
Proceedings of NAACL-HLT 2018, pages 42–48

New Orleans, Louisiana, June 1 - 6, 2018. c©2018 Association for Computational Linguistics

Neural Models for Reasoning over Multiple Mentions using Coreference

Bhuwan Dhingra1 Qiao Jin2 Zhilin Yang1

William W. Cohen1 Ruslan Salakhutdinov1

1Carnegie Mellon University
2University of Pittsburgh

{bdhingra,zhiliny,wcohen,rsalakhu}@cs.cmu.edu, qij9@pitt.edu

Abstract

Many problems in NLP require aggregating in-

formation from multiple mentions of the same

entity which may be far apart in the text. Ex-

isting Recurrent Neural Network (RNN) lay-

ers are biased towards short-term dependen-

cies and hence not suited to such tasks. We

present a recurrent layer which is instead bi-

ased towards coreferent dependencies. The

layer uses coreference annotations extracted

from an external system to connect entity men-

tions belonging to the same cluster. Incorpo-

rating this layer into a state-of-the-art reading

comprehension model improves performance

on three datasets – Wikihop, LAMBADA and

the bAbi AI tasks – with large gains when

training data is scarce.

1 Introduction

A long-standing goal of NLP is to build systems

capable of reasoning about the information present

in text. One important form of reasoning for Ques-

tion Answering (QA) models is the ability to ag-

gregate information from multiple mentions of en-

tities. We call this coreference-based reasoning

since multiple pieces of information, which may

lie across sentence, paragraph or document bound-

aries, are tied together with the help of referring

expressions which denote the same real-world en-

tity. Figure 1 shows examples.

QA models which directly read text to answer

questions (commonly known as Reading Com-

prehension systems) (Hermann et al., 2015; Seo

et al., 2017a), typically consist of RNN layers.

RNN layers have a bias towards sequential re-

cency (Dyer, 2017), i.e. a tendency to favor

short-term dependencies. Attention mechanisms

alleviate part of the issue, but empirical studies

suggest RNNs with attention also have difficulty

modeling long-term dependencies (Daniluk et al.,

2017). We conjecture that when training data

is scarce, and inductive biases play an important

role, RNN-based models would have trouble with

coreference-based reasoning.

Context: [...] mary got the football there [...] mary
went to the bedroom [...] mary travelled to the hallway
[...]
Question: where was the football before the hallway ?

Context: Louis-Philippe Fiset [...] was a local physician
and politician in the Mauricie area [...] is located in the
Mauricie region of Quebec, Canada [...]
Question: country of citizenship – louis-philippe fiset ?

Figure 1: Example questions which require

coreference-based reasoning from the bAbi dataset

(top) and Wikihop dataset (bottom). Coreferences are

in bold, and the correct answers are underlined.

At the same time, systems for coreference res-

olution have seen a gradual increase in accuracy

over the years (Durrett and Klein, 2013; Wise-

man et al., 2016; Lee et al., 2017). Hence, in this

work we use the annotations produced by such

systems to adapt a standard RNN layer by intro-

ducing a bias towards coreferent recency. Specif-

ically, given an input sequence and coreference

clusters extracted from an external system, we in-

troduce a term in the update equations for Gated

Recurrent Units (GRU) (Cho et al., 2014) which

depends on the hidden state of the coreferent an-

tecedent of the current token (if it exists). This

way hidden states are propagated along corefer-

ence chains and the original sequence in parallel.

We compare our Coref-GRU layer with the reg-

ular GRU layer by incorporating it in a recent

model for reading comprehension. On synthetic

data specifically constructed to test coreference-

based reasoning (Weston et al., 2015), C-GRUs

lead to a large improvement over regular GRUs.

We show that the structural bias introduced and

coreference signals are both important to reach

high performance in this case. On a more re-

42

alistic dataset (Welbl et al., 2017), with noisy

coreference annotations, we see small but signif-

icant improvements over a state-of-the-art base-

line. As we reduce the training data, the gains be-

come larger. Lastly, we apply the same model to

a broad-context language modeling task (Paperno

et al., 2016), where coreference resolution is an

important factor, and show improved performance

over state-of-the-art.

2 Related Work

Entity-based models. Ji et al. (2017) presented

a generative model for jointly predicting the next

word in the text and its gold-standard corefer-

ence annotation. The difference in our work is

that we look at the task of reading comprehen-

sion, and also work in the more practical set-

ting of system extracted coreferences. EntNets

(Henaff et al., 2016) also maintain dynamic mem-

ory slots for entities, but do not use coreference

signals and instead update all memories after read-

ing each sentence, which leads to poor perfor-

mance in the low-data regime (c.f. Table 1). Yang

et al. (2017) model references in text as explicit

latent variables, but limit their work to text gen-

eration. Kobayashi et al. (2016) used a pooling

operation to aggregate entity information across

multiple mentions. Wang et al. (2017) also noted

the importance of reference resolution for read-

ing comprehension, and we compare our model to

their one-hot pointer reader.

Syntactic-recency. Recent work has used syn-

tax, in the form of dependency trees, to replace the

sequential recency bias in RNNs with a syntactic

recency bias (Tai et al., 2015; Swayamdipta, 2017;

Qian et al., 2017; Chen et al., 2017). However,

syntax only looks at dependencies within sentence

boundaries, whereas our focus here is on longer

ranges. Our resulting layer is structurally similar

to GraphLSTMs (Peng et al., 2017), with an addi-

tional attention mechanism over the graph edges.

However, while Peng et al. (2017) found that using

coreference did not lead to any gains for the task of

relation extraction, here we show that it has a pos-

itive impact on the reading comprehension task.

Self-Attention (Vaswani et al., 2017) models are

becoming popular for modeling long-term depen-

dencies, and may also benefit from coreference in-

formation to bias the learning of those dependen-

cies. Here we focus on recurrent layers and leave

such an analysis to future work.

Mary went … she

…

…

Mary went … she

…

…

hf
t−1

hf
t

hf
yt

hb
t0

hb
t0+1xt xt0

hb
y
t0

Figure 2: Forward (left) and Backward (right) Coref-

GRU layers. Mary and she are coreferent.

Part of this work was described in an unpub-

lished preprint (Dhingra et al., 2017b). The cur-

rent paper extends that version and focuses exclu-

sively on coreference relations. We also report re-

sults on the WikiHop dataset, including the perfor-

mance of the model in the low-data regime.

3 Model

Coref-GRU (C-GRU) Layer. Suppose we are

given an input sequence w1, w2, . . . , wT along

with their word vectors x1, . . . , xT and annota-

tions for the most recent coreferent antecedent for

each token y1, . . . , yT , where yt ∈ {0, . . . , t − 1}
and yt = 0 denotes the null antecedent (for tokens

not belonging to any cluster). We assume all to-

kens belonging to a mention in a cluster belong to

that cluster, and there are C clusters in total. Our

recurrent layer is adapted from GRU cells (Cho

et al., 2014), but similar extensions can be derived

for other recurrent cells as well. The update equa-

tions in a GRU all take the same basic form given

by:

f(Wxt + Uht−1 + b).

The bias for sequential recency comes from the

second term Uht−1. In this work we add an-

other term to introduce a bias towards coreferent

recency instead:

f(Wxt+αtUφs(ht−1)+(1−αt)U
′φc(hyt)+ b),

where hyt is the hidden state of the coreferent an-

tecedent of wt (with h0 = 0), φs and φc are non-

linear functions applied to the hidden states com-

ing from the sequential antecedent and the coref-

erent antecedent, respectively, and αt is a scalar

weight which decides the relative importance of

the two terms based on the current input (so that,

for example, pronouns may assign a higher weight

for the coreference state). When yt = 0, αt is

set to 1, otherwise it is computed using a key-

based addressing scheme (Miller et al., 2016), as

αt = softmax(xTt k), where k is a trainable key

43

vector. In this work we use simple slicing func-

tions φs(x) = x[1 : d/2], and φc(x) = x[d/2 : d]
which decompose the hidden states into a sequen-

tial and a coreferent component, respectively. Fig-

ure 2 (left) shows an illustration of the layer, and

the full update equations are given in Appendix A.

Connection to Memory Networks. We can

also view the model as a memory network

(Sukhbaatar et al., 2015) with a memory state Mt

at each time step which is a C × d matrix. The

rows of this memory matrix correspond to the

state of each coreference cluster at time step t.
The main difference between Coref-GRUs and a

typical memory network such as EntNets (Henaff

et al., 2016) lies in the fact that we use corefer-

ence annotations to read and write from the mem-

ory rather than let model learn how to access the

memory. With Coref-GRUs, only the content of

the memories needs to be learned. As we shall see

in Section 4, this turns out to be a useful bias in

the low-data regime.

Bidirectional C-GRU. To extend to the bidi-

rectional case, a second layer is fed the same se-

quence in the reverse direction, xT , . . . , x1 and

yt ∈ {0, t + 1, . . . , T} now denotes the immedi-

ately descendent coreferent token from wt. Out-

puts from the two layers are then concatenated to

form the bi-directional output (see Figure 2).

Complexity. The resulting layer has the same

time-complexity as that of a regular GRU layer.

The memory complexity increases since we have

to keep track of the hidden states for each coref-

erence cluster in the input. If there are C clusters

and B is the batch size, the resulting complexity

is by O(BTCd). This scales linearly with the in-

put size T , however we leave exploration of more

efficient architectures to future work.

Reading comprehension architecture. All

tasks we look at involve tuples of the form

(p, q, a, C), where the goal is to find the answer

a from candidates C to question q with passage

p as context. We use the Gated-Attention (GA)

reader (Dhingra et al., 2017a) as a base architec-

ture, which computes representations of the pas-

sage by passing it through multiple bidirectional

GRU layers with an attention mechanism in be-

tween layers. We compare the original GA archi-

tecture (GA w/ GRU) with one where the bidirec-

tional GRU layers are replaced with bidirectional

C-GRU layers (GA w/ C-GRU). Performance is

reported in terms of the accuracy of detecting the

correct answer from C, and all models are trained

using cross-entropy loss. When comparing two

models we ensure the number of parameters are

the same in each. Other implementation details

are listed in Appendix B.

4 Experiments & Results

Method Avg Max # failed

EntNets (Henaff et al., 2016) – 0.704 15
QRN (Seo et al., 2017b) – 0.901 7

Bi-GRU 0.727 0.767 13
Bi-C-GRU 0.790 0.831 12
GA w/ GRU 0.764 0.810 10
GA w/ GRU + 1-hot 0.766 0.808 9
GA w/ C-GRU 0.870 0.886 5

Table 1: Accuracy on bAbi-1K, averaged across all 20
tasks. Following previous work we run each task for 10
random seeds, and report the Avg and Max (based on

dev set) performance. A task is considered failed if its

Max performance is < 0.95.

BAbi AI tasks. Our first set of experiments

are on the 1K training version of the synthetic

bAbi AI tasks (Weston et al., 2015). The pas-

sages and questions in this dataset are generated

using templates, removing many complexities in-

herent in natural language, but it still provides a

useful testbed for us since some tasks are specifi-

cally constructed to test the coreference-based rea-

soning we tackle here. Experiments on more nat-

ural data are described below.

Table 1 shows a comparison of EntNets (Henaff

et al., 2016), QRNs (Seo et al., 2017b) (the best

published results on bAbi-1K), and our models.

We also include the results for a single layer ver-

sion of GA Reader (which we denote simply as

Bi-GRU or Bi-C-GRU when using coreference)

to enable fair comparison with EntNets. In each

case we see clear improvements of using C-GRU

layers over GRU layers. Interestingly, EntNets,

which have >99% performance when trained with

10K examples only reach 70% performance with

1K training examples. The Bi-C-GRU model sig-

nificantly improves on this baseline, which shows

that, with less data, coreference annotations can

provide a useful bias for a memory network on

how to read and write memories.

A break-down of task-wise performance is

given in Appendix C. Comparing C-GRU to the

GRU based method, we find that the main gains

are on tasks 2 (two supporting facts), 3 (three sup-

porting facts) and 16 (basic induction). All these

44

0.0 0.1 0.2 0.3 0.4
% removed coreferences

0.5

0.6

0.7

0.8

0.9

1.0
A

cc
ur

ac
y

GA w/ GRU
GA w/ random­GRU
GA w/ C­GRU

Training progress
0.0

0.1

0.2

0.3

0.4

0.5

V
a
li
d
a
ti
o
n
ex
p
(−

lo
s
s
)

full C-GRU

full GRU

5K C-GRU

5K GRU

1K C-GRU

1K GRU

Figure 3: Left: Accuracy of GA w/ C-GRU as corefer-

ence annotations are removed for bAbi task 3. Right:

Expected probability of correct answer (exp (−loss))
on Validation set as training progresses on Wikihop

dataset for 1K, 5K and the full training datasets.

tasks require aggregation of information across

sentences to derive the answer. Comparing to the

QRN baseline, we found that C-GRU was signif-

icantly worse on task 15 (basic deduction). On

closer examination we found that this was because

our simplistic coreference module which matches

tokens exactly was not able to resolve “mice” to

“mouses” and “cats” to “cat”. On the other hand,

C-GRU was significantly better than QRN on task

16 (basic induction).

We also include a baseline which uses coref-

erence features as 1-hot vectors appended to the

input word vectors (GA w/ GRU + 1-hot). This

provides the model with information about the

coreference clusters, but does not improve perfor-

mance, suggesting that the regular GRU is unable

to track the given coreference information across

long distances to solve the task. On the other

hand, in Figure 3 (left) we show how the per-

formance of GA w/ C-GRU varies as we remove

gold-standard mentions from coreference clusters,

or if we replace them with random mentions (GA

w/ random-GRU). In both cases there is a sharp

drop in performance, showing that specifically us-

ing coreference for connecting mentions is impor-

tant.

Wikihop dataset. Next we apply our model to

the Wikihop dataset (Welbl et al., 2017), which is

specifically constructed to test multi-hop reading

comprehension across documents. Each instance

in this dataset consists of a collection of passages

(p1, . . . , pN), and a query of the form (h, r) where

h is an entity and r is a relation. The task is to find

the tail entity t from a set of provided candidates

C. As preprocessing we concatenate all documents

in a random order, and extract coreference anno-

Method
Follow

Follow
+single

Follow
+multiple

Overall

Dev Dev Dev Dev Test

1K

GA w/ GRU 0.307 0.332 0.287 0.263 –
GA w/ C-GRU 0.355 0.370 0.354 0.330 –

5K

GA w/ GRU 0.382 0.385 0.390 0.336 –
GA w/ C-GRU 0.452 0.454 0.460 0.401 –

full

BiDAF – – – – 0.429
GA w/ GRU 0.606 0.615 0.604 0.549 –

GA w/ C-GRU 0.614 0.616 0.614 0.560† 0.593

Table 2: Accuracy on Wikihop. Follow: annotated as

answer follows from the given passages. Follow +mul-

tiple: annotated as requiring multiple passages for an-

swering. Follow +single annotated as requiring one

passage for answering. †p = 0.057 using Mcnemar’s

test compared to GA w/ GRU.

tations from the Berkeley Entity Resolution sys-

tem (Durrett and Klein, 2013) which gets about

62% F1 score on the CoNLL 2011 test set. We

only keep the coreference clusters which contain

at least one candidate from C or an entity which

co-occurs with the head entity h. We report results

in Table 2 when using the full training set, as well

as when using a reduced training set of sizes 1K

and 5K, to test the model under a low-data regime.

In Figure 3 we also show the training curves of

exp (−loss) on the validation set.

We see higher performance for the C-GRU

model in the low data regime, and better gen-

eralization throughout the training curve for all

three settings. This supports our conjecture that

the GRU layer has difficulty learning the kind

of coreference-based reasoning required in this

dataset, and that the bias towards coreferent re-

cency helps with that. However, perhaps sur-

prisingly, given enough data both models per-

form comparably. This could either indicate that

the baseline learns the required reasoning patterns

when given enough data, or, that the bias towards

corefence-based reasoning hurts performance for

some other types of questions. Indeed, there are

9% questions which are answered correctly by the

baseline but not by C-GRU, however, we did not

find any consistent patterns among these in our

analyses. Lastly, we note that both models vastly

outperform the best reported result of BiDAf from

45

(Welbl et al., 2017)1. We believe this is because

the GA models select answers from the list of

candidatees, whereas BiDAF ignores those candi-

dates.

Method overall context

Chu et al. (2017) 0.4900 –
GA w/ GRU 0.5398 0.6677
GA w/ GRU + 1-hot 0.5338 0.6603

GA w/ C-GRU 0.5569 0.6888†

Table 3: Accuracy on LAMBADA test set, averaged

across two runs with random initializations. context:

passages for which the answer is in context. overall:

full test set for comparison to prior work. †p < 0.0001
using Mcnemar’s test compared to GA w/ GRU.

LAMBADA dataset. Our last set of exper-

iments is on the broad-context language model-

ing task of LAMBADA dataset (Paperno et al.,

2016). This dataset consists of passages 4-5 sen-

tences long, where the last word needs to be pre-

dicted. Interestingly, though, the passages are fil-

tered such that human volunteers were able to pre-

dict the missing token given the full passage, but

not given only the last sentence. Hence, predict-

ing these tokens involves a broader understanding

of the whole passage. Analysis of the questions

(Chu et al., 2017) suggests that around 20% of the

questions need coreference understanding to an-

swer correctly. Hence, we apply our model which

uses coreference information for this task.

We use the same setup as Chu et al. (2017)

which formulated the problem as a reading com-

prehension one by treating the last sentence as

query, and the remaining passage as context to ex-

tract the answer from. In this manner only 80% of

the questions are answerable, but the performance

increases substantially compared to pure language

modeling based approaches. For this dataset we

used Stanford CoreNLP to extract coreferences

(Clark and Manning, 2015), which achieved 0.63
F1 on the CoNLL test set. Table 3 shows a com-

parison of the GA w/ GRU baseline and GA w/ C-

GRU models. We see a significant gain in perfor-

mance when using the layer with coreference bias.

Furthermore, the 1-hot baseline which uses the

same coreference information, but with sequential

recency bias fails to improve over the regular GRU

1The official leaderboard at http://qangaroo.cs.
ucl.ac.uk/leaderboard.html shows two models
with better performance than reported here (as of April 2018).
Since we were unable to find publications for these models
we omit them here.

layer. While the improvement for C-GRU is small,

it is significant, and we note that questions in this

dataset involve several different types of reasoning

out of which we only tackle one specific kind. The

proposed GA w/ C-GRU layer sets a new state-of-

the-art on this dataset.

5 Conclusion

We present a recurrent layer with a bias towards

coreferent recency, with the goal of tackling read-

ing comprehension problems which require aggre-

gating information from multiple mentions of the

same entity. Our experiments show that when

combined with a powerful reading architecture,

the layer provides a useful inductive bias for solv-

ing problems of this kind. In future work, we aim

to apply this model to other problems where long-

term dependencies at the document level are im-

portant. Noise in the coreference annotations has

a detrimental effect on the performance (Figure 3),

hence we also aim to explore joint models which

learn to do coreference resolution and reading to-

gether.

Acknowledgments

This work was supported by NSF under grants

CCF-1414030 and IIS-1250956 and by grants

from Google.

References

Huadong Chen, Shujian Huang, David Chiang, and Ji-
ajun Chen. 2017. Improved neural machine transla-
tion with a syntax-aware encoder and decoder. ACL.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078.

Zewei Chu, Hai Wang, Kevin Gimpel, and David
McAllester. 2017. Broad context language model-
ing as reading comprehension. EACL.

Kevin Clark and Christopher D Manning. 2015. Entity-
centric coreference resolution with model stacking.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), vol-
ume 1, pages 1405–1415.

Michał Daniluk, Tim Rocktäschel, Johannes Welbl,
and Sebastian Riedel. 2017. Frustratingly short at-
tention spans in neural language modeling. ICLR.

46

Bhuwan Dhingra, Hanxiao Liu, Zhilin Yang,
William W Cohen, and Ruslan Salakhutdinov.
2017a. Gated-attention readers for text comprehen-
sion. ACL.

Bhuwan Dhingra, Zhilin Yang, William W Cohen, and
Ruslan Salakhutdinov. 2017b. Linguistic knowl-
edge as memory for recurrent neural networks.
arXiv preprint arXiv:1703.02620.

Greg Durrett and Dan Klein. 2013. Easy victories and
uphill battles in coreference resolution. In EMNLP,
pages 1971–1982.

Chris Dyer. 2017. Should neural network architecture
reflect linguistic structure? CoNLL Keynote.

Mikael Henaff, Jason Weston, Arthur Szlam, Antoine
Bordes, and Yann LeCun. 2016. Tracking the world
state with recurrent entity networks. arXiv preprint
arXiv:1612.03969.

Karl Moritz Hermann, Tomas Kocisky, Edward
Grefenstette, Lasse Espeholt, Will Kay, Mustafa Su-
leyman, and Phil Blunsom. 2015. Teaching ma-
chines to read and comprehend. In Advances in Neu-
ral Information Processing Systems, pages 1693–
1701.

Yangfeng Ji, Chenhao Tan, Sebastian Martschat, Yejin
Choi, and Noah A Smith. 2017. Dynamic entity rep-
resentations in neural language models. EMNLP.

Sosuke Kobayashi, Ran Tian, Naoaki Okazaki, and
Kentaro Inui. 2016. Dynamic entity representation
with max-pooling improves machine reading. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 850–855.

Kenton Lee, Luheng He, Mike Lewis, and Luke Zettle-
moyer. 2017. End-to-end neural coreference resolu-
tion. EMNLP.

Alexander Miller, Adam Fisch, Jesse Dodge, Amir-
Hossein Karimi, Antoine Bordes, and Jason We-
ston. 2016. Key-value memory networks for
directly reading documents. arXiv preprint
arXiv:1606.03126.

Denis Paperno, Germán Kruszewski, Angeliki Lazari-
dou, Quan Ngoc Pham, Raffaella Bernardi, San-
dro Pezzelle, Marco Baroni, Gemma Boleda, and
Raquel Fernández. 2016. The lambada dataset:
Word prediction requiring a broad discourse context.
ACL.

Nanyun Peng, Hoifung Poon, Chris Quirk, Kristina
Toutanova, and Wen-tau Yih. 2017. Cross-sentence
n-ary relation extraction with graph lstms. Transac-
tions of the Association for Computational Linguis-
tics, 5:101–115.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1532–
1543.

Feng Qian, Lei Sha, Baobao Chang, Lu-chen Liu,
and Ming Zhang. 2017. Syntax aware lstm model
for chinese semantic role labeling. arXiv preprint
arXiv:1704.00405.

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2017a. Bidirectional attention
flow for machine comprehension. ICLR.

Minjoon Seo, Sewon Min, Ali Farhadi, and Hannaneh
Hajishirzi. 2017b. Query-reduction networks for
question answering. ICLR.

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al.
2015. End-to-end memory networks. In Advances
in neural information processing systems, pages
2440–2448.

Swabha Swayamdipta. 2017. Learning Algorithms for
Broad-Coverage Semantic Parsing. Ph.D. thesis,
Carnegie Mellon University Pittsburgh, PA.

Kai Sheng Tai, Richard Socher, and Christopher D
Manning. 2015. Improved semantic representations
from tree-structured long short-term memory net-
works. ACL.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. NIPS.

Hai Wang, Takeshi Onishi, Kevin Gimpel, and David
McAllester. 2017. Emergent logical structure in
vector representations of neural readers. 2nd Work-
shop on Representation Learning for NLP, ACL.

Dirk Weissenborn, Georg Wiese, and Laura Seiffe.
2017. Fastqa: A simple and efficient neural archi-
tecture for question answering. CoNLL.

Johannes Welbl, Pontus Stenetorp, and Sebastian
Riedel. 2017. Constructing datasets for multi-hop
reading comprehension across documents. arXiv
preprint arXiv:1710.06481.

Jason Weston, Antoine Bordes, Sumit Chopra, Alexan-
der M Rush, Bart van Merriënboer, Armand Joulin,
and Tomas Mikolov. 2015. Towards ai-complete
question answering: A set of prerequisite toy tasks.
arXiv preprint arXiv:1502.05698.

Sam Wiseman, Alexander M Rush, and Stuart M
Shieber. 2016. Learning global features for coref-
erence resolution. NAACL.

Zichao Yang, Phil Blunsom, Chris Dyer, and Wang
Ling. 2017. Reference-aware language models.
EMNLP.

47

A C-GRU update equations

For simplicity, we introduce the variable mt which

concatenates (||) the sequential and coreferent hid-

den states:

mt = αtφs(ht−1)||(1− αt)φc(hyt)

Then the update equations are given by:

rt = σ(W rxt + U rmt + br)

zt = σ(W zxt + U zmt + bz)

h̃t = tanh(W hxt + rt ⊙ Uhmt + bh)

ht = (1− zt)⊙mt + zth̃t

The attention parameter αt is given by:

αt =
expxTt k1

expxTt k1 + expxTt k2

where k1 and k2 are trainable key vectors.

B Implementation details

We use K = 3 layers with the GA architecture.

We keep the same hyperparameter settings when

using GRU or C-GRU layers, which we describe

here.

For the bAbi dataset, we use a hidden state size

of d = 64, batch size of B = 32, and learning rate

0.01 which is halved after every 120 updates. We

also use dropout with rate 0.1 at the output of each

layer. The maximum number of coreference clus-

ters across all tasks was C = 13. Half of the tasks

in this dataset are extractive, meaning the answer

is present in the passage, whereas the other half

are classification tasks, where the answer is in a

list of candidates which may not be in the passage.

For the extractive tasks, we use the attention sum

layer as described in the GA Reader paper (Dhin-

gra et al., 2017a). For the classification tasks we

replace this with a softmax layer for predicting one

of the classes.

For the Wikihop dataset, we use a hidden state

size of d = 64, batch size B = 16, and learn-

ing rate of 0.0005 which was halved every 2500
updates. The maximum number of coreference

clusters was set to 50 for this dataset. We used

dropout of 0.2 in between the intermediate layers,

and initialized word embeddings with Glove (Pen-

nington et al., 2014). We also used character em-

beddings, which were concatenated with the word

embeddings, of size 10. These were output from a

CNN layer with 50 filters each of width 5. Follow-

ing (Weissenborn et al., 2017), we also appended

a feature to the word embeddings in the passage

which indicated if the token appeared in the query

or not.

For the LAMBADA dataset, we use a hidden

state size of d = 256, batch size of B = 64, and

learning rate of 0.0005 which was halved every 2
epochs. Word vectors were initialized with Glove,

and dropout of 0.2 was applied after intermediate

layers. The maximum number of coreference clus-

ters in this dataset was 15.

C Task-wise bAbi performance

Task QRN
GA w/
GRU

GA w/
C-GRU

1: Single Supporting Fact 1.000 0.997 1.000
2: Two Supporting Facts 0.993 0.345 0.990
3: Three Supporting Facts 0.943 0.558 0.982
4: Two Argument Relations 1.000 1.000 1.000
5: Three Argument Relations 0.989 0.989 0.993
6:Yes/No Questions 0.991 0.962 0.976
7: Counting 0.904 0.946 0.976
8: Lists / Sets 0.944 0.947 0.964
9: Simple Negation 1.000 0.991 0.990
10: Indefinite Knowledge 1.000 0.992 0.986
11: Basic Coreference 1.000 0.995 0.996
12: Conjunction 1.000 1.000 0.996
13: Compound Coreference 1.000 0.998 0.993
14: Time Reasoning 0.992 0.895 0.849
15: Basic Deduction 1.000 0.521 0.470
16: Basic Induction 0.470 0.488 0.999
17: Positional Reasoning 0.656 0.580 0.574
18: Size Reasoning 0.921 0.908 0.896
19: Path Finding 0.213 0.095 0.099
20: Agent’s Motivation 0.998 0.998 1.000

Average 0.901 0.810 0.886

Table 4: Breakdown of task-wise performance on bAbi

dataset. Tasks where C-GRU is significant better /

worse than either GRU or QRNs are highlighted.

48

