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Abstract

Non-Markov models of stochastic biochemical kinetics often incorporate explicit time delays to effectively
model large numbers of intermediate biochemical processes. Analysis and simulation of these models,
as well as the inference of their parameters from data, are fraught with difficulties because the dynamics
depends on the system’s history. Here we use an artificial neural network to approximate the time-
dependent distributions of non-Markov models by the solutions of much simpler time-inhomogeneous
Markov models; the approximation does not increase the dimensionality of the model and simultane-
ously leads to inference of the kinetic parameters. The training of the neural network uses a relatively
small set of noisy measurements generated by experimental data or stochastic simulations of the non-
Markov model. We show using a variety of models, where the delays stem from transcriptional processes
and feedback control, that the Markov models learnt by the neural network accurately reflect the stochas-
tic dynamics across parameter space.

*These authors contributed equally.
fCorrespondence and requests for materials should be addressed to Z.C. or R.G. (email: zcao@ecustedu.cn, ra-
mon.grima@ed.ac.uk).
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Introduction

Over the past two decades, stochastic modelling has provided insight into how cellular dynamics is influ-
enced by noise in gene expression [[I,2]. The complexity of cellular biochemistry prevents a full stochas-
tic description of all reaction events and rather these models are effective, in the sense that each reaction
provides an effective description of a group of processes. A major assumption behind the majority of
stochastic models of biochemical kinetics and gene expression is the memoryless hypothesis, i.e., the
stochastic dynamics of the reactants is only influenced by the current state of the system, which implies
that the waiting times for reaction events obey exponential distributions. While this Markovian assump-
tion considerably simplifies model analysis [3], it is dubious for modelling certain non-elementary re-
action events that encapsulate multiple intermediate reaction steps. For example consider a model of
transcription that predicts the distribution of RNA polymerase numbers attached to the gene but which
does not explicitly model the microscopic processes behind elongation [A]. In this case, given that RNA
synthesis proceeds with approximately constant elongation speed, the reaction modelling termination
should occur a fixed time after the reaction modelling initiation, which implies the system has memory
and is not Markovian. Of course in this instance, the model could be made Markovian by extending it
so that it includes the explicit microscopic description of the movement of the RNA polymerase along
the gene [B] but this implies a large increase in the effective number of species which makes explicit
solution of the Markovian model impossible. Hence in many cases, a low dimensional stochastic model
can be only achieved by a suitable non-Markovian description. Given their practical importance, these
systems have been the subject of increased research interest, leading to an exact analytical solution for
a few simple cases and the development of exact Monte Carlo algorithms for the study of those with
complex dynamics [G-11].

Nevertheless, presently the understanding of non-Markovian models lags much behind that of Marko-
vian models where a wide range of approximation methods are available. Hence there is ample scope
for the development of methods to tackle the difficulties inherent in stochastic systems possessing mem-
ory. Given the success of artificial neural networks (ANNSs) in solving scientific problems where tradi-
tional methods have made little progress, it is of interest to consider whether such an approach could
be useful for solving the aforementioned stochastic problems. Neural networks being universal function
approximators have recently been used to solve partial differential equations commonly used in physics,
biology and chemistry. In particular these techniques have been used to approximately solve Burgers
equation [[[2-I4], the Schrodinger equation [[I3, 5] and partial differential equations describing collec-
tive cell migration in scratch assays [[[6]; the ANN based methods behind the solution of these problems
are a subclass of the universal differential equation framework that has recently been proposed [[I7].

Inspired by the success of ANNSs in other fields, in this article we develop a novel ANN based method-
ology based to study non-Markov models of gene expression and transcriptional feedback. We propose
to use an ANN to approximate non-Markov models by much simpler stochastic models. Specifically the
key idea is to approximate the chemical master equation (CME) of non-Markov models (which we refer
to as the delay CME) that is in terms of the two-time probability distribution by a CME whose terms
are only a function of the current time, i.e. by a time-inhomogeneous Markov process (see Fig. 1a for
an illustration). Notably this mapping is achieved without increasing the number of fluctuating species.
We refer to the learnt CME describing the time-inhomogeneous Markov process as the neural-network
chemical master equation (NN-CME). The latter, because of its simplified form, can then either be stud-
ied analytically using standard methods or else straightforwardly simulated using the finite state pro-
jection (FSP) method. In what follows, we introduce the ANN based approximation method by means
of a simple example and then verify its accuracy in predicting time-dependent molecule number distri-
butions of various realistic models of gene expression and its superior computational efficiency when
compared to direct stochastic simulation. We finish by showing the orthogonal use of the method to
infer the parameters of bursty gene expression from synthetic data.


https://doi.org/10.1101/2020.12.15.422883
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.15.422883; this version posted December 15, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Results

Illustration of ANN-aided stochastic model approximation using a simple model of
transcription

We consider a simple non-Markovian system where molecules are produced at a rate p and are removed
from the system (degraded) after a fixed time delay :

&N, N=o. (1)

In other words, each molecule has an internal clock that starts ticking when it is “born”, and when this
clock registers a time 7, the molecule “dies”. Note that as a convention in this paper, we use an arrow
to denote a reaction in which the products are formed after an exponentially distributed time and an
arrow with 2 horizontal lines to denote a reaction which occurs after a fixed elapsed time. The above
model, which we denote Model I, describes the fluctuations of nascent RNA (N) numbers due to con-
stitutive expression. Specifically the production reaction models the process of initiation whereby an
RNAP (RNA polymerase) molecule binds the promoter; the delayed degradation reaction models, in a
combined manner, the processes of elongation and termination whereby an RNAP molecule travels at a
constant velocity along the gene and finally detaches from the gene, respectively. Note that the number
of RNAPs bound to the gene is equal to the number of nascent RNA since each RNAP molecule has at-
tached to it a nascent RNA tail (for an illustration see Fig. 2a Model I). It can be shown (see SI Note 1)
from first principles that the delay CME describing the stochastic dynamics of this process is given by:

% =p[P(n—1,t) — P(n,t)] +p[P(n,t|0,t —T) — P(n — 1,40, — T)], (2)
where P(n,t) is the probability that at time ¢ there are n nascent RNA molecules bound to the gene.
Similarly P(n, t|n’,t') is the conditional probability distribution that at time f there are n molecules given
that at a previous time t' < t, there were n’ molecules. The right hand side of the master equation is
a function of the present time t as well as of the previous time ¢t — 7. Master equations of this type are
typically much more difficult to solve, analytically or numerically, than conventional master equations
where the right hand side is only a function of the present time t. Hence the key idea of our method is
to map the master equation ([[) to the new master equation Eq. (B):

S P(nt) = p[P(n —1,6) ~ P(n, )] + NNg(n +1,)P(n 4 1,6) - NNp(n, )P(n,1),  (3)
where the function NNy (1, t) is an effective time-dependent propensity describing the removal of nascent
RNA molecules which is to be learnt by the ANN. This is the NN-CME for reaction scheme ([l). Note
that this master equation with NNy (n, t) = kn is the conventional chemical master equation describing

the birth-death process & £ NN X, & where k is the degradation rate. Given the physical intuition
that P(n,t) ~ 0 for a large enough n, we truncate the probability vector by letting P(N + 1,t) = 0 for
some N, which is indeed the main idea behind the finite state projection algorithm (FSP) [[I8]. By doing
so, Eq. (B) can be compactly written in the form

L) = Ag(P(), @)
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with P(t) = [P(0,t),--- ,P(N,t)]T. The transition matrix is defined as Ag = D + Nj(t), where the two
components are given by

-0 0 -~ 0 0
P —p 0 0
D - . 7
0 0 - 0
0 0 e O
and
0 NNp(L,t) --- 0 0
0 —NNpg(1,¢) --- 0 0
Ny (t) = : : :
0 0 -++ —=NNp(N —1,f) NNu(N, 1)
0 0 e 0 —NNp(N, t)

The output NNy (0, t) is set to 0 to reflect the fact that nascent RNA cannot be further removed when
there is none attached to the gene.

Next we describe how we train the ANN to infer the effective transition matrix Ag(t). We use a multi-
layer perceptron with a single hidden layer; this is a simple feedforward ANN consisting of three layers
— an input layer with N + 1 inputs, a hidden layer with an arbitrary number of neurons and an output
layer with N outputs. The simplicity of the ANN here used is motivated by the universal approximation
theorem which states that a single hidden-layer feedforward ANN is able to approximate a wide class
of functions on compact subsets [[[9,20]. The activation functions used in the hidden layer and output
layer are tanh and relu for all examples. In the output layer, we impose an increasing set of fixed biases
which we specify later. For more details of the ANN, including the choice of hyperparameters, please
see SI Table 1. The training procedure consists of three main steps:

1. Given the probability vector P(t) at some time t, the N + 1 elements of the vector constitute the
inputs to the ANN. Given some set of weights and biases 6, the ANN’s N outputs are then taken
as the elements of the matrix Ng(t), i.e. the nt" output of the ANN is NNy (1, t). By a numerical
discretization of Eq. (f]), given the inputs and the outputs of the ANN, we obtain P(t + At) where At
is the finite time step. Hence it follows that given the initial conditions specified by P(0), by means
of the ANN, for a given set of weights and biases, we can recursively predict the time-evolution of
the probability vector P(t) over the time points t € [t1, 2, ..., tn,,,, ] Where Nghos is the total number
of snapshots.

2. Next we generate approximate probability distributions at the same time points by means of stochas-
tic simulations of the birth delayed-degradation reaction ([l). Note that by stochastic simulations in
this paper we always mean an exact stochastic simulation algorithm (SSA) modified to incorporate
delays (specifically Algorithm 2 in [B]; for proof of its exactness see [[]]). Let these distributions be
denoted as H(t). Following this we calculate a distance between the latter and P(t) calculated in
the previous step.

3. If the distance is larger than a threshold then update the set of weights and biases by means of back
propagation and gradient descent, and repeat steps (1) and (2). If the distance is smaller than the
threshold then the procedure ends and the transition matrix Ag(t) has been learnt.

Note that since the output of the ANN are the propensities NNy(#,t), these must be positive. We
choose the set of biases in the output layer (r, in Fig. laforn = 1,---,N) to be given by r, = % This
form is inspired by the fact that for the conventional CME with first-order degradation, NNy (, t) is pro-
portional to n where the proportionality constant is the effective rate of decay which has units of inverse
time. Hence intuitively, the effective removal propensity of the NN-CME is equal to the propensity as-
suming first-order degradation plus a correction which is what the ANN effectively learns. This choice of

4
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biases is also similar to that of well-known residual network (ResNet) [21,22] which helps to accelerate
the convergence of training and reduce computational cost.

Note also that the objective function is chosen as J () = Z]I.\]jl‘"t |[H(t;) — P(t;)||3. While there are more
accurate distance measures (such as the Wasserstein distance) we use the mean-squared-error form for
two reasons: (i) it is commonly used in neural network training, and (ii) its simple form allows efficient
calculation of derivatives through the chain rule (the back propagation method). Steps (1) and (2) are
illustrated in Fig. 1b and the whole training procedure is summarized in Fig. 1c. Note that while the
gradient descent in Fig. 1c is illustrated using an Euler method, for our training we used the standard
adaptive moment estimation algorithm (ADAM).

Once the matrix Ay(t) is learnt, Eq. (f]) can be integrated numerically to obtain the time-dependent
probability vector at all times in the future. In Fig. 2b (first row), we show that the solution of the
learnt NN-CME is practically indistinguishable from distributions estimated from stochastic simulations
of Model I ([[) — hence this implies that the ANN training protocol is effective as a means to map a master
equation with terms having a non-local temporal dependence to a master equation with terms having a
purely local temporal dependence.

Testing the accuracy and computational efficiency of ANN-aided stochastic model
approximation on more complex models of transcription

To verify that the accurate mapping characteristics are not specific to Model I, we next consider the appli-
cation of the procedure to learn the NN-CME of two more complex transcription models incorporating
delay (see Fig. 2a). We consider Model II which is the same as Model I except that the binding of RNAPs
to the promoter occurs in bursts whose size i are distributed according to the geometric distribution
b' /(1 + b)"*1; this can be described by the reaction scheme:

abi‘
(1+b)i+1

iN, 1=0,1,2,...
N= g, )

where a stands for the burst frequency and b is the mean burst size. This is a minimal delay model to
describe the phenomenon of transcriptional bursting [23]. The delay CME describing the nascent RNA
dynamics is given by (see SI Note 2):

0/P(n,t) = il (1fbb];1’11+1[P(n —m,t) — P(n,t)]
N (6)
= ab™ . / /
+m;1W;P(H ) [P(n+m, tn +m,t — 1) — P(n, tjn" +m,t —1)].

We also consider Model III wherein the promoter switches between an active and inactive state, RNAP
binding occurs only in the active state which is followed by delayed degradation modelling the RNAP
movement along the gene and its detachment; this can be described by the reaction scheme:

1Y Ooff *
G —> G+N, G?G, N:T>®, (7)
where G and G* stand for the active and inactive gene state respectively, and oo and o, are the activation
and inactivation rates, respectively. It can be shown that in the limit of large o, (compared to oon ), Model
III reduces to Model II, whereas in the opposite limit of small o it reduces to Model I. Hence Model 111
can describe both constitutive and bursty transcription, as well as regimes in between. The delay CME
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Figure 1: The ANN-aided stochastic model approximation. (a) Illustration of the key idea behind the method,
namely the ANN-aided mapping of a delay master equation that is in terms of the two-time probability distribution
by the simpler Neural-Network Chemical Master Equation (NN-CME) whose terms are only a function of the current
time. (b) Illustration of the procedure behind the calculation of the transition matrix and the objective function. For
a given set of weights and biases of the ANN (denoted by 6), taking as input P(t), the ANN's output gives the
transition matrix elements Ag(#) which then by means of the Euler method (or more advanced differential equation
solvers) is used to predict the distribution at the next time step P(¢ + At). Note that magenta arrows show the ANN
computation while the black dashed arrows show the use of the Euler method. Stochastic simulations that sample
the solution of the delay master equation are used to produce histograms at several time points H(¢); finally the
distance J(6) is calculated between the latter and P(t) (evaluated at the same time points). (c) Flowchart illustrating
all the steps in ANN training. If the objective function calculated as shown in (b) is above a threshold then the

weights and biases of the ANN are updated using back propagation followed by gradient descent; this is repeated
until the objective function is below a threshold.
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describing nascent RNA dynamics is given by (see SI Note 3):

dpoé:l't) = — OonPo(n,t) + 0Py (n,t) + Y P (n',t — T) [Poy (1,40, — T) — Py (n — 1,40, t — T)],
n'
P, t
d 157; ) =0onPo(1,t) — OoiePy (1, t) + p[Py(n —1,£) = Py(n,t)] + Y pPi(n',t — 7) [Py (n, t]0,t — T) — Py (n — 1,£0,t — 7)],
n/

(8)

where P;(n, t) is the probability that the gene is in state i at time ¢ and the number of nascent RNA is #;
note that i = 0,1 where 0 is the inactive state and 1 is the active state. Similarly P;(n, t|n’,t') denotes the
conditional probability distribution that at time  the gene is in state i and the number of molecules is 7,
given that at a previous time ' the gene was in state j and the number of molecules was n’.

Note that as for the delay CME describing Model I, the delay CMEs describing Models II and III
also have terms on the right hand side which are a function of the two-time probability distribution.
These terms which stem from delayed degradation, make analytical and numerical solution of the delay
master equations non-trivial. However the ANN-aided procedure to solve Models II and 1III is as easy
to implement as for Model I. By replacing the two-time probability distribution terms on the left hand
sides of Egs. (B) and (B) by terms of the type NNy (#, t) (see SI Note 4 for details), one can map the delay
master equations into the form %P(t) = Ay(t)P(t), where the transition matrix Ag(t) is learnt by the
same training procedure as before.

In Fig. 2b rows 2, 3 and 4 we show the comparison between the time-dependent distribution of nascent
RNA predicted by the NN-CME and stochastic simulations of the reaction schemes corresponding to
Models II and III. The agreement is excellent at all times and for all models, independent of the modality
and skewness of the distribution. This reinforces the result that the ANN-aided procedure enables an
accurate mapping of master equations with terms having a non-local temporal dependence (via the two-
time probability distribution) to master equations with terms having a purely local temporal dependence.

Next we test the computational efficiency of the ANN-aided procedure compared to stochastic sim-
ulations. Fig. 3a shows the Hellinger distance between the probability distribution of nascent RNA
numbers according to the NN-CME and the exact analytical solution of Model I (see SI Note 1) as a
function of the number of snapshots Ngpos and of the number of stochastic simulations used to train the
ANN. As expected, increasing the number of snapshots and the number of stochastic simulations in the
ANN's training enhances the accuracy of the NN-CME'’s distribution (manifested as a reduction in the
Hellinger distance). More interestingly, we found that the NN-CME obtained from training the ANN
with just a thousand stochastic simulations outputs a distribution that has the same Hellinger distance
from the exact distribution as the one obtained from a histogram generated using 30, 000 stochastic sim-
ulations (direct simulation). Moreover in this case, the time to acquire samples plus the time for ANN
training takes 1/6 of the computation time if we only use simulations. Another way of distinguishing our
method and stochastic simulations is to compare the distributions predicted by both methods, given the
same number of stochastic simulations; as shown in Fig. 3b, while at short times the two are compara-
ble, at long times the NN-CME's prediction is far more accurate than that of the SSA. Note that training
can also be done in steady-state, i.e. solving the algebraic equations Ay (t)P(t) = 0; the precision and
efficiency of this alternative mode of training the ANN is illustrated and discussed in SI Fig. S2.

Rapid exploration of parameter space and the prediction of a novel type of zero-
inflation phenomenon

Given the computational efficiency of the ANN-aided model approximation, one would expect it to be
useful as a means to rapidly explore the phases of a system’s behaviour across large swathes of parameter
space. This endeavour is only possible if the NN-CME's predictions are accurate across parameter space
which is yet to be seen since we have only shown its accuracy for few parameter sets in Figs. 2 and 3. In
what follows, we explicitly verify that the NN-CME can correctly capture all the phases of Model III's
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Figure 2: ANN-aided stochastic model approximation of various models of transcription. (a) Illustration of three
models of transcription. The models describe initiation, elongation and termination and specifically predict the
numbers of nascent RNAs (equivalently the number of RNAP polymerases, Pol IIs) at the gene locus. In all models,
a nascent RNA molecule detaches after a constant time has elapsed from its binding to the promoter. The models
differ in how they model Pol II binding: in Model I, the binding is modeled as a Poisson process, hence one at a
time; in Model II, binding occurs in bursts, whose size conforms to a geometric distribution; in Model III, the gene
switches between active and inactive states, and only the active state permits Pol Il binding. (b) For all models, the
FSP solution of the NN-CME derived by the ANN-aided procedure is in excellent agreement with the SSA of the
delay CME. The accuracy is independent of the modality and skewness of the distribution. The rate constants and
other parameters related to the ANN’s training are specified in SI Table 1.


https://doi.org/10.1101/2020.12.15.422883
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.15.422883; this version posted December 15, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

a b
%102 10940 t=2
0.08- -
15 — . —NN-CME
~@- 3 snapshots 9 snapshots ® 3.5 N Exact
- 6snapshots —— SSA g _é‘ ;' !\ ‘S
c 37 < - u— -
2 8 o0sd t=3s
..(E g 0.05 =
3 25+ -
£ xx
! y S 7
T T T T T T | 2 T T T T T T L 15‘0"@“2’50
2 2.5 3 3.5 4 4.5 5 2 2.5 3 3.5 4 4.5 5
Sample # (logy,) Counts

Figure 3: (a) Precision and computational efficiency of the ANN-aided model approximation as a function of sample
size and number of snapshots. The method is benchmarked on Model I since the time-dependent solution of the
delay CME is exactly known (see SI Note 1) and hence the accuracy of our method can be precisely quantified. A
measure of the accuracy is the average Hellinger Distance (HD) between the NN-CME and exact distributions at
four different time points. The computation time is equal to the time to acquire samples plus time for training. Each
data point in the graphs is averaged on 3 independent trainings. Note that the NN-CME obtained from training
with 103 samples produces a distribution that is as precise as that from 3 x 10* samples using the SSA of the delay
CME (shown as a black dashed line); in this case the computation time of the NN-CME is also just 1/6 of the SSA.
(b) Comparison of the NN-CME distributions, exact analytical distributions and histograms from stochastic SSA
simulations of the delay CME at two different time points; the sampling for both training and the SSA is 10>. Note
that the NN-CME leads to much more accurate distributions than the SSA for the same number of samples. The rate
constants and other parameters related to the ANN’s training are specified in SI Table 1.

behaviour.

We consider the case when the gene spends most of its time in the OFF state (the bursty regime of
gene expression). In this case, Model IlI is well approximated by Model II (see SI Note 3), and by means
of the exact analytical solution of the latter we identify four regions (I-IV; see Fig 4a) according to the
type of steady-state distribution (see Fig. 4b and its caption for their description). Specifically phase IV
is the only region of space where bimodal distributions (peak at zero and at a non-zero value) are found.
Theory shows that the conditions (see SI Note 2) that need to be satisfied for this bimodality to manifest
are:

2 1
24f __ _bHg+2

<T . b>1. (9)

o
By using the NN-CME to randomly sample points in parameter space, we find the same as the theoretical
prediction: the distributions are unimodal (dots) except in Region IV where they are bimodal (crosses).
Hence this verifies the accuracy of our method across parameter space.

We also note that bimodality in the bursty regime is unexpected because the standard model of gene
expression (Model II/III with delayed-degradation replaced by first-order degradation [R2,24,25]) pre-
dicts a unimodal steady-state distribution which is well approximated by a negative binomial distribu-
tion. Note that Model III is more appropriate to model nascent RNA dynamics than the standard model
of gene expression because unlike mature RNA, nascent RNA typically does not get degraded while the
RNAP is traversing the gene; rather nascent “degradation” occurs after a finite elapsed time when it de-
taches from the gene and becomes mature RNA. Hence Region IV can be understood as delay-induced
bimodality or a delay-induced zero-inflation phenomenon. Since there is evidence that the delay time
is stochastic rather than fixed [26, 27] we also used the NN-CME to investigate how the nascent RNA
distributions change with variance in the delay time when the mean is kept constant: as shown in Fig.
4c we find that a large increase in the variability of the delay time tends to destroy the peak at zero. Note
that for systems with stochastic delay, the training of the ANN-aided approximation remains the same
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as for those with fixed delay; the advantage of our method is that it can just as easily solve non-Markov
models with stochastic delay as those with deterministic delay whereas analytically only the latter are
amenable to exact solutions (see SI Note 1).

a . . . . Cc
¢ Unimodal X Bimodal | Mis-categorization 12
o3 L 3 7. - -
> TR : . " N ' . SSA NN-CME
O | 0 “ 1] et < . L . : — logn(0,2) + 120
2 . ot 0 YR M L — logn(1,v2) + 120
~ ° B . 1 X XX e A 2 e 22 . E
o [ v 2 X x e 1
W N
£, Lo 2 y Vs ¢
=4 8 Xy, i . R e 120 125 130
§e] S .3’ . I X . 0.06- Delay 7
© . 3 kg n N 1
S : L
5. 1 g N
1 0 1 5 (1) = 127.39
- - > var(t) = 348.8
Burst size b (log,,) Burst frequency a/ap (log,g) = , ' y
b 2 0 060 15 30 45
g o]
0. 08 o 4
é & \ O large var destroys
= J zero-inflated
o]
©
o]
[€] (1) = 127.39
o var(t) = 2926.4

0 15 30 45
Nascent RNA # Nascent RNA #

Figure 4: Stochastic bifurcation diagram for Model III in the bursty regime (o > 0on) using the NN-CME and
comparison with theory. (a) From an analytical approximation of Model IIl in the bursty regime, the space is divided
into four regions according to the type of distributions (shown inb): type I, a unimodal distribution with mode = 1;
type II, a unimodal distribution with mode = 0; type III, a unimodal distribution with mode > 1; type IV, a bimodal
distribution with two modes at zero and a non-zero value. Region IV is highlighted in green since it is a phase that
does not exist in the bursty regime of the standard model of gene expression (Model III with delayed degradation
replaced by first-order degradation) — this is hence delay-induced bimodality. The lines defining the division of space
are: solid line is (2 + %)/ « and the dashed line is (b + % + 2) /& which respectively are the lower and upper bounds
on T given by Eq. (H). To check the accuracy of the ANN-aided model approximation for Model III, we used it to
compute the NN-CME and then solved using FSP to obtain nascent number distributions for 200 points in parameter
space. These are randomly sampled from the space {p = 2.11, oo € 2.11 x [1071,10], oon = 0.0282, T € [10,103]}
(left) and {p = 2.11, oy = 0.609, oon = 0.0282 x [1071,10], T € [10,10%]} (right). Dots denote parameter sets
for which the NN-CME distributions are unimodal and crosses show those for which the distributions are bimodal.
The fact that the vast majority of crosses fall in region IV and the dots outside of it shows that the NN-CME agrees
with the analytical approximation of Model III (parameter sets which mismatch between the NN-CME and theory
are highlighted with red arrows and are very few in number). Note in the left figure of (a), the burst frequency is
fixed to x = 0.0282 (left) while in the right figure, we use xp = 0.0282 and the burst size is fixed to b = 3.46. (c)
The NN-CME is learnt from stochastic simulations of the delay model of Model III with the added feature that the
elongation time T is a random variable sampled from two different lognormal distributions (see top figure). In the
middle and bottom figures we show that the delay-induced bimodality (phase IV) disappears as the variance on the
elongation time T increases at constant mean. The rate constants and other parameters related to the ANN’s training
are specified in SI Table 1.

In summary, we find that delayed degradation induces an extra mode peaked at n = 0, a type of
zero-inflation phenomenon. This phenomenon is commonly seen in single-cell RNA-seq data, and it is
usually attributed to the expression drop-off caused by technical noises or sequencing sensitivity [28].
It has also been shown [29,B0] that it may arise from an extra number of gene states. However our
results suggest that delay due to elongation (when the variability in elongation times is small) is another
important source contributing to the zero-inflated distributions evident in RNA-seq data.
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Learning the effective master equation of genetic feedback loops from partial abun-
dance data

Feedback inhibition of gene expression is a common phenomenon in which gene expression is down-
regulated by its protein product. Given there is sufficient time delay in the regulation process as well
as sufficient nonlinearity in the mass-action law describing the kinetics of certain reaction steps [B1],
feedback inhibition can lead to oscillatory gene expression such as that observed in circadian clocks [B2].
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Figure 5: NN-CME accurately predicts the properties of a stochastic auto-regulatory model of oscillatory gene ex-
pression when only partial data is used for ANN training. (a) Illustration of a model of auto-regulation whereby a
protein X is transcribed by a gene, then it is transformed after a delay time T into a mature protein Y, which binds the
promoter and represses transcription of X. The functions J;(Y) and J>(Y) can be found in SI Note 5. (b) Two typical
SSA simulations of proteins X and Y, clearly showing that single-cell oscillations while noisy, they are sustained.
(c,d) The NN-CME is obtained from training the ANN using only protein Y data from SSA simulations of the delay
model of the auto-regulatory model. Surprisingly the NN-CME’s solution for the temporal variation of the mean
number of both proteins X and Y, and for their distributions is in excellent agreement with that of the SSA. Note the
distributions in (d) are for the 3 time points labelled A, B and C in (c). The rate constants and other parameters
related to the ANN’s training are specified in SI Table 1.

Here we consider a simple genetic negative feedback loop (see Fig. 5a) whereby (i) a protein X is
transcribed by a promoter, (ii) subsequently after a fixed time delay 7, X turns (via some set of unspeci-
fied biochemical processes) into a protein Y and (iii) finally Y binds the promoter and reduces the rate of
transcription of X. Simulation trajectories verify oscillatory behaviour of this circuit; see Fig. 5b. We use
the simulated trajectories of mature protein Y to train the ANN (the objective function only measures the
distance between the ANN predicted distribution of Y and the distribution from stochastic simulations),
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in a similar way as previous examples (see SI Note 5). In Fig. 5c and d we show that the time-dependent
distributions of both proteins and their means output using the NN-CME are in excellent agreement
with the SSA, even clearly capturing the damped oscillatory behaviour; while for Y this is maybe not
so surprising, for X it is remarkable because simulated trajectories of X were not used in the training of
the ANN. Hence this shows that the ANN-aided model approximation can learn the effective form of
master equations from partial trajectory information, a very useful property if the training data is sparse
and available only for some molecular species as commonly the case with experimental data.

ANN-aided inference of the parameters of bursty transcription

With a small modification, the ANN-aided model approximation technique besides constructing an ap-
proximate NN-CME model, it can also infer the values of kinetic parameters of the data used for training.
This is brought about by optimizing not only the weights and biases of the ANN but also simultaneously
for the kinetic parameter values. In Fig. 6 we show the results of this method using training data gen-
erated by the SSA of Model II with parameters (burst frequency « and size b) that have been measured
for 5 mammalian genes [33]. Comparing the latter true parameter values with those obtained from the
ANN-aided inference, we conclude that the inference procedure leads to accurate results. Note that the
95% confidence intervals of the estimates are obtained using the profile likelihood method (see SI Note
6 and Fig. 6a,b for an illustration).

We also show that the distribution solution of the NN-CME (which is obtained at one go, together
with the inferred parameters) is practically indistinguishable from distributions constructed using the
SSA of Model II (the quantile-quantile plots in Fig. 6¢ are linear with unit slope and zero intercept). In
SI Fig. 3 we show the application of the ANN-aided inference to Model III.

Discussion

In this paper, we have shown how the training of a three-layer perceptron with a single hidden layer is
enough to approximate the delay CME of a non-Markov model by the NN-CME which is a master equa-
tion with time-dependent propensities (time-inhomogeneous Markov process). Notably this mapping
has been achieved without increasing the effective number of species in the model. Since the NN-CME
has no delay terms, it simplifies analysis and simulation; for e.g. the NN-CME can be accurately ap-
proximated by a wide range of standard methods [3] and its solution is straightforward using finite state
projection [I8]. We note that while neural networks have been recently used to approximate partial dif-
ferential equations in physics, chemistry and biology, to our knowledge our work represents their first
use in approximating equations describing the time-evolution of stochastic processes in continuous time
and with a discrete state space e.g., systems describing cellular biochemistry where the discreteness is an
important feature of the system due to the low copy number of DNA and mRNA molecules involved [B4].
We find that to obtain an accurate NN-CME, training only needs a small sample size (of the order
of a thousand SSA trajectories which is computationally cheap), it can be done with partial data (some
species data can be missing) and simultaneously one can obtain estimates of the kinetic parameters. The
latter is particularly relevant if the training data is collected experimentally, e.g. by measuring nascent
RNA numbers using live-cell imaging techniques (such as the MS2 system) at several time points for
many cells [B5,B6]. Our ANN based inference method rests upon the matching of distributions and
hence similar to non-ANN based methods developed in Refs [37,38], it avoids the pitfalls of moment-
based inference [3Y,40]. We note that the ability to approximate solutions of delay master equations from
simulated data while simultaneously optimizing for the parameters has not been demonstrated before;
deep learning frameworks have previously achieved similar feats for deterministic models [[I3,[16] and
more recently for stochastic models described by multi-dimensional Fokker-Planck equations [&1, Z2].
Recent work has shown that differential equation models describing the time-evolution of average
agent density can be learnt (using sparse regression) from agent-based model simulations of spatial
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Figure 6: ANN-aided model approximation seamlessly integrates the inference of kinetic parameters and approxi-
mation of the delay CME by a NN-CME. The unknown kinetic parameters can be treated in the same way as neural
network coefficients (weight and biases) and optimized to minimize the objective function. Application to Model
II. (a) Sketch of the computation of the 95% confidence interval (CI) of the inferred kinetic parameters. Blue areas
indicate the 95% confidence region, while the gray area shows the non-confidence region. Both solid and dashed red
lines show the profile likelihoods of burst frequency a and burst size b, respectively (See SI Note 6 for details). (b)
Inferred values of @ and burst size b (blue dots), their 95% Cls (blue lines) and the true values (green lines) for five
mammalian genes. Inference by using ANN-aided model approximation is robust against size of dataset: Dataset A
(100 snapshots and 10* cells)and Dataset B (50 snapshots and 103 cells) produce similar results. (c) quantile-quantile
plots for the steady-state distributions of the NN-CME and those obtained from the SSA; the linearity confirms that
the ANN-aided model approximation can accurately approximate the distribution using the NN-CME even when
the optimization is over both the kinetic parameters and the neural network coefficients. The rate constants and
other parameters related to the ANN’s training are specified in SI Table I.
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reaction-diffusion processes [£3]. Such models can describe for e.g. intracellular biochemical processes
in crowded conditions [#4] or multi-scale tissue dynamics including cell movement, growth, adhesion,
death, mitosis and chemotaxis [45#7]. Some of these models have been shown to display non-Markovian
behaviour [A8]. While here we showcased the ANN based method using non-Markovian delay CMEs,
one could also use for training, data generated by spatially resolved particle-based simulations, as the
examples above. The application of our method would provide a master equation that effectively cap-
tures stochastic dynamics at the population level of description and avoids the pitfalls of commonly used
analytical approximation methods e.g., mean-field approximations, to obtain reduced stochastic descrip-
tions.
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