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SUMMARY 
Artificial neural networks can learn relationships between sediment characteristics 
(burial depth, composition, coordinates and thickness of overlying Quaternary 
deposits) and overpressures from well data, after which they can interpolate and 
extrapolate to  areas and depths not covered by wells. We analyse data from the 
south-eastern part of the Pannonian Basin. We use a neural network for analysing 
fluid overpressures because of the complex interaction of the key variables, making 
it difficult to derive the functional relationships required for a statistical analysis. 
The optimal topology of the network (number of hidden layers and neurons) is 
found by minimizing the network’s training and testing errors. The optimal design of 
the network resembles the interactions scheme of the key variables. 

The Pannonian Basin, originally formed in an extensional regime, has been in a 
compressive state of stress since Late Pliocene, causing anomalous subsidence 
patterns. Numerical forward modelling of compaction-driven fluid overpressures 
shows that, due to an increase in the level of compressive interplate stress, the fluid 
overpressures in the deep subbasins have increased substantially since Late Pliocene, 
giving rise to a very high overpressure (up to 45MPa) at present. The neural 
network analyses provide an independent estimate of the current amount of 
overpressuring in this basin, complementing the numerical forward modelling 
results. The overpressure profiles obtained by the two modelling approaches are in 
excellent agreement, showing the same magnitude of overpressures, a reversal of the 
overpressure in the deepest parts of the subbasins and a general decrease of the 
overpressure from SW to NE. 

Key words: basin analyses,, compaction, intraplate stress, neural network, over- 
pressure, Pannonian Basin. 

INTRODUCTION 

The Pannonian Basin is a Middle Miocene extensional basin 
located inside the Alpine chain. The deepest parts of the 
basin, the Mako Trough and BCkCs Basin, are completely 
filled by deltaic sediments, consisting of mark, siltstones, 
sandstones and conglomerates. In general, hydrostatic fluid 
pressures are present down to a depth of about 18M)m, 
below which significant overpressures occur (Szalay 1982, 
1988; Clayton et al. 1990). The overpressures originate from 
sedimentary loading, causing pore size reductions (compac- 
tion), and low permeability of sediments, which restricts the 
escape of the pore fluid. During Late Pliocene-Quaternary 
times, the subsidence in the central part of the Pannonian 
Basin (Great Hungarian Plain) accelerated, whereas the 

peripheral parts were uplifted, inducing a relative sea-level 
rise in the centre and a relative fall at the flanks of the basin. 
This pattern of differential subsidence and uplift can be 
explained by the bending of the lithosphere due to an 
increase in the level of compressive lithospheric stress since 
Late Pliocene (Horvith zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Cloetingh 1995; Van Balen & 
Cloetingh 1994; Van Balen et al. 1995). The acceleration of 
subsidence causes sedimentation rates to increase. As shown 
by the results of numerical forward modelling by Van Balen 
& Cloetingh (1994) and Van Balen et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaf. (1995), this 
stress-induced increase of sedimentation rates has caused a 
dramatic increase in the amount of overpressure in the two 
deepest subbasins since Late Pliocene, resulting in a very 
high overpressure (up to 45 MPa) at present (Szalay 1982). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
As the hydrocarbon generation started between 9 and 6 Ma 
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ago (HorvAth et al. 1987; Szalay 1988), this basin-wide 
hydrodynamic change will have affected the hydrocarbon 
migration. In addition, a basin-wide cementation event will 
have occurred, because diagenesis of sediments is very 
sensitive to changes in the fluid regime of sedimentary 
basins (Horbury zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Robinson 1993). 

We use a neural network method for mapping, 
interpolation and extrapolation of fluid overpressures in the 
south-eastern part of the Pannonian Basin. The trained 
networks are used to predict the overpressure along a 
cross-section, which is compared to the results of numerical 
forward modelling of the same profile (Van Balen & 
Cloetingh 1994; Van Balen et al. 1995). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
NEURAL NETWORKS 

Artificial neural networks are software tools inspired by 
brain models, which are used for pattern recognition 
purposes (Sejnowski, Koch & Churchland 1988). They are 
capable of learning, i.e. they can find relationships in data. 
Artificial neural networks learn by ‘investigating’ a set of 
training data. Once the relationship in these data has been 
found, not only can they reproduce the learned data but also 
interpolate and extrapolate to new values. They are now 
widely used for recognition (sound, image, etc.) and 
interpolation and extrapolation (mapping, weather predic- 
tion, etc.) purposes. Neural networks have been used by 
earth scientists for reserve estimates (Wu & Zhou 1993), 
mapping (Hagens & Doveton 1991; Penn, Gordon & 
Wentlandt 1993; Ritter & Hepner 1990), predicting 
lithologies from well logs (Rogers et al. 1992) and 
forecasting geomagnetic activity (Hernandez, Tajima & 
Worton 1993). Although neural networks are parallel by 
nature, as a program they can run on sequential computers 
like PCs and workstations (Eberhart & Dobbins 1990). 

For data analysis purposes, artificial neural networks 
provide an alternative to statistical regression methods 
because they can find functional relationships in data sets 
without any a priori knowledge about their form (linear, 
exponential, etc.). Even kriging, the most sophisticated 
statistical interpolation method, needs, apart from the plain 
data, information about the data distribution (Davis 1986; 
Olea 1992). A semivariogram has to be provided by the data 
analyst, which is produced by a ‘trial and error process, 
usually done by eye’ (Davis 1986), possibly giving rise to 
biassing caused by the subjective mind of the researcher. 
Robinson (1991) compares the performances of a neural 
network to a standard statistical regression method on an 
artificial data set. The network is better at making 
predictions than the regression method, due to the fact that 
the latter needs information on the type of function sought. 
Noise in the data set makes it difficult to ‘guess’ this function 
and, if the dependent variable is a function of two or more 
parameters, estimating the form of this function is hampered 
by graphical representation problems. According to 
Hecht-Nielsen (1990), enough experimental evidence has 
now been gathered to state that the back-propagation neural 
network is, in general, comparable to the best non-linear 
statistical regression methods. 

An artificial neural network consists of highly intercon- 
nected simple processing units called neurons. Information 

N1 

Figure 1. Transport of information between neurons is accompl- 
ished by multiplying the value of the input neurons by the value of 
the connection weight between the neurons. 

in the network is stored by the value of the weights of the 
connections between neurons and the layout of the 
connection network (Hecht-Nielsen 1990; Freeman & 
Skapura 1991). The value of the weight of a connection 
represents its ‘goodness’ (negative values are inhibitive, 
positive values excitative). Each neuron has four com- 
ponents: input connections (synapses), a summation 
function, a threshold function and output connections 
(Eberhart & Dobbins 1990; Hecht-Nielsen 1990; Freeman & 
Skapura 1991). The transport of information between 
neurons is accomplished by multiplying the value of the 
inputting neuron by the wqight of the connection between 
the neurons (see Fig. 1). The value of a neuron is 
determined by applying a threshold function to the 
summation of all input information and is a value in the 
range of 0 and 1 (see Fig. 2). Data are fed into the network 
by assigning values to input neurons. These are subsequently 
passed through the network. The values of the output 
neurons give the response of the network to the pattern 
presented to the input neurons. 

Back-propagation neural networks 

The most widely used form of neural network for mapping 
problems (finding a function in data) is based on the 
principle of back-propagation of errors. In this type of 
network, the neurons are organized in layers: one input 
layer, one output layer and one or more so-called hidden 
layers (Fig. 3). The network is fully interconnected, i.e. 
every neuron is connected to all neurons in the one (for 
input and output layer neurons) or two (for hidden layer 
neurons) neighbouring layers, but neurons in the same layer 
cannot communicate with each other (Fig. 3). Information 
flows in one direction: from the input neurons towards the 
output neurons (feedforward). Although the values of the 
hidden units and connection weights are not of crucigl 
importance for the user of the network, they are often 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. The summation function applied on total input to neuron. 
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Figure 3. A typical back-propagation neural network layout. The flow of information is from the input to the output neurons (feedforward). 

inspected to see how the network achieves generalizations 
(Rumelhart, Hinton zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Williams 1986; Touretzki & 
Pomerleau 1989). In back-propagation networks, learning is 
accomplished by comparing the output of the network with 
the desired (known) output. The difference between the two 
is a measure for the changes in the values of the connection 
weights needed in order to improve the network’s 
performance (Rumelhart et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. 1986; Jones & Hoskins 1987; 
Hecht-Nielsen 1990, Freeman & Skapura 1991). 

The number of neurons in the input and output layers is 
fully determined by the research problem. A neural network 
may contain several hidden layers, although usually one or 
two hidden layers are enough (Sejnowski et al. 1988; 
Freeman & Skapura 1991; Robinson 1991). It is proved 
mathematically that, given enough neurons in the hidden 
layer, a back-propagation network with only one hidden 
layer is capable of approximating any function from one 
finite dimensional space to another (Hornik, Stinchcombe & 
White 1989). However, it has not been proven that any 
known learning algorithm can actually find the associated 
perfect values for the connection weights (Hecht-Nielsen 
1990). The optimum number of hidden layers and neurons 
has to be found by an iterative procedure. In general, the 
larger the number of hidden layers and neurons, the easier 
it will be for the network to ‘learn’ the data, but at the same 
time less generalization is achieved causing a poor 
performance of the network on a test data set (Rumelhart et 
al. 1986; Hecht-Nielsen 1990; Robinson 1991). Networks 
with too few neurons in the hidden layers will not be able to 
find patterns in the data. The optimum number of hidden 
layers and neurons arises when the network is ‘just’ capable 
of learning the data, ensuring the network has made a 
proper generalization (Hecht-Nielsen 1990, Robinson 1991). 

Network training 

Building a neural network model involves two steps. In the 
first step, the learning phase, the network is shown the 
training input and output patterns. The network learns by 
comparing predicted and known output patterns. In the 
second step, the testing phase, the network only sees the 
testing input patterns. The predicted and known output 
patterns are compared and a testing error is computed. 
Because the network tends to forget the patterns it has just 
learned (i.e. every new pattern changes the weights in a 
different way than its precursors) an iteration is required for 

training the network successfully. The iteration consists of 
repeating the two steps until the minimum testing error has 
been found. If this error is still too large, the network did 
not generalize properly on the training data and the whole 
process is repeated with a different network topology. 

The most common training error minimization technique 
used is the gradient descent method and derivatives of it. In 
order to break the symmetry, the weights in the network are 
initialized with random values. 

Pursuing an error minimum during the learning phase can 
lead to overtraining the network the network is trained to 
fit the observed data perfectly, but is very bad at 
generalization. Overtraining starts when the error curve 
begins to level out (the convergence rate of the network 
decreases); at this point the training should be terminated 
(Hecht-Nielsen 1990). Typically, continuation of training 
results in a decrease of the mean squared error of the 
training data, whereas it increases for the test data set. 

THE PANNONIAN BASIN 

Origin and fill of the Pannonian Basin 

The Pannonian Basin is a large Neogene intramontane 
sedimentary basin located inside the Alpine chain. It is 
surrounded by the eastern Alps, the Carpathians and the 
Dinarides (see Fig. 4a). The basin covers parts of Austria, 
Hungary, Rumania, Slovakia, Slovenia, Serbia and the 
Czech Republic. The basin’s basement consists of Palaeozoic 
and Mesozoic metamorphic rocks, stacked on top of each 
other during the Cretaceous alpine collision (Csontos et al. 
1992). Locally a Palaeogene retro-arc basin underlies the 
Neogene series (Tari, Horvith & Rumpler 1992). The basin 
originates from large-scale Middle Miocene (Badenian) 
strike-slip tectonics, which are related to tectonic escape 
from the eastern Alps (Ratschbacher et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaf. 1991), mantle 
diapirism (Stegena, Gkczy & Horvith 1975; Becker 1993) 
and subduction roll-back along the Carpathian front 
(Stegena et af. 1975). The extension in the basin is 
manifested by the formation of pull-apart basins, flower 
structures (positive and negative), rifts and metamorphic 
core complexes (Bergerat 1989; Horva’th et al. 1988; Royden 
1988; Tari et al. 1992). The basin has an extremely high heat 
flow (up to 120mW m-‘) (DovCnyi & Horva‘th 1988), a very 
thin lithosphere (60 km) (Stegena et al. 1975; Sclater et al. 
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(b) 

Figure 4. (Continued.) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1980) and a small positive Bouguer gravity anomaly (Bielik 
1988). 

During the whole post-rift period the Pannonian Basin 
was a lake, with water depths reaching more than 1 km at 
the end of the rifting period (HorvBth et al. 1988; KBzmCr 
1990), giving rise to sediment starvation (Grow et al. 1989) 
and euxenic conditions (KAzmCr 1990). A large delta system 
moving from the Carpathians towards the deep subbasins 
(Great Hungarian Plain) completely filled the basin by the 
end of the Pliocene (KBzmCr 1990). 

Hydrocarbon generation and migration in the Pannonian 
Basin 

The main source rocks for hydrocarbons in the Pannonian 
Basin are Miocene and Early Pliocene marls. Mesozoic and 
Palaeogene deposits contribute small amounts of source 
rocks (Dank 1988; SarkoviC, StankoviC zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& MiloslavljeviC 
1991). The Miocene marl deposits are generally overpress- 
ured in the Pannonian Basin (Clayton et al. 1990). 
Overpressures measured at the rims of the BCkCs Basin are 
up to 15MPa, while in the Mako Trough the maximum 
measured overpressure is around 45 MPa. Modelling of 
maturation and overpressuring (HorvBth et al. 1987; Szalay 
1988) shows that the hydrocarbon generation started 
between 9 and 6 Myr ago. Significant overpressures started 
to develop more or less at the same time. The high 
overpressure and a possible change of the overall stress field 

(HorvBth ef al. 1987) resulted in local tensile hydrofracturing 
of the basement. These fractures are sometimes filled with 
hydrocarbons. The most common hydrocarbon traps are 
compactional anticlines over basement highs (Dank 1988). 
In the south-eastern part of the Pannonian basin the three 
major hydrocarbon occurrences are located at the margins 
of the deep subbasins (Mak6 Trough and BCkCs Basin) in 
compactional anticlines. 

Stress-induced overpressures in the Pannonian Basin 

Observations of the present-day lithospheric stress field in 
and around the Pannonian Basin (Fig. 5) show that it is in a 
compressive state of stress (Muller et al. 1992; Becker 1993). 
As demonstrated by Cloetingh, McQueen & Lambeck 
(1985), such a compressive stress bends the lithosphere, 
causing differential uplift and subsidence across sedimentary 
basins, giving rise to relative sea-level changes at the same 
time-scale and magnitude as second- and third-order eustatic 
sea-level changes (Cloetingh 1991). This model is used by 
HorvAth and Cloetingh (1994) and Van Balen et al. (1995) 
to explain the observed anomalous Late Pliocene- 
Quaternary subsidence in the Pannonian Basin in terms of 
an increase in the level of compressive stress since Late 
Pliocene. 

The effect of this increase in the level of compressive 
intraplate stress on the compaction-driven fluid flow regime 
in the two deepest subbasins in the Pannonian Basin (Mako 
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Figure 6. The effect of an increase in the level of compressive intraplate stress on the hydrodynamics of a sedimentary basin. The upper panel 
shows the lithospheric deflection (AW) resulting from the compression. The stress-induced flank uplift causes an increased gravity potential and 
exposure of sediments at the margin, enhancing meteoric water infiltration. Compression-enhanced basin centre subsidence results in higher 
sedimentation rates and therefore promotes the development of compaction-driven fluid overpressuring (after Van Balen & Cloetingh 1994). 

Trough and BCkCs Basin) is discussed by Van Balen and 
Cloetingh (1994) and Van Balen et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. (1995). Their forward 
numerical model is based on the lithospheric stretching 
models of McKenzie (1978) and Kooi, Cloetingh & Burrus 
(1992) and links lithospheric strength and extension, thermal 
subsidence, flexural isostasy, horizontal lithospheric forces 
and sedimentary fill processes to the compaction-driven 
hydrodynamics of Sedimentary basins (Van Balen & 
Cloetingh 1993). They demonstrate that the current high 
amount of overpressure in the two deepest subbasins can be 
explained by the same increase in the level of compressive 
in-plane stress that caused the anomalous Pliocene- 
Quaternary subsidence (Fig. 6). The maximum amount of 
overpressure in the Mako Trough prior to the compressive 
stress event is 21 MPa. It increases during a time interval of 
1.5 Myr to a value of 36 MPa at the peak stress conditions, 
and presently, after a total time span of 3.9 Myr, reaches a 
maximum of 45MPA. In addition, their results show a 
systematic decrease of the overpressure from the Mako 
Trough towards the BCkCs Basin. 

ARTIFICIAL NEURAL NETWORK 
ANALYSES OF OVERPRESSURES IN THE 
PANNONIAN BASIN 

Input parameters 

The number of input and output neurons for the artificial 
neural network is determined by the characteristics of the 
research problem. In our case there is one output neuron, 
representing the overpressure. The number of input neurons 
is given by the number of parameters influencing the fluid 
overpressure in sedimentary basins in general and the 
Pannonian Basin in particular. We have defined five of these 
parameters, resulting in five input neurons. The relation- 
ships between these parameters and the fluid overpressure is 
indicated in Fig. 7. The input parameters are discussed 
below. In a separate test, all five parameters were found to 
be significantly influencing the results. Compaction-induced 
fluid overpressuring is caused by external loading of porous 

Quaternary \ 

Figure 7. Scheme depicting the relationships between the input parameters and the fluid overpressure (see text for a discussion). 
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sediment, in this case by the weight of the overburden. 
Loading causes the pores to decrease their volume, in 
response to which the pore fluid builds up an overpressure. 
This pressure is relaxed by flow of the pore fluid from high 
to low overpressure zones. The rate of this flow is 
determined by amongst others the porosity and permeability 
of the sediments involved, and controls the relaxation rate 
of the overpressure. Therefore, key parameters for fluid 
overpressuring in sedimentary basins are the overburden 
load, porosity and permeability. 

Burial depth gives an upper limit to the amount of 
overpressuring (the lithostatic pressure or overburden 
weight) and is related to the compaction history by 
comprising the sedimentation (loading) rate history and the 
palaeosedimentary environment (for example, a deep part 
of the basin is very likely to contain deep basin sediments, 
i.e. clays or marls). In the Pannonian Basin the overpressure 
shows a very distinctive positive correlation with burial 
depth (see Fig. 8a), starting from a depth of about 2 km. 
Notice that the trend could be linear, piecewise linear or 
exponential. 

Hydraulic characteristics of sediments (i.e. permeability zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
overpressure versus depth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

r n " " " ' l ' l  

( D I I I I I I I I ,  

10 20 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA30 40 
overpressure (MPa) 

and porosity) are largely determined by the sediment 
composition (sandstone, shale, carbonate, etc.). For 
example, a sandstone is (in general) highly permeable and 
has a high porosity compared to a shale. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAlso, sediment 
composition encompasses the palaeosedimentary environ- 
ment (for example, sandstones can be deposited in alluvial 
plains, beaches and basin floor fans, but generally not at 
delta slopes). The sediments of the south-eastern part of the 
Pannonian Basin can be generalized to a mixture of marls 
and sandstones (Mattick, Philips & Rumpler 1988). We did 
not have access to sediment composition data. Instead, we 
have related the composition to lithostratigraphic units by 
assigning a fixed sand percentage to them: 1.0 for the basal 
sandstone, 0.0 for the deep basin marls, 0.2 for the turbidites 
and slope sediments and 0.8 for the alluvial plain deposits 
(see Mattick et al. 1988). This gives rise to noise in the 
learning data set. The effect of this noise on the 
performance of the neural network will be discussed later. 
Sediment composition, expressed as the percentage of sand 
in the sediments, shows a negative correlation with the 
overpressure (see Fig. 8b). 

Sedimentation rates vary strongly across a delta system: 

overpressure versus cornposition 
1 ' 1 ' 1 ' 1 '  

8 

o w  
I 1 I I I I I I  

overpressure (MPa) 
0 10 20 30 40 

(dl 
overpressure versus ydistance 

r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0- 

0 10 20 30 40 
overpressure (MPa) 

overpressure versus xdistance 
l ' l ' l ' "  

0 -0 

I I I I I I  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 10 20 30 40 

overpressure (MPa) 

(el 
Overpressure versus thickness Quaternary 

'q- 1 
21-1 

0 10 20 30 40 
overpressure (MPa) 

Figure 8. Correlation graphs showing the relationships between the input parameters and the overpressure in the assembled data base. (a) 
Overpressure versus depth, showing a iinear, piecewise linear or exponential trend; (b) overpressure versus composition (expressed in 
percentage of sandstone); (c,d) overpressure versus distance, the distance being measured using the coordinate axes depicted in Fig. 4(b); (e) 
overpressure versus thickness of the overlying Quaternary deposits. 
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540 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
the delta slope has the highest deposition rate, which 
decreases in landward and basinward directions. The 
Pannonian delta system moved from the Carpathians 
towards the deep subbasins (KizmCr 1990). Therefore, the 
sedimentation rates were not the same in the whole basin 
during its total history, but vaned in space and time. As a 
result, the overpressure is a function of distance. As can be 
seen in Figs 8(c) and (d), for the coordinate axes we have 
defined, a positive correlation exists between the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx -  
coordinate and the overpressure and a negative correlation 
occurs between the y-coordinate and the amount of 
overpressure. 

Finally, because of the anomalous basin subsidence during 
Late Pliocene and Quaternary, we use the thickness of the 
Quaternary deposits as the fifth input parameter. The 
thickness of these sediments relates directly to the youngest 
sedimentation (loading) rates. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA positive correlation 
between the thickness of these sediments and the amount of 
overpressure is quite evident in Fig. 8(e). The age of the 
sediments would be a good sixth parameter, but 
unfortunately, the absolute ages are largely unconstrained. 

Neurons can operate on values within a limited range, in 
this case between 0 and 1. Therefore, the five input 
parameters and the output value have to be transformed to 
this range. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs there is no unique transformation, this should 
be done very carefully, ensuring the whole 0 to 1 range of 
the neurons is used and that a proper resolution is obtained. 
For the burial depth, lOkm is the maximum value. 
Therefore, depth is mapped to the 0 or 1 domain by dividing 
it by a value of 10. Sediment composition is given by the 
percentage of sandstone in the deposit, which correlates in a 
natural way to the neuron's value range. The x -  and 
y-coordinates, having a maximum of 10 distance units, are 
also divided by 10 in order to map them to the 0 to 1 
domain. The thickness of the Quaternary deposits does not 
exceed 1 km; therefore, these values do not have to be 
transformed. Finally, the observed overpressures have a 
minimum of 0.0 MPa and a maximum of about 45 MPa. As a 
consequence, they are divided by 50. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

R. Van zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABalen and S. Cloetingh 

Data sources 

The learning and testing data set for the network analysis is 
compiled from different sources. Fluid overpressure data for 
several wells are reported in Szalay (1982, 1988) and 
Clayton et al. (1990). Additional overpressure data come 
from Horvith and Lenkey (1993, private communication). 
The wells used in this study are indicated in Fig. 4(b). In this 
part of the Pannonian Basin there is only one well which 
reaches a depth of 5.4 km: Hod-I located in the centre of the 
Mako Trough. All the other wells are much shallower; 
typical depths are 2-3 km. As can be seen in Fig. 4(b), the 
deep part of the BCkCs Basin is not penetrated by a well. 
For this subbasin we only have information about the 
overpressure for the outer, shallower part. As will be shown 
below, neural network analysis enables extrapolation down 
to a depth of 6 km in this subbasin. 

Sediment compositions (the percentage of sandstone in 
the deposits) for the lithostratigraphic units in the 
south-eastern part of the Pannonian Basin are based on 
Mattick et al. (1988). The distribution, thickness and depth 
of these lithostratigraphic units are given by Juhisz (1991). 

The thickness and distribution of the Quaternary deposits 
are presented by R6nai (1974). Finally, the coordinate axes 
we have defined are indicated in Fig. 4(b). 

Using these sources, we have assembled a data base with 
193 records containing the output and five input parameters. 
During training of the network 150 patterns (data records) 
were used, while the remaining 43 patterns were used to 
compare the predicted and known overpressures during the 
testing phase. The input data which are required when the 
trained neural network is used to predict overpressures 
(interpolation and extrapolation) along a profile through the 
Pannonian Basin (burial depths, sediment composition, 
coordinates and thickness of overlying Quaternary sedi- 
ments) are assembled from the same sources as the training 
and testing input data. 

Results 

We have tested networks with one, two and three hidden 
layers, containing varying numbers of hidden neurons. The 
networks were trained to the minimum squared error for the 
test data set. For every step of 0.001 mean squared training 
error, the connection weights were saved and the testing 
mean squared error was computed. Theoretically, the mean 
squared error for the test data set decreases during training 
until the moment that overtraining of the network takes 
place. From this point, upon decreasing the training error, 
the testing error increases (Hecht-Nielsen 1990). We 
consider the values of the weights of the network at this 
point as optimal. A plot of the training error versus testing 
error for five different networks is shown in Fig. 9. This 
figure illustrates that the second smallest network with one 

h 

1 3 x 3 ~ 1  I V = S x 6 x 1  

II = 5 x 4 x  1 V d X 3 X 3 X 1  

I I I = S x 5 x l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt I I I = S x 5 x l  

t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 

9.0 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 
training error ( x 0.001 ) 

Figure 9. Training versus testing errors for five different network 
topologies. In general, a decrease of the training error induces first 
the testing error to decrease also, until the point where the network 
becomes overtrained (i.e. it tends to memorize the training data). 
From this point the testing error increases. The graphs for the 
smallest and larger sized networks could not be plotted due to the 
large testing errors. 
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coincide with the three hidden neurons in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 X 3 X 1 
network. 

Figure 11 displays the results obtained when the 5 X 3 X 1 
network is used to predict the overpressure profile. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA 
comparison of the results of forward numerical modelling, 
shown in Fig. 12, with the profile generated by the 5 X 3 X 1 
network, demonstrates that they are in excellent agreement. 
The amount and location of overpressure maxima, taking 
into account the uncertainties in both types of modelling, 
agree very well. Both neural network analyses and forward 
numerical modelling show that the overpressure decreases at 
the deepest part of the subbasins, in the basal sandstone 
unit. Also, both methods predict a trend of decreasing 
overpressures going from the Mako Trough to the BCkCs 
Basin. This can be explained by the thicknesses of the 
youngest deposits, which indicate a higher sedimentation 
rate above the Mako Trough during Quaternary times. This 
phenomenon is related to the distribution of vertical 
lithospheric loads, which determine the response of the 
lithosphere to the increase in the level of compressive 
intraplate stress. They cause the maximum of stress-induced 
subsidence to be located exactly above the Mako Trough 
(Van Balen & Cloetingh 1994; Van Balen et al. 1995). 

Owing to lack of data, seqiment composition has to be 

hidden layer and three hidden neurons (the 5 X 3 X 1  
network) has the best performance because it obtains the 
lowest testing error. The results for the 5 X 2  X 1, 
5 X 4 X 3 X 1, 5 X 3 X 2 X 1 and 5 X 4 X 2 X 1 networks could 
not be plotted in this figure due to their high testing errors 
(>0.018). Predicted versus known overpressures for the best 
networks are shown in Fig. 10. 

The performances of the networks can be understood by 
considering their degrees of freedom. The smallest network, 
5 X 2 X 1, does not have enough degrees of freedom and is, 
therefore, forced to too much generalization, leading to a 
bad performance on both the training and testing data. In 
contrast, the larger sized networks have too many degrees of 
freedom and are, therefore, bad at generalization and 
require larger training data sets. 

From inspection of the scheme depicting the relationships 
between the input parameters and the overpressure (Fig. 7), 
it becomes clear why the 5 X 3 X 1 network yields an optimal 
performance. In this scheme, there are four intermediate 
variables which relate the input parameters to the 
overpressure, and one of them (the palaeosedimentary 
environment) might be collapsed into the other three (i.e. it 
is not an independent variable), resulting in three 
intermediate variables. Presumably these three variables zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

5x3~1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnetwork 

0 10 20 30 40 
given overpressure (MPa) 

5x4~1 network 

given overpressure (MPa) 

5x5~1 network 

0 10 20 30 40 
given overpressure (MPa) 

5x6~1 network 

0 10 20 30 40 
given overpressure (MPa) 

5~3x3~1 network 

0 10 20 30 40 
given overpressure (MPa) 

Figure 10. Observed versus predicted overpressures for the best networks. Err1 is the mean squared training error, err2 the mean squared 
testing error. The data estimates that have predicted values in excess of the observations relate to mark whose pore fluids have possibly leaked 
along high permeable conduits like faults. The overpressure data with predicted values less than actually observed are basal sandstones. These 
could represent sandstone bodies that are sealed by mark. 
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Neural Network Overpressures zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 ~ ~ ~ ~ ' ~ ' ~ ~ 1 1 ' 1 1  

sw Mako Trough Bekes Basin NE 

0 100 
distance (km) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA200 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 11. Overpressure through the Mako Trough and BCkCs Basin produced by the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 X 3 X 1 neural network. Thick lines are contour lines 
for the overpressures (MPa), thin lines represent the stratigraphy. An overpressure reversal occurs in the deepest part of the subbasins. 
Generally, the overpressures in the Mako Trough are less than in the BCkCs Basin. 

Forward Model OverDressures 

Mako Trough Bekes Basin NE 

0 

0 100 
distance (km) 

200 

Figure 12. Overpressure profile predicted by numerical forward modelling (after Van Balen et al. 1995), showing similarities to the 
overpressure profiles obtained by the neural network analyses. Thick lines are contour lines for the overpressure (MPa), thin lines represent 
the modelled stratigraphy. The modelled overpressure profile also shows the overpressure reversal and slightly less overpressure in the BBkCs 
Basin inferred from the neural network analyses. 
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estimated. This gives rise to noise in the data. A second 
source of data scattering is the uncertainty in the fluid 
overpressure data. Most of them are derived from mud 
weights in drilling wells. Furthermore, in our analyses for 
the basin-wide characteristics we assume that the over- 
pressure constitutes a continuous field. On a subbasin scale, 
due to localized thermal expansion, hydrocarbon generation 
and leakage and sealing along faults, this is obviously a 
simplification. Taking all the noise in the data into account, 
it is very surprising that the neural networks ,are able to find 
the correct patterns in the data. It was noted earlier that 
artificial neural networks are insensitive to noise in data. 
Our findings demonstrate that they can extract the big 
picture through all the noise (Freeman & Skapura 1991). 

CONCLUSIONS A N D  DISCUSSION 

Neural networks are universal approximaters; they can 
perform any mapping between variables. Compared to 
statistical regression techniques, their great advantage is that 
they can find the mapping function themselves, no matter 
how complex it is. Neural networks have been applied 
successfully to many geophysical problems. We have used 
neural networks to predict overpressures along a cross- 
section in the Pannonian Basin. The overpressure data in 
this basin are scattered and most of them are shallow 
(2-3 km). Deep data are available in only one well. 
However, our results show that, despite noise in the training 
data, neural networks are capable of interpolating and 
extrapolating the overpressures, i.e. the resulting over- 
pressure profile is in agreement with results obtained by 
numerical forward modelling. 

A relatively small sized network, having one hidden layer 
with three neurons, is found to be optimal for extrapolating 
and interpolating the data. This can be explained by 
examining the relationships between the input parameters 
and the overpressure: three or four intermediate variables 
can be defined. Larger networks probably have too many 
degrees of freedom, requiring larger training sets. The 
smaller network does not have enough degrees of freedom 
and is, therefore, forced to too much generalization. 

As shown in both numerical forward modelling and neural 
network analyses, the overpressure decreases at the deepest 
parts of the subbasins, in the basal sandstone unit. The 
amount of overpressure is, however, not equal in the 
subbasins. Both methods predict an overpressure in the 
BCkCs Basin which is slightly less than the overpressure in 
the Mako Trough. This can be explained by spatial 
variations in the thickness of the Quaternary deposits. As 
the Quaternary is thicker in the Mako Trough, sedimenta- 
tion rates during the Quaternary above this subbasin were 
higher in the BCkCs Basin, inducing faster compaction. The 
thickness of the Quaternary deposits can be explained by 
compression-induced lithospheric deflection since Late 
Pliocene. Owing to the distribution of vertical lithospheric 
loads, the maximum of stress-induced subsidence is located 
exactly above the Mako Trough. 
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