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Abstract- Continuous phase modulation (CPM) schemes are 
generally used in peak-power limited transmission systems such 
as digital satellite communications. Their major drawback, how- 
ever, is a prohibitively complex receiver structure, particularly 
in modulation schemes with high packing densities. In this paper 
we propose feed-forward neural nets (NN) as receivers for partial 
response CPM systems. Our approach is to replace the entire 
receiver structure, excluding timing recovery, with a neural 
net unit whose inputs are time samples of the incoming base- 
band signals, and whose outputs are the decoded symbols. We 
present simulation results for coherent and incoherent NN based 
receivers, and compare their performance with the optimum 
maximum-likelihood (ML) receiver. A performance analysis of 
NN-based receivers at large SNR is presented. 

I. INTRODUCTION 

ONSTANT envelope continuous phase modulation 

C P M l  schemes are extremely important in peak power 

limited communication applications such as satellite trans- 

mission systems. These schemes are generally characterized 

by high packing densities and prohibitively complex receiver 

structures [l], [2]. For instance, while their packing density 

increases with partial response, or the overlap of the frequency 

pulses zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL,  and the alphabet size M ,  their optimal ML receivers 

require a bank of matched filters whose size grows as 

M L .  This bank of filters is followed by a Viterbi decoder 

which draws heavily on computational resources. Specifically, 

while reducing the modulation index h improves bandwidth 

efficiency, the number of states in the Viterbi decoder increases 

with the denominator of h. 
Applications of neural networks in communication systems 

have been proposed in a variety of contexts such as ML 

sequence detection, and decoding error correction codes [3], 

[4]. In this paper, we develop neural network based receiver 

structures for constant envelope CPM systems. Our motivation 

is to reduce the complexity of implementation by casting 

the demodulation task into the more general framework of a 

neural network classification task. In so doing, we replace the 

matched filter banks and the Viterbi decoder of the optimal 

receiver with a feed-forward net trained to demodulate the 

incoming baseband signal. Although the performance of this 
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receiver is suboptimal: it is our hope that its implementation 

for more complex modulation schemes, which exploit the reg- 

ularity of neural network architectures will become practical 

as VLSI analog and/or digital neural network chips become 

workable commodities. 

The organization of the remaining part of this paper is as 

follows. In Section I1 we review optimal receivers for CPM 

schemes. Section I11 introduces the "-based receiver and 

describes simulation results of its performance. Section IV 

contains analytical results on noise propagation in multilayer 

feed-forward neural networks at large SNR, and their ap- 
plication to our particular problem. Section V has a brief 

discussion of NN classifiers' complexity and performance. 

Finally, Section VI includes conclusions and directions for 

future research. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
11. OPTIMAL CPM RECEIVERS 

In this section we briefly review the optimal maximum- 

likelihood CPM receiver zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 5 ] .  Consider a phase modulated 

signal 

s( t ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAii) = - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcos(w,t + #(t, a) + &) J'," 
where 

35 

4(t ,  ii) = 27rh zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 a,q(t - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZT). 
2=0 

a is the data stream wil h a, E { &l. * 3,  . . . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf M - l}, for even 

values of the alphabet size, M ;  q( t )  is the phase pulse with 

a corresponding frequency pulse lasting L symbol intervals, 

h is the modulation index, E is the energy per symbol, 

q50 is the phase offset and wc is the carrier frequency. For 

coherent demodulation schemes it is assumed that has been 

recovered; thus without loss of generality $o is set to zero. 

When the modulation index h is rational, as h = $, a CPM 

signal can be described by a finite-state Markov process, whose 

state a; a given symbol interval is specified by the correlative 
state vector U, = ( ~ ~ - 1 ,  un-2.. . . u n - ~ + l )  determined by the 

last L - 1 letters and the phase state 8, = [nh C"-!m a.] 

mod 2n. The phase state encapsulates the phase history prior 

to the last L letters for the nth symbol a,. There are MLP1 
(P- 1P.rr correlative states and p phase states, 0, = 0, . . . . , - 

P '  
and therefore p M L - l  states in the entire state space. 

In the ML receiver the incoming signal is multiplied by 

cos(w,t) and sin(w,t) and low-pass filtered in order to gen- 

erate the in-phase and quadrature components. As shown in 

009&6778/92$03.00 0 1992 IEEE 

n 



DE VECIANA AND ZAKHOR: NEURAL NET-BASED CPM RECEIVERS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I I I I - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAl e+ML 

3-, - 

1397 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S=l 

opt 
.... 

Fig. 1. Conventional optimum receiver. 

Fig. 1, these components are then fed into 2 . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM L  matched 

filters which effectively calculate the correlation between the 

received signal and all possible transmitted signals over one 

interval given the present phase state [6]. Linear combinations 

of the sampled outputs of the matched filters are used by the 

Viterbi algorithm to decode the transmitted symbols. 

Incoherent demodulation is a significantly harder problem 

than coherent demodulation. The signal can no longer be 

characterized by a finite set of states, resulting in a cum- 

bersome theoretical formulation that requires the calculation 

of expectation integrals with respect to the unknown signal 

phase [5].  The suboptimal incoherent receivers used in practice 

impose restrictions on the alphabet size, modulation index, 

and the partial response overlap [5]. In order to fully exploit 

the bandwidth efficiency of CPM schemes, one cannot remain 

within these constraints. 

In the next section we present a class of receivers which 

could be used for both coherent and incoherent demodulation 

with arbitrary phase pulse, modulation index and alphabet size. 

Their performance is then compared with the optimal ML 
receiver. 

111. NEURAL NETWORK RECEIVERS 

In order to motivate the use of neural networks we first 

discuss some related issues in CPM demodulation. This is 

followed by a more detailed introduction in Section 111-B. 
Simulations are presented in Section 111-C. 

A .  Why Neural Networks? 

We propose to demodulate the incoming signal on the basis 

of samples from a moving time window about the symbol 

interval of interest. This choice is analogous to sliding-block 

schemes recently proposed as a parallelizable algorithm for 

Viterbi decoding 171. Such algorithms exploit the well known 
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Fig. 2. Probability of error versus SNR for minimum Euclidean distance. 

idea of finite truncation depth in calculating the distance met- 

rics for the Viterbi algorithm. The viability of these methods 

for decoding convolutional codes was studied by Heller and 

Jacobs [SI. In their study they show that survivor paths are 

likely to merge 4 to 5 constraint lengths' into the trellis 

regardless of the initial state. Thus if one allows time for the 

survivor paths to merge (or synchronize) and then allows for 

an acceptable truncation depth before making decisions, one 

can obtain close to optimal performance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[7].  
The above obviates the idea of demodulating on the basis of 

a finite number of past and future symbol intervals. Moreover, 

sliding block decoders can be implemented by a brute force 

approach such as table lookup [9]. However table lookup 

quickly becomes impractical as the constraint length increases, 

due to the memory requirements. 

For CPM the constraint length is analogous to the parameter 

L or partial response in the system. Accordingly, phase trellis 

paths should merge before some appropriate number of symbol 

intervals proportional to L. As above we consider a finite 
window of past and future intervals about the one which is 

to be demodulated and find the path of minimum Euclidean 
distance. Once again, since there are only a finite number 

of possible paths, it suffices to calculate the vector (path) 

with minimum distance from the incoming signal to determine 

the transmitted symbol. Fig. 2 shows the performance of 

such an approach versus that of Viterbi demodulation with a 

truncation depth of 11 intervals zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[5 ] .  As seen, the performance 

is almost as good as Viterbi for low SNR and improves as 

the number of samples per interval are increased. Although 

the results are good, this approach is not feasible due to the 

complexity of evaluating the minimum distance. For instance 

the case of 2 samples per interval requires approximately 

12 000 multiplies per decoded symbol. 

The motivation for using neural networks, lies in their 

ability to approximate functions. Both analytical and ex- 

perimental results have been reported verifying the ability 

The amount of memory in the convolutional coder. 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3. Generic architecture 

of multilayer feed-forward neural networks to learn, and 

approximate arbitrarily complex nonlinear functions, [lo], 
[ 111. Funahashi reports a theoretical result, demonstrating the 

generality of two-layer feed-forward network approximation 

for continuous functions, using Sigmoid nonlinearities [ 121. 

Lapedes and Farber present an intuitive geometrical approach 

to explaining NN operation in performing interpolation or 

extrapolation [ 131. These two functions can alternatively be 

used for signal processing or symbol processing applications. 

For our application the desired function is the demodulation 

map, bypassing an explicit calculation of Euclidean distances 

and metric comparisons. Clearly the neural net implementation 

will be approximate. We conjecture, however, that the NN’s 

“internal representation” will make use of the special structure 

of a modulated signal to render the demodulation map effec- 

tively [14]. The remainder of this section is dedicated to an 

investigation of this idea with respect to the problem of CPM 

demodulation, and some simulations. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B. Neural Network-Based Receiver 

A feed-forward neural network has one or more layers of 

identical nonlinear units, which are densely interconnected 

from one layer to the next by variable weight links [lS]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
An example of a two layer network is shown in Fig. 3. The 

input layer branches scaled versions of the inputs to the first 

nonlinear layer, commonly called a hidden layer. Hidden nodes 

are those whose outputs are not directly available. In this 

example there is only one hidden layer feeding into the output 

nodes. The nonlinear hidden and output nodes compute the 

composition of a Sigmoid with the weighted sum of outputs 

from the previous layer: 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx; denotes the ith input, wj; denotes the weights from 

the ith input node to the j th  hidden node, T denotes the 

“temperature” controlling the sharpness of the nonlinearity 

(see Fig. 4) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc?, and oJ denote the bias and output of the 

j t h  hidden node, respectively. 

The continuous phase demodulation problem is an inher- 

ently well defined albeit complex one, and therefore provides 
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Fig. 4. Sigmoids for different temperatures. 

a natural context for investigating the robustness of neural net 

classifiers. In applying neural networks to CPM demodulation 

a number of issues need to be addressed. These include the 

following. 

1) Choice of the inputs and output of the network. 

2) Network architecture, e.g., the number of layers, the 

number of nodes per layer, the nonlinearity function used 

at each node, and the connectivity between the layers. 

3) Generation of the training set. 

4) Training procedure. 

5) Performance characterization. 

In what follows we discuss each of these issues separately. 

1) Representation: The input vector consists of the sam- 

pled baseband signal windowed about the symbol interval 

to be demodulated. The observation window spans several 

intervals centered about the interval of interest. Since CPM 

signals with partial response L spread the information as- 

sociated with a given symbol over L intervals, we select 

an observation window of minimum length 0 = 2L - 1. 
Thus, for the n,th symbol interval, the signal is sampled 

over [ (n  - - 1)T]. Strictly speaking, one 

sample per interval per quadrature component suffices to 

completely specify a unique phase path to within a phase offset 

&. However, we found that increasing the number of samples 

per interval S improves the network’s performance. Thus, the 

input is an I = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 x 0 x S dimensional vector, consisting of 

samples from both the in-phase and quadrature components of 

the received baseband signal over an observation window of 

length 0 intervals. 

The output corresponds to a binary representation of the M 
symbols in the alphabet. The number of output nodes is thus 

at least log, M .  Each output node is followed by a hardlimiter 

which clips the output signal to either 0 or 1. For a given input 

vector, the output corresponds to the symbol associated with 

the interval about which the observation window is centered. 

2) Network Architecture: The above inputJoutput selection 

determines the number of input and output nodes, but leaves 

) T. ( n  + 



DE VECIANA AND ZAKHOR: NEURAL NET-BASED CPM RECEIVERS 1399 

the number of hidden nodes unspecified. Much effort has gone 

into quantifying the number of hidden nodes needed for a 

given problem [16], [17]. However the results are limited and 

do not take potentially noisy inputs into account. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGenerating the Training Set: An element in the training 

set, denoted by ( X ,  Y ) ,  consists of an input vector X and the 

desired output Y ,  with components zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAyi, respectively. 

For coherent demodulation there is a finite set of phase 

states resulting in a finite number of possible noiseless signals 

within a given observation window. The training set is formed 

by systematically generating all these signals, and sampling 

them S times per interval. The size of the complete set is 

pML-l x MO where the first term corresponds to the number 

of possible initial states depending on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOn and the correlative 

state vector, and the second term corresponds to the total 

number of possible transmitted symbol sequences over 0 
intervals. 

The number of exemplars ( X ,  Y )  for incoherent demodula- 

tion is no longer finite, and one must arbitrarily decide the size 

of the training set. In this case the input vectors are samples 

of curves in the hyperdimensional space RI, corresponding to 

each possible sequence of transmitted symbols, and parame- 

trized by the unknown phase zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$o. There are M L P 1  x MO such 

curves to be distinguished by the network, and we choose s = 
5, 10, 20 evenly spaced samples from each curve, so the size 

of the training set is s x ML-’ x MO zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4) Training: Error-backpropagation was used to train the 

networks [14]. This is an iterative gradient descent algorithm 

which minimizes the error between the actual and desired 

outputs, by adjusting the network’s weights. For each sample 

in the training set two steps are executed. 

1) Compute the error between the actual output due to the 

existing weights and the desired output associated with 

the input vector in the training set. 

2) Backpropagate the error signal from the output layer 

towards the input layer in order to update the weights. 

The samples are arranged in random order to avoid bias- 

ing the network for any particular vector.2 The convergence 

criterion for the training process is 

1 
MSE = - C (d i  - yZ)’ < 0.0l2 

N i  

where the summation is over the exemplars in the training 

set, and di and yi are the desired and the actual output for 

the ith exemplar. The convergence of this procedure is not 

guaranteed, although some adjustments can be made in order 

to improve convergence. Two parameters generally referred 

to as the learning rate and momentum, control the extent to 

which the weights change from one iteration to the next. For 

the simulations presented in this paper the momentum and 

learning rate are, respectively, 0.5 and 1. 

5) Performance Evaluation: Our proposed NN-based re- 

ceiver operates on samples of the incoming signal in a 

sequential manner. It decodes the current symbol, shifts the 

input samples, and decodes the next symbol. The receiver’s 

performance however, is measured by the probability of 

21t is not clear what an optimal ordering would be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Fig. 5. Prototype of neural net receiver. 

TABLE I 
SUMMARY OF DIFFERENT ARCHITECTURES EXAMINED FOR COHERENT CASE 

~~ 

number of inputs trainging set size O S H  

5 1 20 
5 2 10 
5 2 20 
5 2 30 
7 1 20 
7 2 10 
7 2 20 
7 2 30 
9 1 20 
9 2 10 
9 2 20 
9 2 30 

10 
20 
20 
20 
14 
28 
28 
28 
18 
36 
36 
36 

640 
640 
640 
640 

2560 
2560 
2560 
2560 

10240 
10240 
10240 
10240 

error P,, for a large collection of noisy input vectors at a 

given signal-to-noise ratio (SNR). The channel is simulated 

by adding identically distributed independent Gaussian noise 

samples to the input samples. The bandwidth of the receivers 

front-end low-pass filter is assumed to be the -20 dB 

bandwidth of the CPM signal. 

C. Simulations 

A general purpose neural net simulator3 was used to perform 

tests on different topologies and modulation schemes. We 

denote a scheme with a raised cosine frequency pulse by LRC 
where L is the partial response length or memory of the signal 

[5]. Tests were conducted for coherent and incoherent binary 

3RC with modulation index h = 0.8. The probability of error 

was estimated by simulating the receiver until 100 errors were 

observed, for various SNR. Some further considerations on 

estimating P, can be found in the appendix. 
Fig. 5 shows the prototype of the 

networks that were considered. The variable parameters are 

the number of intervals in the observation window 0 = 5, 
7, 9, the number of samples per interval S = 1, 2, and the 

number of hidden nodes H = 10, 20, 30. Table I shows the 

relative sizes of the input and the training sets for different 

choices of these parameters. 

1) Coherent Binary 3RC: 

Rochester Connectionist Simulator. 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6.  Effect of increasing sampling, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH = 20. 

The sequence of plots in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 shows P, versus SNR 

for three sets of networks with different observation window 

length and sampling rate, but a fixed number of hidden nodes. 

From these plots it is clear that improved performance can 

be obtained with S = 2. Note, however, that increasing 0 
from 5 to 7 to 9 while keeping H = 20, does not necessarily 

improve performance; this will be discussed more thoroughly 

in Section IV. 
For the plots in Fig. 7 the number of hidden nodes H is 

increased for different observation intervals 0, while S = 2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
As seen, increasing the number of hidden nodes improves 

the receiver's performance. However, the incremental im- 

provement decreses as the number of hidden nodes becomes 

too large. A good rule of thumb for achieving the best 

performance for a fixed number of inputs is to have ap- 

proximately as many hidden nodes as input nodes. In so far 

as the classification of the training set vectors is concerned, 

many of the hidden nodes are redundant. Indeed, we found 

that removing hidden nodes with weak links to the output, 

did not hinder the network's ability to classify the training 

symbols, or improving the training scheme. 

2) Incoherent Binary 3RC: The incoherent NN receiver is 

attractive because it integrates the demodulation and phase 

recovery modules into one. As explained in Section 111-A, the 

training set for incoherent demodulation is always incomplete 

since there are infinitely many exemplars. 

Fig. 9, shows the performance of an incoherent NN receiver 

for binary 3RC. As expected the receiver's performance is 

improved by increasing the number of training vectors ( p )  
corresponding to different possible initial phases zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$0, from 5 
to 10 to 20. In addition, as in the coherent case, an increase 

in the observation interval and the number of hidden nodes 

improves the receiver's performance. Finally, note that the 

input vectors used to test the incoherent receiver have a truly 

random initial phase 40, which will not necessarily coincide 

with those in the training set. 

IV. PERFORMANCE ANALYSIS 
set. However these nodes do have an impact when noise is 

introduced. 
In this section we present an approximate performance 

analysis for a multilayer feed-forward neural net classifier at 

Fig. 8 shows the superposition of the best performance 

curves corresponding to each plot in Fig. 7, together with that 

of the simulated optimal receiver with a truncation depth of 

NT = 11 [5 ] .  While increasing 0 and H results in a significant 

improvement at high SNR, the NN receiver performance is still 

z.5 dB worse than the optimal at P, = low3. Possible ways to 

reduce this performance gap include increasing the sampling 

rate to exploit noise correlation, feedback of previous decoded 

high SNR and apply the results to our NN based receiver. 

1 )  Characterization: Consider the prototype two-layer feed- 

forward net shown in Fig. 5. For a given input vector in the 

training set we define the nominal value mj of a node to 

be the linear combination of noise free inputs going into that 

node. If independent Gaussian noise ni of variance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0; is added 

component-wise to the inputs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxi, the output of the j th  hidden 

node can be expressed as 
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sufficiently small (2) can be linearized about the node's 

nominal value to obtain, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I 

0, = a(m,) + i~(m,)  x wJZnl (3) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a = 1  

where b(.)  denotes the derivative of the Sigmoid (Fig. 10). 

Consider the propagation of the noise component n, from the 

ith input node to the output. As seen in (3) n, is scaled by 

Fr(m,)wJz upon reaching the j th  hidden node, whence it is 

scaled by a, before reaching the output. By summing over 

all hidden nodes we obtain the total contribution of nz to the 

output signal, 

H 

Cci(m,)a,ur,, x 72%. 

,=1 

This corresponds to a noise variance of 
Fig. 8. Comparison of best performance plots 

I I 

2 = 1  

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU ( . )  denotes the Sigmoid nonlinearity. For na Finally, by summing over all input nodes we obtain the noise 
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Fig. 11. Probability of error. 

Fig. 10. Linearizing at nominal value 

variance reaching the output or threshold unit for the vector X zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I ( H  

If the noise variance is assumed to be small, the output 

signal will have a Gaussian distribution with the variance in 

(4). This can then be used to obtain the probability of error of 

the NN classifier. Later we shall see that this is not entirely 

justified. The ratio between the output and the input noise 

variance for a given vector X is defined to be its noise factor, 

Furthermore, by averaging zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPex over the entire training set, 

we obtain the P, for the classifier, 

where M is the total number of vectors zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX' in the training set. 

Given the shape of the nonlinearity, one might define 

two possible states for each node: linear and saturated. A 

rough definition of these might be surmised from Fig. 4 

where the Sigmoid nonlinearity in (1) is plotted for different 

temperatures. For any input vector X in the training set, we 

define a set Ldy which contains the hidden nodes operating in 

the linear region. By approximating the slope of each linear 

node by &, i.e., the slope of the Sigmoid at 0, and assuming 

saturated nodes do not contribute to the output noise, we obtain 

the following expression for the noise reaching the threshold 

unit: 
For each input vector X the nominal value of the threshold 

unit, mT,, and the estimated noise variance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN f-yo;, can be 

vector, 3EC.Y 

used to obtain the probability of incorrectly classifying that = (A ) 2  { ~ ~ w i ~ ~ 2 ~ i .  (6) 

Although (6) is very approximate, it does provide insight by 

decoupling the factors affecting the performance. These factors 

are: the product of weights, the temperature and the number 

of saturated nodes, and from (5) the nominal value of the 
threshold unit. Through this characterization we can establish 

Pex z Q (  I m T x '  ) 
where Q( . )  is the complimentary distribution function of the 

standard Gaussian (Fig. 11). 

d m z  
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Fig. 12. Input versus output variance for a NN receiver 
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Fig. 13. Predicted and experimental noise factors. 

a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApriori which classifier will have better performance at high 

SNR. 

2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAResults: Our experimental results bear out some of the 

above relationships. First, we examine the validity of lineariz- 

ing the network for large SNR. Fig. 12 shows the relationship 

between the input and output noise variance for four vectors 

in the training set of a given classifier. The data has been 

plotted on linear and log-log scales to make the "linear" region 

stand out. As seen, typically the linearity assumption holds if 

the input noise variance does not exceed 0; E 0.025, which 

corresponds to an SNR of 13 dB in the simulations presented 

in Section 111-B. 

Secondly, we confirm that the expression obtained for 

the noise factor, (4), actually corresponds to the ratio of 

output/input noise variance for a classifier operating in the 

linear region. For each vector in the training set of the 

network with S = 2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 = 5 ,  H = 10, we calculated 

the theoretical noise factor NfAy,  and estimated the output 

variance through simulation for two levels of input noise, 

SNR = 13 db, and 20 dB. The ordered results are shown in 

Fig. 13, which contrasts the experimental and predicted results 

for the entire training set. As expected, for even larger SNR the 

results match up closely. We note however that there is a large 

variation in the noise factors for vectors within a given training 

set, e.g., from 1 to 300. Indeed some of the vectors have 

particularly undesirable characteristics, in the sense that they 

would allow noise to propagate to the output and ultimately 

result in errors dominating the classifier's performance. 

Finally, we calculate the P, using (5) .  Table 11 shows both 

the experimental and theoretical P, for coherent receivers 

at SNR = 13 dB. There are large numerical discrepancies 

between the predicted and experimental P, although the quali- 

tative behavior of the classifiers is preserved. Indeed the results 

confirm some of the trends suggested in Section 111-B. 

1) Increasing the number of hidden nodes results in better 

performance, but as the number of nodes becomes 

comparable to the number of input nodes, the improve- 

ment saturates. For example, a large improvement in 

performance results for 0 = 7 as H increases from 10, 

while for N = 20 and 30 the P, is comparable. The 

same pattern holds for 0 = 5 and 9. 

2) An increase of the observation window for a fixed 

large number of hidden nodes improves performance. 

For example compare lines 5, 8, and 11 or 4, 7, and 
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10 in the table. Note however that when predicted 0.00 

TABLE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY X l d  

EXPERIMENTAL AND THEORETICAL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA’s FOR COHERENT RECEIVERS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3.00 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.00 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1.00 

line P, x 10‘ @ 13 dB P, x l o 4  @ 13 dB 
number S 0 H experimental predicted 

1 1 5 20 19.06 6.54 
1 7 20 59.72 5.35 
1 9 20 159.74 44.34 

4 2 5 10 85.27 5.44 
2 5 20 8.84 2.68 
2 5 30 6.61 0.50 

7 2 7 10 209.34 68.65 
2 7 20 3.99 0.64 
2 7 30 4.16 0.80 

10 2 9 10 60.88 5.34 
2 9 20 5.09 0.03 
2 9 30 < 1  0.49 

_ -  .~ - - 

I I 1 I I l x  

Output-distribution 

I I I I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3- 

unreliable; compare lines 6, 9, and 12. 

3) Increasing sampling improves performance if there are a Fig. 14. Density of noise reaching the output node. 

sufficient number of hidden nodes. Compare lines 1 and 

5 or 2 and 8 in the table. 

As seen in Table 11, our estimates for P, are somewhat 

Densities-Mean=l 
P M  

20.00 

optimistic. A closer look at the actual distribution of the 

signal reaching the output node reveals that it is not truly 

Gaussian, i.e., it is skewed, with a heavier tail than expected 

examples of such noise distributions. The probability density 

of a random variable generated by passing Gaussian noise 

through a Sigmoid nonlinearity can be derived as shown in 

the Appendix B. Fig. 15 shows such distributions for noise 

of mean 1 and a range of standard deviations from 0.1 to 

1.8. Clearly, such a random variable resembles a Gaussian 

radically different behavior as the noise variance is increased, 

or if the node is almost saturated. The probability distribution 

of the output noise is actually a weighted convolution of such 

nonlinearity. 

analysis are in order. Equation (6) shows that improved 

pointing away from the saturation region. Fig. 14, shows two 15.00 

10.00 

for small variances (i.e., the large SNR case), but can have a 5.00 

distributions and inherits the skewing due to the saturating 0.00 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.00 0.20 0.40 0.60 0.80 

3) Discussion: A few comments about the above noise Fig. 15. Density of Gaussian noise passed through a Sigmoid 

performance might be expected from a net whose hidden 

nodes are likely to be saturated, whose nonlinearities are very 

smooth (e.g., large T) ,  and whose weights reduce the sums 

However one should be cautious in interpreting this statement. ~ I ~~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA\ 2  

and therefore results in weights for which hidden nodes are 

unlikely to be saturated. 

mance of neural net classifiers. For example one could add 
zJELx Q J W J 2  while still properly classifying the training set.4 

we can suggest Other ways Of improving the noise perfor- 

Indeed, the number of linear nodes, the- temperature, and the the term { zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE;”=, d-(mj)ajwJa } -  to the cost function 

weights are highly interrelated quantities resulting from or 

affecting the training algorithm. For instance an increase in 

the temperature, for the same training algorithm, does not 

necessarily improve the network’s performance. In fact, we 

found experimentally that while increasing T from 1 to 2 

results in a marginal increase of performance, further increases 

from 2 to 3 actually degrade the performance significantly 

(see Fig. 16). This may be explained heuristically by noting 

that convergence is slower when training at high temperatures 

4Note that the terms in this summation are both positive and negative 

minimized by t ie  training algorithk, in order to explicitly 

reduce noise propagation. Similar modifications have been 

proposed by Chauvin as means to obtain optimal use of hidden 

nodes [18]. However, our proposed modification, cannot be 

easily integrated into the backpropagation scheme. Indeed the 

noise characteristic of a network is a global property, in the 

sense that the effective amount of noise propagating through 

a given link depends directly on all of the weights in the 

network and the nominal state of each node [see (4)]. Since 

backpropagation relies on layer by layer updates, more direct 

optimization methods would be required. 
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Fig zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA16. Training at different temperatures: coherent 3RC network zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 = 3, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
H = 20, S = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Pe Effec zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt-of-training-with-noise 

nosy 

i 

""f 
3 t  

Fig. 17. Training at noise: coherent 3RC network 0 = 9. H = 30. S = 2 .  

Another intuitively pleasing way to improve the network's 

performance is to train with noise. Blanz and Gish [19] have 

indicated that neural net classifiers are impervious to training 

sets containing outliers5 This suggests that training with noise 

would still result in a viable network for vector classification 

while potentially improving network performance in noise. 

We tentatively verified this by using the following training 

scheme: first, we trained without noise until the network met 

the stopping criteria in Section 111-b, then we trained with 

vectors having an SNR = 13 dB. The second phase lasted 

10 passes through the entire training set, or approximately 

100 000 iterations. As evidenced in Fig. 17 our best network's 

performance was improved by 1.5 db at P, = lop3. We did 

not pursue this further even though, one can envisage many 

different training schemes which vary the temperatures as well 

as the noise level. Research on NN applications in nonlinear 

filtering for signal detection in non-Gaussian noise or image 

processing also exhibit the potential of training with noise 

[20], [21]. In particular it would be of interest to explore 

the possibility of using adaptive non-linearities, such as feed- 

forward networks, which could accommodate time varying 

channel or noise characteristics. 

We have suggested several approaches to improve and 

possibly optimize the performance of NN classifiers in noise. 

Further study is required to determine which of these will 

pay off, and to what extent such approaches can improve the 

performance of our receiver. 

V. COMPLEXITY COMPARISON 

This section is devoted to comparing arithmetic complexity 

of conventional receivers to that of NN based receivers. This is 

particularly important since, as mentioned earlier, we can gain 

from using the NN paradigm if hardware requirements can 

be significantly reduced while performance is still reasonable. 

'Training vectors whose distance is very large from the centroid of its class, 
when compared to the eigenvalues of the covariance matrix of that class. 

Other methods of obtaining such a tradeoff also exist. In 

particular, reduced complexity Viterbi decoders have been pro- 

posed as a viable means to decrease demodulation complexity 

[6]. We begin with an overview of recent studies comparing 

NN classifiers with other statistical and classical classification 

methods. 

A number of criteria can be used to compare trainable 

classifiers. These include implementation cost in terms of area 

and power, arithmetic and memory requirements, performance, 

training time, speed of decoding, and even training program 

complexity in terms of lines of code. In addition, it is important 

to examine classification tasks with different characteristics, 

such as the complexity of decision surfaces, presence of 

outliers in the training set and so forth. In their study of eight 

different types of classifiers, Lee and Lippmann noted that 

with rare exceptions similar error rates were obtained for the 

four applications considered [22]. They found however, that 

there was a wide variation in the required training period. For 

instance, on a serial computer, a k-nearest neighbor classifier 

trains 2-3 orders of magnitude faster than a multilayer feed- 

forward network. They also noted that NN classifiers made 

moderate usage of memory while classifying vectors quickly. 

Blanz and Gish's study also addresses the implementation cost 

of several classifiers in digital LSI. On the basis of their results, 

they conjectured that problems with large numbers of sample 

vectors and or categories can be more efficiently addressed 

by way of connectionist classifiers [19]. Blanz and Gish 

tested the susceptibility of classifiers to outliers in the training 

data set, and found that neural networks were particularly 

robust, although they point out that this is in part due to 

the iterative adaptation scheme. As mentioned in Section IV, 
this suggests that one could potentially train with noise and 

still get acceptable if not improved performance. Both studies 

indicate that there are many tradeoffs to be taken into account 

in selecting a classifier; this requires a careful study of the 
allowed hardware, restrictions on the training set, testing and 

adaptation time. 
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Other interesting results on the complexity of finite precision 

NN classifiers have been reported by Dembo, Siu, and Kailath 

[23]. After making some rather general assumptions, they 

show that perceptrons6 require only zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 ( n  log n )  bits of storage 

for parameters while a table lookup classifier requires 0 (n2) .  
Haussler and Baum, tackle issues of complexity, sufficient 

training sample size and performance, in a somewhat more 

abstract setting; they establish a lower bound for the number 

of samples versus network size that is required for a NN 

to correctly classify examples drawn randomly from a given 

distribution [24], [25]. 

Due to the variety of possible complexity criteria available, 

the task of comparing our NN based receiver with conventional 

methods is nontrivial. We shall first restrict ourselves to a 

simplistic comparison of arithmetic complexity. A network 

with I inputs units, H hidden units and 0 output units 

requires H x ( I  + 0) multiplies and additions per symbol 

interval. In a digital implementation, the Sigmoid would be 

evaluated by way of a table lookup, and H + 0 lookups would 

be required per symbol interval. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAn analog implementation 

of the nonlinearity, is also conceivable, although this may 

degrade the precision of the nonlinearity. It is not clear at this 

point what level of accuracy is required in NN architectures 

[26], [19], [27]. Thus, our best performing NN with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 = 
36. H = 3 0 , 0  = 1, requires about 1110 adds and multiplies, 
in addition to 31 Sigmoid evaluations per demodulated symbol. 

For comparison, consider conventional CPM demodulation. 

The arithmetic complexity is proportional to the number 

of trellis states, p . ML-'.  One can exploit the symmetry 

of the in phase and quadrature components to reduce the 

required number of matched filters to 2 . M L ,  or 16 filters for 

binary 3RC. Suppose we use filters with 10 taps each,' then 

160 multiplies and adds are required [SI. An additional over- 

head of 40 x 2 multiplies, 40 x 3 adds, and 80 trigonometric 

evaluations to be implemented by table lookup over the 5 

possible phase states are required to form the inputs to the 

Viterbi processor (see Fig. 1) [SI. Viterbi decoders use efficient 

recursive algorithms to calculate the path metrics, however, 

they require large amounts of memory to keep track of the 

actual paths which will be used to ultimately make symbol 

decisions. At each stage, an add-compare-select function for 

each phase state is required, that is 40 adds and 40 compares. 

An additional, 20 compares are required to decode the symbol. 

An approximate total would give 320 adds, 220 multiplies, 

and 60 compares, in addition to 80 coarse trigonometric table 

lookups per stage. When compared to the figures obtained for 

the NN classifier, we conclude that NN numerical complexity 

approximately exceeds that of a conventional implementation 

by a factor of 3. 

Finally, note that a digital implementation of a NN decoder 

would require the storage of 1110 weights in ROM versus 

the 160 filter coefficients needed in a conventional receiver. 

However, NN require virtually no RAM while a conventional 

receiver would need at least 220 RAM locations, to keep track 

'These are the simplest form of feed-forward networks, i.e., no hidden 

'We are assuming a reasonable sampling, of course this needs to be 

layers. 

optimized. 

of trellis paths. This is but a crude comparison of memory 

requirements, since the accuracy used to represent weights, 

filter coefficients and path metrics, has been disregarded, but 

it shows a tradeoff between ROM and RAM. This tradeoff 

is important, since RAM can take up 50% of the area of a 

custom chip of Viterbi decoding [28]. 
In spite of the above discussion, the NN architecture still 

has some advantages. The first is the regular and parallelizable 

nature of NN, which one might easily map to homogeneous 

architectures, such as systolic arrays, which are particularly 

suitable for VLSI implementations. Indeed the Viterbi algo- 

rithm is an inherently serial algorithm in that previous decoded 

symbols are required to decode the present and future ones. 

Parallel implementations of the Viterbi algorithm based on 
block partitioning of the data require synchronization periods, 

in which the initial state of the trellis path is estimated, 

before decoding can begin [7]. This is a fact the main reason 

for overlapping the partitioned blocks. The abovementioned 

synchronization period can potentially limit the extent to which 

the algorithm can be parallelized. The NN implementation 

studied has no feedback, thus by using more than one network 

in parallel, we can make the demodulation rate arbitrarily large. 

A second advantage lies in the speed of demodulation. Clearly, 

NN receivers would be faster since they require only a forward 

pass, while conventional decoders usually backtrack in order 

to obtain demodulated symbols. A third potential advantage, 

is to provide a form of nonlinear equalization by allowing 

online NN weight adaptation to the noise characteristics of 

the channel [20]. A fourth advantage, might arise from a 

favorable scaling of the cost of a NN receiver to an increase 

in the complexity of the modulation scheme. Indeed, it has 

been noted that as the problem size increase, i.e., number of 

features or classes, the NN architecture has an implementation 

cost advantage over other statistical and polynomial classifiers 

[19]. This point is more compelling when one notes that 

conventional methods scale as M L ,  in both arithmetic and 

memory requirements. 

Actually, from an implementation point of view, one could 

hardly expect a general purpose classifier such as a neural 

network, to compete with special purpose hardware, which 

exploits the particular structure of a problem. The implemen- 

tation of Viterbi decoders in VLSI, is a subject of current 

research. Several impressive chips have been produced for 

decoding convolutional codes at very high data rates [28]. 

Research on NN architectures is still in its infancy. Important 

issues still need to be addressed such as how to maximally 

exploit the regularity of NN architectures, how to implement 

the required connection density, and how to provide some fault 

tolerance. 

VI. SUMMARY AND CONCLUSIONS 

We developed a class of neural net-based receivers for CPM 

schemes. From a functional point of view, these receivers 

are equivalent to the bank of matched filters and the Viterbi 

decoder found in conventional optimal ML receivers. Prelim- 

inary simulations, show that for binary 3RC with h = 0.8 the 

performance is within 3.5 dB of the optimal ML receivers at 
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P, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= We expect this margin to be partially reduced 
by optimizing both the architecture and training procedure. 

A comparison of arithmetic complexity for conventional and 

NN binary 3RC receivers shows that a traditional approach 

is still superior. However, in the light of the comparisons 

done by Blanz and Gish we believe these receivers will 

scale advantageously as the complexity of the CPM scheme 

increases [19]. The burden of training such networks will 

certainly decrease as new algorithms are reported to be orders 

of magnitude faster than back-propagation [29]. Finally if 

effective parallel architectures are developed for adaptation, 

a receiver could do online training, to accommodate specific 

channel characteristics. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
An approach for analyzing the noise performance of mul- 

tilayered feed-forward NN classifiers at large SNR has been 

proposed. We found that for large SNR, the ratio between the 

output and input noise variance can be analytically predicted 

and depends on the number of saturated nodes, the product of 

the input an output weights, and the temperature parameter 

of the nonlinearity. Our predictions of P, only match the 

experimental data qualitatively, allowing us to find zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa priori 
which networks will have a better performance. Further work 

is needed to exploit these findings in developing effective 

training algorithms. 

This particular application of the neural nets shows their 

capability beyond conventional associative memories where a 

fixed number of exemplars are learned. As demonstrated by the 

incoherent receiver, by training the net to classify a subset of 

the possible input/output pairs, one obtains a network capable 

of demodulating the entire signal space. In this sense, the net 

has captured that structure of the sampled received signal as 

well as the demodulation function. 

Further work is required to study both the complexity 

and performance of the proposed NN approach for a more 

varied range of CPM schemes, under more realistic noise 

conditions. In particular, the possibility of adaptation to time- 

varying channels, and the use of preprocessing would be 

interesting. It may also be possible to extend the proposed 

analysis method using a more complex model based on the 

noise characterization derived in appendix. 

APPENDIX A 

ERROR ESTIMATOR 

ACCURACY OF THE PROBABILITY OF 

In our experiments the probability of error of our classifier 

was estimated by simulating the receiver on a random se- 

quence of inputs until 100 errors occurred. However, in light 

of the results of Section IV one might question whether this 

procedure is appropriate. Namely, we found that some of the 

vectors in the training set rarely result in errors while others 

have a relatively high probability of error. The discussion that 

follows addresses this issue in order to establish whether the 

experimental figures we obtained are valid. 

First, we consider a sing]: input vector X and the estimator 
of its probability of error zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPex based on E Q ~  the number of 

errors that occurred during Q X  trials, Pex = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. Assuming 

that the true probability of error is Pex we find that the 

~ 

. 
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estimator PeX has a binomial distribution with mean Pex, 
and variance Pex( l  - P,,)/&x. It is thus unbiased and 
consistent. 

By requiring that the standard deviation of the estimator be 

h t h  of the mean (i.e., an error of about 10%) we obtain, 

100 
Q x z a - .  

Pex 

Thus, for each vector in the training set we require Qx trails 

where Q X  depends on the actual probability of error of that 

vector. 

The P, of the classifier for the entire set of all possible 

input vectors is estimated by the average Pex of all vectors. 

This guarantees that the overall standard deviation of the esti- 

mated probability of error is h t h  of its mean. However, this 

procedure requires lengthy simulations to obtain independent 

estimates of PeX for each vector belonging to the training set. 

Moreover some of the vectors rarely result in errors, so they 

need to be simulated extensively to find accurate predictions. 

In order to check that our original approach was valid, and 

that the discrepancies in the theoretical and predicted prob- 

abilities of error were not the result of our testing procedure 

we conducted some limited simulations to check our estimates 

for P, in the more systematic manner we have described. We 

found that our original figures were quite reliable. 

APPENDIX B 

PDF OF GAUSSIAN NOISE 

PASSED THROUGH A SIGMOID 

The Sigmoid function is written as 

1 

1 + e-" 
y = f(.) = ~ 

can be inverted to obtain 

If we let 5 be Gaussian variable with mean m, and variance 

fl, 

we can write the cumulative distribution function for the output 

variable y as 

f - ' ( Y )  

P ( y )  = Pr{Y 5 y}  = 1 p(z)  dx 
--DL 

Finally differentiating P(y)  we obtain the density of the output 

variable, 

The probability density will be markedly different, as the input 

mean and variance are varied (see Fig. 15). 
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