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Abstract

The performance of Japanese predicate ar-

gument structure (PAS) analysis has im-

proved in recent years thanks to the joint

modeling of interactions between multi-

ple predicates. However, this approach re-

lies heavily on syntactic information pre-

dicted by parsers, and suffers from error

propagation. To remedy this problem, we

introduce a model that uses grid-type re-

current neural networks. The proposed

model automatically induces features sen-

sitive to multi-predicate interactions from

the word sequence information of a sen-

tence. Experiments on the NAIST Text

Corpus demonstrate that without syntactic

information, our model outperforms previ-

ous syntax-dependent models.

1 Introduction

Predicate argument structure (PAS) analysis is a

basic semantic analysis task, in which systems are

required to identify the semantic units of a sen-

tence, such as who did what to whom. In pro-

drop languages such as Japanese, Chinese and

Italian, arguments are often omitted in text, and

such argument omission is regarded as one of

the most problematic issues facing PAS analy-

sis (Iida and Poesio, 2011; Sasano and Kurohashi,

2011; Hangyo et al., 2013).

In response to the argument omission prob-

lem, in Japanese PAS analysis, a joint model of

the interactions between multiple predicates has

been gaining popularity and achieved the state-of-

the-art results (Ouchi et al., 2015; Shibata et al.,

2016). This approach is based on the linguistic in-

tuition that the predicates in a sentence are seman-

tically related to each other, and capturing this re-

lation can be useful for PAS analysis. In the exam-

Figure 1: Example of Japanese PAS. The upper

edges denote dependency relations, and the lower

edges denote case arguments. “NOM” and “ACC”

denote the nominative and accusative arguments,

respectively. “ϕi” is a zero pronoun, referring to

the antecedent “男 i (mani)”.

ple sentence in Figure 1, the word “男 i (mani)” is

the accusative argument of the predicate “逮捕し
た (arrested)” and is shared by the other predicate

“逃走した (escaped)” as its nominative argument.

Considering the semantic relation between “逮捕
した (arrested)” and “逃走した (escaped)”, we in-

tuitively know that the person arrested by someone

is likely to be the escaper. That is, information

about one predicate-argument relation could help

to identify another predicate-argument relation.

However, to model such multi-predicate inter-

actions, the joint approach in the previous stud-

ies relies heavily on syntactic information, such

as part-of-speech (POS) tags and dependency re-

lations predicted by POS taggers and syntactic

parsers. Consequently, it suffers from error propa-

gation caused by pipeline processing.

To remedy this problem, we propose a neural

model which automatically induces features sen-

sitive to multi-predicate interactions exclusively

from the word sequence information of a sentence.

The proposed model takes as input all predicates

and their argument candidates in a sentence at

a time, and captures the interactions using grid-

type recurrent neural networks (Grid-RNN) with-

out syntactic information.
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Figure 2: Overview of neural models: (i) single-sequence and (ii) multi-sequence models.

In this paper, we first introduce a basic model

that uses RNNs. This model independently es-

timates the arguments of each predicate without

considering multi-predicate interactions (Sec. 3).

Then, extending this model, we propose a neural

model that uses Grid-RNNs (Sec. 4).

Performing experiments on the NAIST Text

Corpus (Iida et al., 2007), we demonstrate that

even without syntactic information, our neu-

ral models outperform previous syntax-dependent

models (Imamura et al., 2009; Ouchi et al., 2015).

In particular, the neural model using Grid-RNNs

achieved the best result. This suggests that

the proposed grid-type neural architecture effec-

tively captures multi-predicate interactions and

contributes to performance improvements. 1

2 Japanese Predicate Argument

Structure Analysis

2.1 Task Description

In Japanese PAS analysis, arguments are identi-

fied that each fulfills one of the three major case

roles, nominative (NOM), accusative (ACC) and da-

tive (DAT) cases, for each predicate. Arguments

can be divided into the following three categories

according to the positions relative to their predi-

cates (Hayashibe et al., 2011; Ouchi et al., 2015):

Dep: Arguments that have direct syntactic depen-

dency on the predicate.

Zero: Arguments referred to by zero pronouns

within the same sentence that have no direct

syntactic dependency on the predicate.

Inter-Zero: Arguments referred to by zero pro-

nouns outside of the same sentence.
1Our source code is publicly available at

https://github.com/hiroki13/neural-pasa-system

For example, in Figure 1, the nominative argument

“警察 (police)” for the predicate “逮捕した (ar-

rested)” is regarded as a Dep argument, because

the argument has a direct syntactic dependency

on the predicate. By contrast, the nominative ar-

gument “男 i (mani)” for the predicate “逃走し
た (escaped)” is regarded as a Zero argument, be-

cause the argument has no direct syntactic depen-

dency on the predicate.

In this paper, we focus on the analysis for

these intra-sentential arguments, i.e., Dep and

Zero. In order to identify inter-sentential argu-

ments (Inter-Zero), a much broader space must

be searched (e.g., the whole document), resulting

in a much more complicated analysis than intra-

sentential arguments.2 Owing to this complica-

tion, Ouchi et al. (2015) and Shibata et al. (2016)

focused exclusively on intra-sentential argument

analysis. Following this trend, we also restrict our

focus to intra-sentential argument analysis.

2.2 Challenging Problem

Arguments are often omitted in Japanese sen-

tences. In Figure 1, ϕi represents the omitted argu-

ment, called the zero pronoun. This zero pronoun

ϕi refers to “男 i (mani)”. In Japanese PAS anal-

ysis, when an argument of the target predicate is

omitted, we have to identify the antecedent of the

omitted argument (i.e., the Zero argument).

The analysis of such Zero arguments is much

more difficult than that for Dep arguments, ow-

ing to the lack of direct syntactic dependencies.

For Dep arguments, the syntactic dependency be-

tween an argument and its predicate is a strong

clue. In the sentence in Figure 1, for the predi-

2The F-measure remains 10-20% (Taira et al., 2008;
Imamura et al., 2009; Sasano and Kurohashi, 2011).
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Figure 3: Overall architecture of the single-

sequence model. This model consists of three

components: (i) Input Layer, (ii) RNN Layer and

(iii) Output Layer.

cate “逮捕した (arrested)”, the nominative argu-

ment is “警察 (police)”. This argument is easily

identified by relying on the syntactic dependency.

By contrast, because the nominative argument “男
i (mani)” has no syntactic dependency on its pred-

icate “逃走した (escaped)”, we must rely on other

information to identify the zero argument.

As a solution to this problem, we exploit two

kinds of information: (i) the context of the en-

tire sentence, and (ii) multi-predicate interactions.

For the former, we introduce single-sequence

model that induces context-sensitive representa-

tions from a sequence of argument candidates of

a predicate. For the latter, we introduce multi-

sequence model that induces predicate-sensitive

representations from multiple sequences of argu-

ment candidates of all predicates in a sentence

(shown in Figure 2).

3 Single-Sequence Model

The single-sequence model exploits stacked bidi-

rectional RNNs (Bi-RNN) (Schuster and Paliwal,

1997; Graves et al., 2005, 2013; Zhou and Xu,

2015). Figure 3 shows the overall architecture,

which consists of the following three components:

Input Layer: Map each word to a feature vector

representation.

RNN Layer: Produce high-level feature vectors

using Bi-RNNs.

Output Layer: Compute the probability of each

case label for each word using the softmax

function.

Figure 4: Example of feature extraction. The un-

derlined word is the target predicate. From the

sentence “彼女はパンを食べた。(She ate bread.)”,

three types of features are extracted for the target

predicate “食べた (ate)”.

Figure 5: Example of the process of creating a fea-

ture vector. The extracted features are mapped to

each vector, and all the vectors are concatenated

into one feature vector.

In the following subsections, we describe each of

these three components in detail.

3.1 Input Layer

Given an input sentence w1:T = (w1, · · · , wT)
and a predicate p, each word wt is mapped to a

feature representation xt, which is the concatena-

tion (⊕) of three types of vectors:

xt = x
arg
t ⊕ x

pred
t ⊕ xmark

t (1)

where each vector is based on the following

atomic features inspired by Zhou and Xu (2015):

ARG: Word index of each word.

PRED: Word index of the target predicate and

the words around the predicate.

MARK: Binary index that represents whether or

not the word is the predicate.
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Figure 4 presents an example of the atomic fea-

tures. For the ARG feature, we extract a word index

xword ∈ V for each word. Similarly, for the PRED

feature, we extract each word index xword for the

C words taking the target predicate at the center,

where C denotes the window size. The MARK fea-

ture xmark ∈ {0, 1} is a binary value that repre-

sents whether or not the word is the predicate.

Then, using feature indices, we extract feature

vector representations from each embedding ma-

trix. Figure 5 shows the process of creating the

feature vector x1 for the word w1 “彼女 (she)”.

We set two embedding matrices: (i) a word em-

bedding matrix Eword ∈ R
dword×|V|, and (ii)

a mark embedding matrix Emark ∈ R
dmark×2.

From each embedding matrix, we extract the cor-

responding column vectors and concatenate them

as a feature vector xt based on Eq. 1.

Each feature vector xt is multiplied with a pa-

rameter matrix Wx:

h
(0)
t = Wx xt (2)

The vector h
(0)
t is given to the first RNN layer as

input.

3.2 RNN Layer

In the RNN layers, feature vectors are updated re-

currently using Bi-RNNs. Bi-RNNs process an

input sequence in a left-to-right manner for odd-

numbered layers and in a right-to-left manner for

even-numbered layers. By stacking these layers,

we can construct the deeper network structures.

Stacked Bi-RNNs consist of L layers, and the

hidden state in the layer ℓ ∈ (1, · · · , L) is calcu-

lated as follows:

h
(ℓ)
t =

{

g(ℓ)(h
(ℓ−1)
t , h

(ℓ)
t−1) (ℓ = odd)

g(ℓ)(h
(ℓ−1)
t , h

(ℓ)
t+1) (ℓ = even)

(3)

Both of the odd- and even-numbered layers re-

ceive h
(ℓ−1)
t , the t-th hidden state of the ℓ−1 layer,

as the first input of the function g(ℓ), which is an

arbitrary function 3. For the second input of g(ℓ),

odd-numbered layers receive h
(ℓ)
t−1, whereas even-

numbered layers receive h
(ℓ)
t+1. By calculating the

hidden states until the L-th layer, we obtain a hid-

den state sequence h
(L)
1:T = (h

(L)
1 , · · · ,h

(L)
T ). Us-

ing each vector h
(L)
t , we calculate the probability

of case labels for each word in the output layer.

3In this work, we used the Gated Recurrent Unit (GRU)
(Cho et al., 2014) as the function g(ℓ).

3.3 Output Layer

For the output layer, multi-class classification is

performed using the softmax function:

yt = softmax(Wy h
(L)
t )

where h
(L)
t denotes a vector representation propa-

gated from the last RNN layer (Fig 3). Each ele-

ment of yt is a probability value corresponding to

each label. The label with the maximum probabil-

ity among them is output as a result. In this work,

we set five labels: NOM, ACC, DAT, PRED, null.

PRED is the label for the predicate, and null de-

notes a word that does not fulfill any case role.

4 Multi-Sequence Model

Whereas the single-sequence model assumes inde-

pendence between predicates, the multi-sequence

model assumes multi-predicate interactions. To

capture such interactions between all predi-

cates in a sentence, we extend the single-

sequence model to the multi-sequence model us-

ing Grid-RNNs (Graves and Schmidhuber, 2009;

Kalchbrenner et al., 2016). Figure 6 presents the

overall architecture for the multi-sequence model,

which consists of three components:

Input Layer: Map words to M sequences of

feature vectors for M predicates.

Grid Layer: Update the hidden states over dif-

ferent sequences using Grid-RNNs.

Output Layer: Compute the probability of

each case label for each word using the soft-

max function.

In the following subsections, we describe these

three components in detail.

4.1 Input Layer

The multi-sequence model takes as input a sen-

tence w1:T = (w1, · · · , wT) and all predicates

{pm}M1 in the sentence. For each predicate pm,

the input layer creates a sequence of feature vec-

tors Xm = (xm,1, · · · ,xm,T) by mapping each

input word wt to a feature vector xm,t based on

Eq 1. That is, for M predicates, M sequences of

feature vectors {Xm}M1 are created.

Then, using Eq. 2, each feature vector xm,t is

mapped to h
(0)
m,t, and a feature sequence is created

for a predicate pm, i.e., H
(0)
m = (h

(0)
m,1, · · · ,h

(0)
m,T).

Consequently, for M predicates, we obtain M fea-

ture sequences {H
(0)
m }M1 .
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Figure 6: Overall architecture of the multi-sequence model: an example of three sequences.

4.2 Grid Layer

Inter-Sequence Connections

For the grid layers, we use Grid-RNNs to propa-

gate the feature information over the different se-

quences (inter-sequence connections). The fig-

ure on the right in Figure 6 shows the first grid

layer. The hidden state is recurrently calculated

from the upper-left (m = 1, t = 1) to the lower-

right (m = M, t = T).

Formally, in the ℓ-th layer, the hidden state h
(ℓ)
m,t

is calculated as follows:

h
(ℓ)
m,t=

{

g(ℓ)(h
(ℓ−1)
m,t ⊕ h

(ℓ)
m−1,t,h

(ℓ)
m,t−1) (ℓ = odd)

g(ℓ)(h
(ℓ−1)
m,t ⊕ h

(ℓ)
m+1,t,h

(ℓ)
m,t+1) (ℓ = even)

This equation is similar to Eq. 3. The main differ-

ence is that the hidden state of a neighboring se-

quence, h
(ℓ)
m−1,t (or h

(ℓ)
m+1,t), is concatenated (⊕)

with the hidden state of the previous (ℓ− 1) layer,

h
(ℓ−1)
m,t , and is taken as input of the function g(ℓ).

In the figure on the right in Figure 6, the blue

curved lines represent the inter-sequence connec-

tions. Taking as input the hidden states of neigh-

boring sequences, the network propagates feature

information over multiple sequences (i.e., pred-

icates). By calculating the hidden states until

the L-th layer, we obtain M sequences of the

hidden states, i.e., {H
(L)
m }M1 , in which H

(L)
m =

(h
(L)
m,1, · · · ,h

(L)
m,T).

Residual Connections

As more layers are stacked, it becomes more dif-

ficult to learn the model parameters, owing to

various challenges such as the vanishing gradi-

ent problem (Pascanu et al., 2013). In this work,

we integrate residual connections (He et al., 2015;

Wu et al., 2016) with our networks to form con-

nections between layers. Specifically, the in-

put vector h
(ℓ−1)
m,t of the ℓ-th layer is added to

the output vector h
(ℓ)
m,t. Residual connections

can also be applied to the single-sequence model.

Thus, we can perform experiments on both models

with/without residual connections.

4.3 Output Layer

As with the single-sequence model, we use the

softmax function to calculate the probability of the

case labels of each word wt for each predicate pm:

ym,t = softmax(Wy h
(L)
m,t)

where h
(L)
m,t is a hidden state vector calculated in

the last grid layer.

5 Related Work

5.1 Japanese PAS Analysis Approaches

Existing approaches to Japanese PAS analy-

sis are divided into two categories: (i) the

pointwise approach and (ii) the joint approach.

The pointwise approach involves estimating the

score of each argument candidate for one pred-

icate, and then selecting the argument can-

didate with the maximum score as an argu-

ment (Taira et al., 2008; Imamura et al., 2009;

Hayashibe et al., 2011; Iida et al., 2016). The

joint approach involves scoring all the predicate-

argument combinations in one sentence, and then

selecting the combination with the highest score

(Yoshikawa et al., 2011; Sasano and Kurohashi,
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2011; Ouchi et al., 2015; Shibata et al., 2016).

Compared with the pointwise approach, the joint

approach achieves better results.

5.2 Multi-Predicate Interactions

Ouchi et al. (2015) reported that it is beneficial to

Japanese PAS analysis to capture the interactions

between all predicates in a sentence. This is based

on the linguistic intuition that the predicates in a

sentence are semantically related to each other,

and that the information regarding this semantic

relation can be useful for PAS analysis.

Similarly, in semantic role labeling (SRL),

Yang and Zong (2014) reported that their rerank-

ing model, which captures the multi-predicate in-

teractions, is effective for the English constituent-

based SRL task (Carreras and Màrquez, 2005).

Taking this a step further, we propose a neu-

ral architecture that effectively models the multi-

predicate interactions.

5.3 Neural Approaches

Japanese PAS

In recent years, several attempts have been made

to apply neural networks to Japanese PAS anal-

ysis (Shibata et al., 2016; Iida et al., 2016)4. In

Shibata et al. (2016), a feed-forward neural net-

work is used for the score calculation part of

the joint model proposed by Ouchi et al. (2015).

In Iida et al. (2016), multi-column convolutional

neural networks are used for the zero anaphora res-

olution task.

Both models exploit syntactic and selectional

preference information as the atomic features of

neural networks. Overall, the use of neural net-

works has resulted in advantageous performance

levels, mitigating the cost of manually designing

combination features. In this work, we demon-

strate that even without such syntactic informa-

tion, our neural models can realize comparable

performance exclusively using the word sequence

information of a sentence.

English SRL

Some neural models have achieved high perfor-

mance without syntactic information in English

SRL. Collobert et al. (2011) and Zhou and Xu

(2015) worked on the English constituent-based

4These previous studies used unpublished datasets and
evaluated the performance with different experimental set-
tings. Consequently, we cannot compare their models with
ours.

SRL task (Carreras and Màrquez, 2005) using

neural networks. In Collobert et al. (2011), their

model exploited a convolutional neural network

and achieved a 74.15% F-measure without syn-

tactic information. In Zhou and Xu (2015),

their model exploited bidirectional RNNs with

linear-chain conditional random fields (CRFs) and

achieved the state-of-the-art result, an 81.07% F-

measure. Our models should be regarded as an

extension of their model.

The main differences between Zhou and Xu

(2015) and our work are: (i) constituent-based

vs dependency-based argument identification and

(ii) the multi-predicate consideration. For the

constituent-based SRL, Zhou and Xu (2015) used

CRFs to capture the IOB label dependencies, be-

cause systems are required to identify the spans

of arguments for each predicate. By contrast, for

Japanese dependency-based PAS analysis, we re-

placed the CRFs with the softmax function, be-

cause in Japanese, arguments are rarely adjacent

to each other.5 Furthermore, whereas the model

described in Zhou and Xu (2015) predicts argu-

ments for each predicate independently, our multi-

sequence model jointly predicts arguments for all

predicates in a sentence concurrently by consider-

ing the multi-predicate interactions.

6 Experiments

6.1 Experimental Settings

Dataset

We used the NAIST Text Corpus 1.5, which con-

sists of 40,000 sentences from Japanese news-

papers (Iida et al., 2007). For the experiments,

we adopted standard data splits (Taira et al., 2008;

Imamura et al., 2009; Ouchi et al., 2015):

Train: Articles: Jan 1-11, Editorials: Jan-Aug

Dev: Articles: Jan 12-13, Editorials: Sept

Test: Articles: Jan 14-17, Editorials: Oct-Dec

We used the word boundaries annotated in the

NAIST Text Corpus and the target predicates that

have at least one argument in the same sentence.

We did not use any external resources.

Learning

We trained the model parameters by minimizing

5In our preliminary experiment, we could not confirm the
performance improvement by CRFs.
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the cross-entropy loss function:

L(θ) = −
∑

n

∑

t

logP (yt|xt) +
λ

2
||θ||2 (4)

where θ is a set of model parameters, and the

hyper-parameter λ is the coefficient governing the

L2 weight decay.

Implementation Details

We implemented our neural models using a deep

learning library, Theano (Bastien et al., 2012).

The number of epochs was set at 50, and we re-

ported the result of the test set in the epoch with

the best F-measure from the development set. The

parameters were optimized using the stochastic

gradient descent method (SGD) via a mini-batch,

whose size was selected from {2, 4, 8}. The learn-

ing rate was automatically adjusted using Adam

(Kingma and Ba, 2014). For the L2 weight decay,

the hyper-parameter λ in Eq. 4 was selected from

{0.001, 0.0005, 0.0001}.

In the neural models, the number of the RNN

and Grid layers were selected from {2, 4, 6, 8}.

The window size C for the PRED feature (Sec.

3.1) was set at 5. Words with a frequency of 2 or

more in the training set were mapped to each word

index, and the remaining words were mapped to

the unknown word index. The dimensions dword

and dmark of the embeddings were set at 32. In the

single-sequence model, the parameters of GRUs

were set at 32× 32. In the multi-sequence model,

the parameters of GRUs related to the input val-

ues were set at 64 × 32, and the remaining were

set at 32× 32. The initial values of all parameters

were sampled according to a uniform distribution

from [−
√
6√

row+col
,

√
6√

row+col
], where row and col

are the number of rows and columns of each ma-

trix, respectively.

Baseline Models

We compared our models to existing models in

previous works (Sec. 5.1) that use the NAIST Text

Corpus 1.5. As a baseline for the pointwise ap-

proach, we used the pointwise model6 proposed in

Imamura et al. (2009). In addition, as a baseline

for the joint approach, we used the model pro-

posed in Ouchi et al. (2015). These models ex-

ploit gold annotations in the NAIST Text Corpus

as POS tags and dependency relations.

6We compared the results of the model reimplemented by
Ouchi et al. (2015).

Dep Zero All

Imamura+ 09 85.06 41.65 78.15

Ouchi+ 15 86.07 44.09 79.23

Single-Seq 88.10 46.10 81.15

Multi-Seq 88.17 † 47.12 † 81.42 †

Table 1: F-measures in the test set. Single-

Seq is the single-sequence model, and Multi-Seq

is the multi-sequence model. Imamura+ 09 is

the model in Imamura et al. (2009) reimplemented

by Ouchi et al. (2015), and Ouchi+ 15 is the

ALL-Cases Joint Model in Ouchi et al. (2015).

The mark † denotes the significantly better results

with the significance level p < 0.05, comparing

Single-Seq and Multi-Seq.

6.2 Results

Neural Models vs Baseline Models

Table 1 presents F-measures from our neural se-

quence models with eight RNN or Grid layers

and the baseline models on the test set. For the

significant test, we used the bootstrap resampling

method. According to all metrics, both the single-

(Single-Seq) and multi-sequence models (Multi-

Seq) outperformed the baseline models. This

confirms that our neural models realize high per-

formance, even without syntactic information, by

learning contextual information effective for PAS

analysis from the word sequence of the sentence.

In particular, for zero arguments (Zero), our

models achieved a considerable improvement

compared to the joint model in Ouchi et al. (2015).

Specifically, the single-sequence model improved

by approximately 2.0 points, and the multi-

sequence model by approximately 3.0 points ac-

cording to the F-measure. These results suggest

that modeling the context of the entire sentence us-

ing RNNs are beneficial to Japanese PAS analysis,

particularly to zero argument identification.

Effects of Multiple Predicate Consideration

As Table 1 shows, the multi-sequence model

significantly outperformed the single-sequence

model in terms of the F-measure overall (81.42%

vs 81.15%). These results demonstrate that the

grid-type neural architecture can effectively cap-

ture multi-predicate interactions by connecting the

sequences of the argument candidates for all pred-

icates in a sentence.

Compared to the single-sequence model for dif-
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Single-Seq Multi-Seq

L +res. −res. +res. −res.

2

Dep 87.34 87.10 87.43 87.73

Zero 47.98 47.90 47.66 46.93

All 80.62 80.24 80.71 80.68

4

Dep 87.27 87.41 87.60 87.09

Zero 50.43 50.83 48.10 48.58

All 80.92 80.99 80.99 80.59

6

Dep 87.73 87.11 88.04 87.39

Zero 48.81 49.51 48.98 48.91

All 81.05 80.63 81.19 80.68

8

Dep 87.98 87.23 87.65 87.07

Zero 47.40 48.38 49.34 48.23

All 81.31 80.33 81.33 80.40

Table 2: Performance comparison for different

numbers of layers on the development set in F-

measures. L is the number of the RNN or Grid lay-

ers. +res. or −res. indicates whether the model

has residual connections (+) or not (−).

ferent argument types, the multi-sequence model

achieved slightly better results for direct depen-

dency arguments (Dep) (88.10% vs 88.17%). In

addition, for zero arguments (Zero), which have no

syntactic dependency on their predicate, the multi-

sequence model outperformed the single-sequence

model by approximately 1.0 point according to the

F-measure (46.10% vs 47.12%). This shows that

capturing multi-predicate interactions is particu-

larly effective for zero arguments, which is con-

sistent with the results in Ouchi et al. (2015).

Effects of Network Depth

Table 2 presents F-measures from the neural se-

quence models with different network depths and

with/without residual connections. The perfor-

mance tends to improve as the RNN or Grid layers

get deeper with residual connections. In partic-

ular, the two models with eight layers and resid-

ual connections achieved considerable improve-

ments of approximately 1.0 point according to the

F-measure compared to models without residual

connections. This means that residual connec-

tions contribute to effective parameter learning of

deeper models.

Effects of the Number of Predicates

Table 3 presents F-measures from the neural se-

quence models with different numbers of predi-

cates in a sentence. In Table 3, M denotes how

M Type No. Args Single-Seq Multi-Seq

1

Dep 2,733 89.97 89.66

Zero 154 47.62 53.54

All 2,887 88.08 88.01

2

Dep 5,674 89.64 90.11

Zero 836 53.87 54.21

All 6,510 85.39 85.95

3

Dep 6,067 87.72 88.06

Zero 1,357 49.98 51.82

All 7,424 81.43 82.11

4

Dep 4,616 87.80 87.84

Zero 1,205 47.27 48.50

All 5,821 80.31 80.69

5+

Dep 6.983 86.63 86.30

Zero 2,467 39.83 40.66

All 9,450 76.17 76.00

Table 3: Performance comparison for different

numbers (M ) of predicates in a sentence on the

test set in F-measures.

many predicates appear in a sentence. For exam-

ple, the sentence in Figure 1 includes two predi-

cates, “arrested” and “escaped”, and thus in this

example M = 2.

Overall, performance of both models gradu-

ally deteriorated as the number of predicates in

a sentence increased, because sentences that con-

tain many predicates are complex and difficult

to analyze. However, compared to the single-

sequence model, the multi-sequence model sup-

pressed performance degradation, especially for

zero arguments (Zero). By contrast, for direct

dependency arguments (Dep), both models either

achieved almost equivalent performance or the

single-sequence model outperformed the multi-

sequence model. A Detailed investigation of the

relation between the number of predicates in a sen-

tence and the complexity of PAS analysis is an in-

teresting line for future work.

Comparison per Case Role

Table 4 shows F-measures for each case role. For

reference, we show the results of the previous

studies using the NAIST Text Corpus 1.4β with

external resources as well.7

7The major difference between the NAIST Text Corpus
1.4β and 1.5 is the revision of the annotation criterion for the
dative case (DAT) (corresponding to Japanese case marker “
に”). Argument and adjunct usages of the case marker “に”
are not distinguished in 1.4β, making the identification of the
dative case seemingly easy (Ouchi et al., 2015).
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Dep Zero

NOM ACC DAT NOM ACC DAT

NAIST Text Corpus 1.5

Imamura+ 09 86.50 92.84 30.97 45.56 21.38 0.83

Ouchi+ 15 88.13 92.74 38.39 48.11 24.43 4.80

Single-Seq 88.32 93.89 65.91 49.51 35.07 9.83

Multi-Seq 88.75 93.68 64.38 50.65 32.35 7.52

NAIST Text Corpus 1.4β

Taira+ 08* 75.53 88.20 89.51 30.15 11.41 3.66

Imamura+ 09* 87.0 93.9 80.8 50.0 30.8 0.0

Sasano+ 11* - - - 39.5 17.5 8.9

Table 4: Performance comparison for different case roles on the test set in F-measures. NOM, ACC or

DAT is the nominal, accusative or dative case, respectively. The asterisk (*) indicates that the model uses

external resources.

Comparing the models using the NAIST Text

Corpus 1.5, the single- and multi-sequence mod-

els outperformed the baseline models according to

all metrics. In particular, for the dative case, the

two neural models achieved much higher results,

by approximately 30 points. This suggests that al-

though dative arguments appear infrequently com-

pared with the other two case arguments, the neu-

ral models can learn them robustly.

In addition, for zero arguments (Zero), the

neural models achieved better results than the

baseline models. In particular, for zero argu-

ments of the nominative case (NOM), the multi-

sequence model demonstrated a considerable im-

provement of approximately 2.5 points accord-

ing to the F-measure compared with the joint

model in Ouchi et al. (2015). To achieve high ac-

curacy for the analysis of such zero arguments,

it is necessary to capture long distance depen-

dencies (Iida et al., 2005; Sasano and Kurohashi,

2011; Iida et al., 2015). Therefore, the improve-

ments of the results suggest that the neural models

effectively capture long distance dependencies us-

ing RNNs that can encode the context of the entire

sentence.

7 Conclusion

In this work, we introduced neural sequence mod-

els that automatically induce effective feature rep-

resentations from the word sequence information

of a sentence for Japanese PAS analysis. The

experiments on the NAIST Text Corpus demon-

strated that the models realize high performance

without the need for syntactic information. In par-

ticular, our multi-sequence model improved the

performance of zero argument identification, one

of the problematic issues facing Japanese PAS

analysis, by considering the multi-predicate inter-

actions with Grid-RNNs.

Because our neural models are applicable to

SRL, applying our models for multilingual SRL

tasks presents an interesting future research direc-

tion. In addition, in this work, the model param-

eters were learned without any external resources.

In future work, we plan to explore effective meth-

ods for exploiting large-scale unlabeled data to

learn the neural models.
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