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1. INTRODUCTION 

The output of a measuring system may suffer from dynamic 
errors. An input signal recovery approach is presented that 
reduces these dynamic errors [1]. This problem is ill-posed and 
requires the numerical solution to the convolution integral 
equation [2], [3]. However, the analysis of measuring systems 
can be made in terms of the control theory [4], as well as of the 
theory of automatic control systems sensitivity [5], [6]. The 
automatic control theory approach effectively improves the 
dynamic measurement accuracy [7]-[9]. Along with it, the 
artificial neural network (ANN) approach to designing the 
dynamic models of measuring systems and algorithms for the 
data processing of dynamic measurements is a way of intelligent 
measuring systems development. 

Recent publications reflect researchers’ interest in the matter 
of dynamic measurement error reduction. In [10] the double 
channel correction method is proposed. This method is 
developed for improving the dynamic properties of methane 
sensors on the basis of two measurement transducers. The 
method assumes that they are described by identical first-order 
models with different time constants. Reference [11] deals with 
the dynamic compensation of a sensor approach based on an 
ANN infinite impulse response filter.  This filter represents the  

 

 
 

inverse model of the sensor that recovers the sensor input 
signal. 

In the present paper the ANN inverse sensor model is also 
considered. However, this model is based on the ANN finite 
response filter that ensures stability of the inverse sensor model. 
Moreover, the proposed approach without reference to the 
order of the sensor model represents its inverse model as a 
special designed filter and a set of identical ANN sections that 
implement only the inverse model of the first-order system. 
Furthermore, the criterion of training sets formation and their 
length definition on the stage of the ANN model adjustment is 
proposed. 

In Section 2 of the paper the ANN representation of the 
direct model of a sensor is discussed. On the basis of this 
representation in Section 3 the ANN inverse model of the 
sensor in three different representations is proposed. In Section 
4 results of experimental data processing are given in order to 
validate the efficiency of the proposed approach. Finally, in the 
concluding section the major results are summarized. 

2. NEURAL NETWORK DIRECT MODEL OF A SENSOR 

Suppose a primary measuring transducer (sensor) is 
described by the transfer function (TF) as follows: 

ABSTRACT 
The neural network inverse model of a sensor with filtration of the sequentially recovered signal is considered. This model effectively 
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where U  and Y  are the sensor input and output signals 
respectively; jT1  and iT2  are time constants; j1  and i2  are 
damping coefficients; mi ...,,2,1 , nj ...,,2,1  ( nm  ); 

0K  is the static gain; p  is the complex number frequency. 
The continuous TF(1) of the sensor can be represented in 

the following way: 
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where  022 ,, KTbb iiii   for mi ...,,2,1  are coefficients 
depending on the parameters of (1) numerator and the static 
gain;  jjjj Taa 11 ,  for nj ...,,2,1  are coefficients 

depending on the parameters of (1) denominator. 
The discrete analogue of the continuous TF(2) in general 

can be represented as follows: 
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where )(zU  and )(zY  are the z-transformation of the sensor 
input and output signals, respectively; 

 Taabb nmii ,,...,,,..., 100    for ni ...,,1,0  and 

 Taabb nmjj ,,...,,,..., 100   for nj ...,,2,1  are 

coefficients depending on the parameters of (2) and the 
sampling period T . 

The difference equation corresponding to the discrete TF(3) 
of the sensor is as follows: 

     



n

j
j

n

i
i jkuikyky

01

 , (4) 

where  ku and  ky  are samples of the sensor input and 

output signals, respectively, at discrete times Tktk   for 

...,2,1,0k . 
The relationship between the output and input of the 

discrete sensor model is described by the following recurrence 
equation derived from the previous one: 
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The parameters of the discrete model (3) can be determined 
on the basis of the ANN direct sensor model shown in Figure 
1. This model is the recurrent ANN [12] consisting of a single 
neuron with the linear activation function  netf a  and the zero 
bias. The structure of this model is fully consistent with the 
recurrence equation (5). 

The recurrence equation that determines the relationship 
between input and output of the ANN direct sensor model is as 
follows: 
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where  ku  and  ky *  are samples of the sensor input signal 
and the output signal of the ANN direct sensor model, 
respectively, at discrete times Tktk   for ...,2,1,0k ; 

jw  

for nj ...,,1,0  and 
iv  for ni ...,,2,1  are adjustable 

coefficients (weights) of the ANN direct sensor model. 
By means of an appropriate procedure of the input and 

target training sets formation, that reflects the relationship 
between the input and output of the discrete sensor model (3), 
the weights of the ANN direct sensor model can be adjusted 
during the training process so that the samples of the ANN 
sensor model output will be equal to the respective samples of 
the continuous sensor model (1) output for a given level of the 
accuracy. The indicated possibility follows from the linearity 
and the conformity of the discrete and the ANN direct models 
of the sensor. Indeed, if    kyky *  for ...,2,1,0k , then 
from (5) and (6) the following equality can be obtained: 
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Provided the sensor input is nonzero, the last equality 
becomes the identity only when 

jj w  for nj ...,,1,0  and 

ii v  for ni ...,,2,1 . 

The functional block diagram of the ANN direct sensor 
model training is shown in Figure 2. The procedure of the 
ANN direct sensor model training (i.e. its weights adjustment) 
consists in minimization of the training error represented as the 
aggregate standard deviation for all 1N  samples of the input 
training set )(khu  between the target )(kh y  and actual )(* kh y  
outputs of the ANN direct sensor model: 

  
Figure 1. Block diagram of the ANN direct sensor model. 
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3. NEURAL NETWORK INVERSE MODEL OF A SENSOR 

The approach to the ANN direct sensor model creation 
discussed in the previous section can be used for the solution to 
the problem of the sensor (1) dynamic measurement error 
reduction. Then, this problem is formulated as the problem of 
the dynamically distorted sensor input signal recovery on the 
basis of the respective samples of its output signal. 

Considering the indicated formulation it is necessary on the 
basis of the ANN direct sensor model and the functional block 
diagram of its training to create the ANN inverse sensor model 
and, similarly, the functional block diagram of its training. This 
ANN inverse sensor model should provide the recovery of the 
dynamically distorted sensor input signal, i.e. implement the 
inverse relationship between the sensor input and output. 

3.1. General representation 

The discrete model (3) of the sensor is considered to obtain 
the structure of the ANN inverse sensor model. This TF is cast 
to the inverse form as follows: 
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where 
0

0
1
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 i
i  , 

0


 i
i   for ni ...,,2,1 . 

The difference equation corresponding to the inverse 
discrete TF(9) of the sensor is as follows: 
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where  ku and  ky  are samples of the sensor input and 
output signals, respectively, at discrete times Tktk   for 

...,2,1,0k . 
The relationship between the input and output of the inverse 

discrete sensor model is as the following recurrence equation 
derived from the previous one: 
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The structure of (11) for the inverse discrete sensor model is 
the same as the structure of (5) for the direct discrete sensor 
model. Therefore the structure of the ANN inverse sensor 
model will also be the same as the structure of the ANN direct 
sensor model. 

The block diagram of the ANN inverse sensor model is 
shown in Figure 3. This model is the recurrent ANN consisting 
of a single neuron with the linear activation function  netf a  
and zero bias. The structure of this model is fully consistent 
with the recurrence equation (11). 

The recurrence equation that determines the relationship 
between the input and output of the ANN inverse sensor 
model is as follows: 

       



n

j
j

n

i
ia jkywikuvnetnetfku

01

** , (12) 

where  ky  and  ku *  are samples of the sensor output signal 
and the output signal of the ANN inverse sensor model, 
respectively, at discrete times Tktk   for ...,2,1,0k ; 

jw  

for nj ...,,1,0  and iv  for ni ...,,2,1  are weights of the 

ANN inverse sensor model. 
The criterion for the ANN inverse sensor model training as 

in the case of the ANN direct sensor model training is the 
minimum of the training error represented as the standard 
deviation between the target and actual outputs of the ANN 
inverse sensor model. 

Figure 2. Functional block diagram of the ANN direct sensor model training.
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Obviously, both in the criterion and in the functional block 
diagram of the ANN inverse sensor model training it is 
necessary to swap the input and target training sets towards the 
criterion and the functional block diagram of the ANN direct 
sensor model training. This is the implementation of the inverse 
learning approach [13], applied to designing the dynamic 
control systems, in designing the dynamic measuring systems. 

3.2. Cascade representation 

In order to avoid possible problems with the stability of the 
inverse model discussed, the cascade representation of the 
ANN inverse sensor model in the form of first- and second-
order sections is proposed. This approach is based on the 
representation of the direct sensor model (1) in the following 
form of r  second-order and s  first-order cascades with real 
coefficients: 

     



s

j
j

r

i
is pWpWpW

1
1

1
2 , (13) 

where the discrete TF of the second-order cascade in general is 
as follows 
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and the discrete TF of the first-order cascade in general is as 
follows: 
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Inverse TFs of cascades  pW i2  and  pW j1  derived 

analogically to (9) are as follows: 
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The functional block diagram of the ANN inverse model of 
the sensor in the cascade representation is shown in Figure 4 
(where ][2 iC  are sections implementing the inverse model (16) 

of second-order cascades  pW i2  for rj ...,,2,1  and ][1 jC  
are sections implementing the inverse model (17) of first-order 
cascades  pW j1  for si ...,,2,1 ). 

Thus, the structure of the cascade ANN inverse model of 
the sensor corresponds to the structure of the sensor in the 
cascade representation. Therefore, each section is the ANN 
inverse sensor model of the respective cascade in the structure 
of the sensor represented by (13). 

The block diagram of the ANN second-order section ][2 iC  
is shown in Figure 5 and the block diagram of the ANN first-
order section ][1 jC  is shown in Figure 6. 

3.3. Sequential representation 

The recovery of the input signal of the sensor (1) is 
implemented by its measured output signal processing on the 
basis of the ANN inverse sensor model. This model is 
represented as the sequential connection of the correcting filter 
and identical first-order sections [14]. Every such section is the 
ANN inverse model of a first-order LTI system with the 
following TF: 

 
1

1

1
1 


pT

pW . (18) 

The value of the time constant 1T  in (18) is set equal to such 

a value among the time constants jT1  in (1), that provides the 

proximity of the step responses of systems represented by (1) 
and (18). The TF )( pWcf  of the correcting filter is the inverse 

TF of the sensor, which is supplemented with a certain number 
mnq   of TFs(18) to ensure the stability of the inverse 

model. The TF )( pWcf  of the correcting filter is as follows: 

Figure 4. Functional block diagram of the ANN inverse model of the sensor 
in the cascade representation. 

Figure  3.  Block  diagram  of  the  ANN  direct  sensor model  in  the  general
representation. 
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The functional block diagram of the ANN inverse sensor 
model in the sequential representation is shown in Figure , 
where the first-order section  11 TC  is the ANN inverse model 
of the first-order LTI system described by (18). 

Generally speaking, the direct TF(18) can be represented in 
the discrete form (15) and the inverse one in the form (17). 
Therefore, the structure of the section  11 TC , that implements 
the inverse TF(18), can be represented, in its turn, as it is shown 
in Figure 7. 

However, taking into account that the order of the TF(18) 
numerator is always equal to zero unlike the order of the 
TF(15) numerator, the discrete analogue of the TF(18) can be 
represented as follows: 
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The inverse model of the system (20) is described by the 
following TF: 
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where 
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1
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  . 

The block diagram of the ANN section  11 TC  that 
implements the inverse model (21) is shown in Figure 8, where 

0w  and 1w  are weights of the ANN section  11 TC . 
It should be noted that the structure above represents an 

ANN finite impulse response filter. The basic advantage of this 
structure is its guaranteed stability. Therefore, it ensures stability 
of the ANN inverse model of the sensor as a whole and 
provides stable the sensor input signal recovery. 

3.4. Noise cancellation approach 

In practice, the recovery of the dynamically distorted input 
signal of the sensor on the basis of its ANN inverse model is 
accompanied by the significant increase of the additive noise at 
the sensor output, as well as the internal noise of the ANN 
inverse sensor model. 

For the correct recovery of the input signal of the sensor it is 
expedient to extend the ANN inverse sensor model, taking into 
account the presence of the additive noise at the sensor output. 
This extension can be implemented as the additional low-pass 
filtration of the recovered signal by means of an increase of the 
order of the sequential sections  11 TC  in the structure of the 
ANN inverse sensor model. 

The block diagram of the ANN d -order section  1TCd
with the filtration of the recovered signal is shown in Figure 9. 

The discrete TF of the section  1TCd  is as follows: 

Figure 7. Functional block diagram of the ANN inverse model of the sensor
in the sequential representation. 

Figure 8. Block diagram of the ANN section C1[T1]. 

Figure 5. Block diagram of the ANN second‐order section C2[i]. 

Figure 6. Block diagram of the ANN first‐order section C1[j]. 
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  d
dcd zwzwwzW   ...1

10 , (22) 

where dwwww ,...,,, 210  weights of the section. 
The cancellation of additive noise amplified during the 

sensor input signal recovery is implemented due to the presence 
of the internal filter in the structure of the ANN section 

 1TCd . The discrete TF of the internal filter in the structure of 

the ANN section  1TCd  is described by the following 
equation: 

     zWzWzW cdfd 1 , (23) 

where  zW1  is the discrete analogue (20) of (18). 

It should be noted again that the structure of the section 
 1TCd  and hence its internal filter  zW fd  represents an 

ANN finite impulse response filter. Therefore, it ensures 
stability of the ANN inverse model of the sensor as a whole 
and simultaneously provides stable sensor input signal recovery 
and filtration. 

3.5. Training procedure and training sets composition 

The block diagram of the ANN section  1TCd  training is 
shown in Figure 10. The procedure of the ANN section 
training (i.e. its weights dwwww ,...,,, 210  adjustment) consists in 
the minimization of the training error represented as the 
aggregate standard deviation for all 1N  samples of the input 

training set  kh y  between the target  khu  and actual  khu
*  

outputs of the ANN section  1TCd : 

    



N

k
uu khkh

N
E

0

2*1
. (24) 

A criterion for the training sets composition is proposed. 
This criterion allows to evaluate the training sets length 1N . 

In order to implement the filtration ability the sinusoidal 
smoothing of the ANN section  1TCd  step response was 
applied. The filter (23) bandwidth regulation is achieved by the 
section order d adjusting. 

On this basis, the samples of the target training set are 
composed according to the following equation (where T  is the 
sampling period and Nk ...,,1,0 ): 
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. (25) 

Then, the input training set should be composed from the 
step response samples of (18) as follows: 

     11 /exp1/exp1 TTkTtkh ky  , (26) 

where Tktk   are discrete times for Nk ...,,1,0 . 

Suppose, provided 1 , starting with time TNTh   all 
the successive samples of the TF(18) step response lie within 
the following range: 

  1h . (27) 

Then, the training sets can be composed in accordance with 
(25) and (26). 

The sensor step response as the source signal for the input 
training set composition underlies the definition of the required 
length of training sets  kh y  and  khu . 

This consequence follows from the analysis of (24) for the 
ANN section  1TCd  training in terms of the problem 
considered. 

The limiting value of the training error, where the length of 
the training sets approaches infinity, is as follows: 

Figure 10. Block diagram of the ANN section Cd[T1] training. 

Figure 9. Block diagram of the ANN section Cd[T1]. 
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Therefore, under conditions defined by (27) the error of the 
ANN section  1TCd  training will lie within the following 
range: 
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Thus, (29) shows the direct relationship between the 
deviation of the training error from its limiting value and the 
training sets length 1N . 

4. RESULTS OF EXPERIMENTAL DATA PROCESSING 

An algorithm for the recovery of dynamically distorted 
signals on the basis of the proposed ANN inverse sensor model 
was developed. In order to validate experimentally the 
efficiency of the model and the algorithm, a dynamic 
measurement of temperature was made. The step response of 
the thermoelectric transducer (thermocouple) «Metran-281» by 
heating it from 0 °С to 800 °С was obtained. 

The result of the experimental data processing at d  = 66 in 
the form of the plots of the thermocouple measured output 

 ty  and the thermocouple recovered input  tu*  is shown in 
Figure 11. 

The obtained result shows that the dynamic measurement 
error after the correction decreased by 40 % in comparison 
with the initial state without any additional correction. In 
addition, the time of the dynamic temperature measurement 
decreased from sT  = 306 s to dT  = 60 s, that is more than 5 
times. These evaluations validate the efficiency of the proposed 
ANN approach to dynamic measurement error reduction. 

5. CONCLUSIONS 

The ANN approach to the recovery of dynamically distorted 
signals effectively reduces the dynamic measurement errors 
caused by the inertia of the sensor and the additive noise at its 
output. 

The considered ANN inverse model of a sensor with 
filtration of sequentially recovered signal effectively improves 
the sensor dynamic behaviour due to deep mathematical 
processing of measurement data. 

A criterion for the training sets composition for the ANN 
inverse model adjustment is proposed. This criterion helps to 
evaluate the length of training sets on the basis of the required 
training error. 

The results of the experimental data processing validate the 
considerable improvement of the sensor dynamic behaviour 

due to the application of the proposed ANN approach to the 
dynamic measurement of the temperature. 

The future work direction is to develop the dynamic 
measurement error estimator on the basis of the ANN 
approach. It is expected that the additional information 
obtained from the error estimator will optimize the adjustment 
procedure of the ANN inverse model. 
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