTU [1] in Figure 7. We notice
that compared to NPBG [2] which generates very poor quality novel views (both
for single-scene finetuning and full training) presumably due to lack of adequate
training data, our method offers way better visual results which we believe is due
to a denser input feature image fed to the neural renderer, on account of point
based rasterization with bigger radius and the mesh based rasterization. In fact,
our method, with just single-scene finetuning performs better than NPBG [2]
even when fully trained, which is also supported by the quantitative results
presented in Table 2.

Ablation studies In this section, we conduct an ablative analysis to justify the
choice of our final architecture. We ablate in the single-scene training scenario
using all testing scenes of Tanks and Temples [22]. We progressively add compo-
nents to our baseline architecture (i.e. NPBG [2]) until we reach our final model
to demonstrate their individual contributions to our performance. The results
are summarized in Table 3. “Original NPBG” is NPBG [2] in the single-scene set-
ting. “Bigger radius” is the “Original NPBG” with a bigger rasterization radius
as discussed in Section 3.1, as opposed to NPBG [2] which has a rasterization
radius of half a pixel. “With mesh” includes the mesh rasterized and interpo-
lated feature image mentioned in Section 3.1. These two previous components
lead to denser feature images. “Directional features” incorporates view depen-
dency in the geometry descriptors using Spherical Harmonics (SH) as discussed
in Section 3.2, while “Split scene” splits the proxy geometry into foreground and
background, rasterizes and encodes each features separately. Our final model
uses an additional GAN [14] loss during training as described in Section 3.4.
Overall throughout all scenes, the numbers witness the consistent improvement
brought by the various components.

5 Conclusion

We improved in this work on the Neural Point Based Graphics (i.e. NPBG [2])
model for novel view synthesis, by providing a new data-efficient version that can
achieve superior results by training solely on a single scene. SVS [42] still pro-
duces Superior LPIPS [66] synthesis performance. As future work, we will inves-
tigate and improve on this aspect of our method, while attempting to maintain
memory and compute efficiency.

Neural Mesh-Based Graphics 15

References

1. Aanæs, H., Jensen, R.R., Vogiatzis, G., Tola, E., Dahl, A.B.: Large-scale data for
multiple-view stereopsis. International Journal of Computer Vision 120(2), 153–
168 (2016) 1, 2, 10, 12, 13, 14

2. Aliev, K.A., Sevastopolsky, A., Kolos, M., Ulyanov, D., Lempitsky, V.: Neural
point-based graphics. In: European Conference on Computer Vision. pp. 696–712.
Springer (2020) 1, 2, 3, 4, 5, 7, 9, 11, 12, 13, 14

3. Barron, J.T., Mildenhall, B., Tancik, M., Hedman, P., Martin-Brualla, R., Srini-
vasan, P.P.: Mip-nerf: A multiscale representation for anti-aliasing neural radiance
fields. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision. pp. 5855–5864 (2021) 3

4. Basri, R., Jacobs, D.W.: Lambertian reflectance and linear subspaces. IEEE trans-
actions on pattern analysis and machine intelligence 25(2), 218–233 (2003) 7

5. Buehler, C., Bosse, M., McMillan, L., Gortler, S., Cohen, M.: Unstructured lu-
migraph rendering. In: Proceedings of the 28th annual conference on Computer
graphics and interactive techniques. pp. 425–432 (2001) 2

6. Chen, A., Xu, Z., Zhao, F., Zhang, X., Xiang, F., Yu, J., Su, H.: Mvsnerf: Fast
generalizable radiance field reconstruction from multi-view stereo. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision. pp. 14124–14133
(2021) 3

7. Chen, S.E., Williams, L.: View interpolation for image synthesis. In: Proceedings
of the 20th annual conference on Computer graphics and interactive techniques.
pp. 279–288 (1993) 2

8. Choi, I., Gallo, O., Troccoli, A., Kim, M.H., Kautz, J.: Extreme view synthesis.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision.
pp. 7781–7790 (2019) 3, 11, 12, 13

9. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: Scannet:
Richly-annotated 3d reconstructions of indoor scenes. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. pp. 5828–5839 (2017) 1,
2, 12

10. Davis, A., Levoy, M., Durand, F.: Unstructured light fields. In: Computer Graphics
Forum. vol. 31, pp. 305–314. Wiley Online Library (2012) 2

11. Debevec, P.E., Taylor, C.J., Malik, J.: Modeling and rendering architecture from
photographs: A hybrid geometry-and image-based approach. In: Proceedings of
the 23rd annual conference on Computer graphics and interactive techniques. pp.
11–20 (1996) 2

12. Flynn, J., Neulander, I., Philbin, J., Snavely, N.: Deepstereo: Learning to predict
new views from the world’s imagery. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. pp. 5515–5524 (2016) 3

13. Garbin, S.J., Kowalski, M., Johnson, M., Shotton, J., Valentin, J.: Fastnerf: High-
fidelity neural rendering at 200fps. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. pp. 14346–14355 (2021) 3

14. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural infor-
mation processing systems 27 (2014) 9, 14

15. Gortler, S.J., Grzeszczuk, R., Szeliski, R., Cohen, M.F.: The lumigraph. In: Pro-
ceedings of the 23rd annual conference on Computer graphics and interactive tech-
niques. pp. 43–54 (1996) 2

16 S. Jena et al.

16. Hedman, P., Philip, J., Price, T., Frahm, J.M., Drettakis, G., Brostow, G.: Deep
blending for free-viewpoint image-based rendering. ACM Transactions on Graphics
(TOG) 37(6), 1–15 (2018) 2

17. Hedman, P., Srinivasan, P.P., Mildenhall, B., Barron, J.T., Debevec, P.: Bak-
ing neural radiance fields for real-time view synthesis. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. pp. 5875–5884 (2021)
1

18. Jain, A., Tancik, M., Abbeel, P.: Putting nerf on a diet: Semantically consistent
few-shot view synthesis. In: Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision. pp. 5885–5894 (2021) 3

19. Kalantari, N.K., Wang, T.C., Ramamoorthi, R.: Learning-based view synthesis for
light field cameras. ACM Transactions on Graphics (TOG) 35(6), 1–10 (2016) 3

20. Kar, A., Häne, C., Malik, J.: Learning a multi-view stereo machine. Advances in
neural information processing systems 30 (2017) 3

21. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014) 11

22. Knapitsch, A., Park, J., Zhou, Q.Y., Koltun, V.: Tanks and temples: Benchmarking
large-scale scene reconstruction. ACM Transactions on Graphics (ToG) 36(4), 1–13
(2017) 1, 2, 8, 10, 11, 13, 14

23. Kopf, J., Cohen, M.F., Szeliski, R.: First-person hyper-lapse videos. ACM Trans-
actions on Graphics (TOG) 33(4), 1–10 (2014) 2

24. Levoy, M., Hanrahan, P.: Light field rendering. In: Proceedings of the 23rd annual
conference on Computer graphics and interactive techniques. pp. 31–42 (1996) 2

25. Li, Q., Multon, F., Boukhayma, A.: Learning generalizable light field networks
from few images. arXiv preprint arXiv:2207.11757 (2022) 1

26. Liu, L., Gu, J., Zaw Lin, K., Chua, T.S., Theobalt, C.: Neural sparse voxel fields.
Advances in Neural Information Processing Systems 33, 15651–15663 (2020) 3

27. Meshry, M., Goldman, D.B., Khamis, S., Hoppe, H., Pandey, R., Snavely, N.,
Martin-Brualla, R.: Neural rerendering in the wild. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 6878–
6887 (2019) 3, 4

28. Mildenhall, B., Srinivasan, P.P., Ortiz-Cayon, R., Kalantari, N.K., Ramamoorthi,
R., Ng, R., Kar, A.: Local light field fusion: Practical view synthesis with pre-
scriptive sampling guidelines. ACM Transactions on Graphics (TOG) 38(4), 1–14
(2019) 11, 12, 13

29. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng,
R.: Nerf: Representing scenes as neural radiance fields for view synthesis. In: Eu-
ropean conference on computer vision. pp. 405–421. Springer (2020) 1, 2, 3, 11,
12, 13

30. Niemeyer, M., Barron, J.T., Mildenhall, B., Sajjadi, M.S., Geiger, A., Radwan, N.:
Regnerf: Regularizing neural radiance fields for view synthesis from sparse inputs.
arXiv preprint arXiv:2112.00724 (2021) 3

31. Niemeyer, M., Barron, J.T., Mildenhall, B., Sajjadi, M.S., Geiger, A., Radwan, N.:
Regnerf: Regularizing neural radiance fields for view synthesis from sparse inputs.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 5480–5490 (2022) 10

32. Niemeyer, M., Mescheder, L., Oechsle, M., Geiger, A.: Differentiable volumetric
rendering: Learning implicit 3d representations without 3d supervision. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion. pp. 3504–3515 (2020) 2

Neural Mesh-Based Graphics 17

33. Ouasfi, A., Boukhayma, A.: Few’zero level set’-shot learning of shape signed dis-
tance functions in feature space. arXiv preprint arXiv:2207.04161 (2022) 3

34. Pittaluga, F., Koppal, S.J., Kang, S.B., Sinha, S.N.: Revealing scenes by inverting
structure from motion reconstructions. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition. pp. 145–154 (2019) 3

35. Prokudin, S., Black, M.J., Romero, J.: Smplpix: Neural avatars from 3d human
models. In: Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision. pp. 1810–1819 (2021) 1

36. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434
(2015) 10

37. Raj, A., Tanke, J., Hays, J., Vo, M., Stoll, C., Lassner, C.: Anr: Articulated neural
rendering for virtual avatars. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR). pp. 3722–3731 (June 2021) 1

38. Ramamoorthi, R., Hanrahan, P.: On the relationship between radiance and irra-
diance: determining the illumination from images of a convex lambertian object.
JOSA A 18(10), 2448–2459 (2001) 7

39. Ravi, N., Reizenstein, J., Novotny, D., Gordon, T., Lo, W.Y., Johnson, J., Gkioxari,
G.: Accelerating 3d deep learning with pytorch3d. arXiv preprint arXiv:2007.08501
(2020) 4, 5, 6

40. Reiser, C., Peng, S., Liao, Y., Geiger, A.: Kilonerf: Speeding up neural radiance
fields with thousands of tiny mlps. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. pp. 14335–14345 (2021) 3

41. Riegler, G., Koltun, V.: Free view synthesis. In: European Conference on Computer
Vision. pp. 623–640. Springer (2020) 1, 2, 3, 5, 10, 11, 12, 13

42. Riegler, G., Koltun, V.: Stable view synthesis. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 12216–12225 (2021)
1, 2, 3, 5, 10, 11, 12, 13, 14

43. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedi-
cal image segmentation. In: International Conference on Medical image computing
and computer-assisted intervention. pp. 234–241. Springer (2015) 4, 8, 12, 13

44. Schonberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. pp. 4104–4113
(2016) 3, 4, 5, 8, 10

45. Schönberger, J.L., Zheng, E., Frahm, J.M., Pollefeys, M.: Pixelwise view selection
for unstructured multi-view stereo. In: European Conference on Computer Vision.
pp. 501–518. Springer (2016) 3, 4, 5, 8, 10

46. Seitz, S.M., Dyer, C.R.: View morphing. In: Proceedings of the 23rd annual con-
ference on Computer graphics and interactive techniques. pp. 21–30 (1996) 2

47. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014) 9

48. Sitzmann, V., Chan, E.R., Tucker, R., Snavely, N., Wetzstein, G.: Metasdf: Meta-
learning signed distance functions. In: NeurIPS (2020) 3

49. Sitzmann, V., Rezchikov, S., Freeman, B., Tenenbaum, J., Durand, F.: Light field
networks: Neural scene representations with single-evaluation rendering. Advances
in Neural Information Processing Systems 34, 19313–19325 (2021) 1

50. Sitzmann, V., Zollhöfer, M., Wetzstein, G.: Scene representation networks: Con-
tinuous 3d-structure-aware neural scene representations. Advances in Neural In-
formation Processing Systems 32 (2019) 3

18 S. Jena et al.

51. Sloan, P.P., Kautz, J., Snyder, J.: Precomputed radiance transfer for real-time
rendering in dynamic, low-frequency lighting environments. In: Proceedings of the
29th annual conference on Computer graphics and interactive techniques. pp. 527–
536 (2002) 3, 7

52. Song, Z., Chen, W., Campbell, D., Li, H.: Deep novel view synthesis from colored
3d point clouds. In: European Conference on Computer Vision. pp. 1–17. Springer
(2020) 3, 4

53. Thies, J., Zollhöfer, M., Nießner, M.: Deferred neural rendering: Image synthesis
using neural textures. ACM Transactions on Graphics (TOG) 38(4), 1–12 (2019)
1, 2, 3

54. Thies, J., Zollhöfer, M., Theobalt, C., Stamminger, M., Nießner, M.: Ignor: Image-
guided neural object rendering. arXiv preprint arXiv:1811.10720 (2018) 2, 3

55. Trevithick, A., Yang, B.: Grf: Learning a general radiance field for 3d representa-
tion and rendering. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision. pp. 15182–15192 (2021) 3

56. Wang, P., Liu, L., Liu, Y., Theobalt, C., Komura, T., Wang, W.: Neus: Learning
neural implicit surfaces by volume rendering for multi-view reconstruction. arXiv
preprint arXiv:2106.10689 (2021) 1

57. Wang, Q., Wang, Z., Genova, K., Srinivasan, P.P., Zhou, H., Barron, J.T., Martin-
Brualla, R., Snavely, N., Funkhouser, T.: Ibrnet: Learning multi-view image-based
rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. pp. 4690–4699 (2021) 3

58. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment:
from error visibility to structural similarity. IEEE transactions on image processing
13(4), 600–612 (2004) 2, 11, 12

59. Wizadwongsa, S., Phongthawee, P., Yenphraphai, J., Suwajanakorn, S.: Nex: Real-
time view synthesis with neural basis expansion. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 8534–8543 (2021) 3

60. Wu, M., Wang, Y., Hu, Q., Yu, J.: Multi-view neural human rendering. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
pp. 1682–1691 (2020) 1

61. Yariv, L., Gu, J., Kasten, Y., Lipman, Y.: Volume rendering of neural implicit
surfaces. Advances in Neural Information Processing Systems 34, 4805–4815 (2021)
1

62. Yu, A., Li, R., Tancik, M., Li, H., Ng, R., Kanazawa, A.: Plenoctrees for real-time
rendering of neural radiance fields. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. pp. 5752–5761 (2021) 1, 3, 7

63. Yu, A., Ye, V., Tancik, M., Kanazawa, A.: pixelnerf: Neural radiance fields from
one or few images. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 4578–4587 (2021) 3

64. Zakharkin, I., Mazur, K., Grigorev, A., Lempitsky, V.: Point-based modeling of
human clothing. In: Proceedings of the IEEE/CVF International Conference on
Computer Vision. pp. 14718–14727 (2021) 1

65. Zhang, K., Riegler, G., Snavely, N., Koltun, V.: Nerf++: Analyzing and improving
neural radiance fields. arXiv preprint arXiv:2010.07492 (2020) 9, 11, 12, 13

66. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable
effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. pp. 586–595 (2018) 2, 11,
13, 14

Neural Mesh-Based Graphics 19

67. Zhou, T., Brown, M., Snavely, N., Lowe, D.G.: Unsupervised learning of depth and
ego-motion from video. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. pp. 1851–1858 (2017) 3

68. Zhou, T., Tucker, R., Flynn, J., Fyffe, G., Snavely, N.: Stereo magnification: Learn-
ing view synthesis using multiplane images. arXiv preprint arXiv:1805.09817 (2018)
3

69. Zitnick, C.L., Kang, S.B., Uyttendaele, M., Winder, S., Szeliski, R.: High-quality
video view interpolation using a layered representation. ACM transactions on
graphics (TOG) 23(3), 600–608 (2004) 2

Neural Mesh-Based Graphics
– Supplementary Material –

Shubhendu Jena, Franck Multon, Adnane Boukhayma

Inria, Univ. Rennes, CNRS, IRISA, M2S, France

1 Additional qualitative results

Results on Tanks and Temples [3]: Figures 1, 2, 3, 4 show additional novel
view synthesis qualitative results of our method for more test views on the Tanks
and Temples [3] dataset, not seen during training.

Results on DTU [1]: Figures 5, 6, 7 show additional novel view synthesis
qualitative results of our method for more test views on the DTU [1] dataset,
not seen during training.

2 Additional qualitative comparisons

Comparison on Tanks and Temples [3]: Figure 8 shows additional novel
view synthesis qualitative result comparison between our method for more test
views on the Tanks and Temples [3] dataset, not seen during training against
SVS [4] and NeRF++ [5].

Comparison on DTU [1]: Figure 9 shows additional novel view synthesis
qualitative result comparison between our method for more test views on the
DTU [1] dataset, not seen during training against SVS [4] and NeRF++ [5].

2 S. Jena et al.

Fig. 1: Additional results on “Truck” scene of the Tanks and Temples [3] dataset.

Fig. 2: Additional results on “M60” scene of the Tanks and Temples [3] dataset.

Neural Mesh-Based Graphics – Supplementary Material – 3

Fig. 3: Additional results on “Playground” scene of the Tanks and Temples [3]
dataset.

Fig. 4: Additional results on “Train” scene of the Tanks and Temples [3] dataset.

4 S. Jena et al.

Fig. 5: Additional results on scene “65” of the DTU [1] dataset.

Fig. 6: Additional results on scene “106” of the DTU [1] dataset.

Fig. 7: Additional results on scene “118” of the DTU [1] dataset.

Neural Mesh-Based Graphics – Supplementary Material – 5

(a) Ours (b) SVS [4] (c) NeRF++ [5] (d) GT

Fig. 8: Additional qualitative comparisons on Tanks and Temples [3].

(a) Ours (Full) (b) Ours (Single) (c) NPBG [2] (Full) (d) NPBG [2] (Single)

Fig. 9: Additional qualitative comparisons on DTU [1].

6 S. Jena et al.

References

1. Aanæs, H., Jensen, R.R., Vogiatzis, G., Tola, E., Dahl, A.B.: Large-scale data for
multiple-view stereopsis. International Journal of Computer Vision 120(2), 153–168
(2016) 1, 4, 5

2. Aliev, K.A., Sevastopolsky, A., Kolos, M., Ulyanov, D., Lempitsky, V.: Neural point-
based graphics. In: European Conference on Computer Vision. pp. 696–712. Springer
(2020) 5

3. Knapitsch, A., Park, J., Zhou, Q.Y., Koltun, V.: Tanks and temples: Benchmarking
large-scale scene reconstruction. ACM Transactions on Graphics (ToG) 36(4), 1–13
(2017) 1, 2, 3, 5

4. Riegler, G., Koltun, V.: Stable view synthesis. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 12216–12225 (2021)
1, 5

5. Zhang, K., Riegler, G., Snavely, N., Koltun, V.: Nerf++: Analyzing and improving
neural radiance fields. arXiv preprint arXiv:2010.07492 (2020) 1, 5

