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ABSTRACT The number of older adults with Alzheimer’s disease is increasing every year. The associated

memory problems cause many difficulties for Alzheimer’s patients and their caretakers; patients may even

become lost in familiar surroundings. In this article, a proposed localization system based on a wireless

sensor network (WSN) and backpropagation based artificial neural network (BP-ANN) was practically

implemented to detect and determine the position of an Alzheimer’s patient in an indoor environment. The

proposed system consisted of four ZigBee-based XBee S2C anchor nodes and one mobile node carried by

the Alzheimer’s patient. The received signal strength indicator (RSSI) of the anchor nodes was collected

by the mobile node using a laptop supported by X-CTU software. The obtained RSSI values were used as

input for training, testing, and validation processes of the BP-ANN, while two-dimension (2D) locations

(x and y) were used as the output of the ANN. The results showed that the obtained mean localization errors

were 0.964 and 0.921m for validation and testing phases, respectively, after applying the ANN. Based on

a comparison with state-of-the-art technology, we deduced that the proposed ANN method outperformed

other techniques in previous studies in terms of mean localization error.

INDEX TERMS Alzheimer’s patient, indoor localization, mean localization error, neural network, RSSI,

WSN, ZigBee.

I. INTRODUCTION

Today, the number of people living with Alzheimer’s disease

worldwide is estimated at 44 million; the number of indi-

viduals with the disease is predicted to double by 2030 and

more than triple by 2050 [1]. Alzheimer’s disease reduces

brain function and memory, leading to forgetting recent

events [2]. The number of patients is increasingwith the aging

of the population. In the Americas and Europe, the greatest

number of patients occurs among people aged 80 to 89;

in Africa, among those who are 70 to 79 years old and in

Asia, from age 75 to 84 [3]. Deterioration of cognitive func-

tions and the brain may be caused by Alzheimer’s disease.

The associate editor coordinating the review of this manuscript and

approving it for publication was Yang Tang .

Accordingly, patients diagnosed with these diseases face

problems in daily living activities; for example, they lose their

sense of location, which may lead to death in some environ-

ments. Consequently, these patients need constant assistance

and special care [4]. In support of these patients, a wearable

wireless sensor network (WSN) can locate their position by

way of indoor localization by a system that can be used to

track or determine the location of devices or objects in indoor

environments. A WSN for localization, in particular, can use

different range-free and range-based localization systems.

Range-free localization methods rely on a communication

link between beacon nodes and mobile nodes in a network

to estimate node locations but do not provide information

about angle and distance. Moreover, this method offers lower

accuracy than a range-based method because it depends on
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the received signal strength indicator (RSSI) quality, which

fluctuates with time according to environmental factors such

as channel fading, reflection, scattering, refraction, multipath,

etc. Conversely, range-based systems are highly accurate

and more effective than range-free localization methods.

The range-based methods determine the angles and dis-

tances between nodes inWSN. The most common techniques

adopted in these localization methods include the following:

time difference of arrival (TDoA) [5], angle of arrival (AoA),

time of arrival (ToA) [6], acoustic energy [7], RSSI [8] and

global positioning system (GPS) [9]. The TDoA and ToA

methods require synchronization for all receiving nodes that

are detecting the location of the target signal. Though TDoA

offers minimal localization error, it consumes high amounts

of power and requires extra hardware [10].

The AoA method relies on the accuracy of the antenna

direction; needing to use an additional antenna array leads

to greater cost and more hardware. Meanwhile, although

GPS is the simplest method and is often used in outdoor

localization, reliable positioning based onGPS is not possible

in an indoor environment due to the barrier between the

GPS device and the satellite. Moreover, GPS consumes more

power than other methods [11]. Acoustic energy presents

some challenges (e.g. bandwidth that restricts the transmitted

data in the network and limited processing capability of the

nodes) that prevent it from performing complex and sophis-

ticated processes; furthermore, the audio in the network is

not synchronized because each node works separately [12].

The RSSI method is cost-effective and reduces power con-

sumption as it requires neither additional hardware, time syn-

chronization nor antenna array [13] and involves less system

complexity. That said, while RSSI can be used to determine a

patient’s location in the indoor environment, this technology

has poor localization errors due to the aforementioned rea-

sons. Therefore, adopting a specific error optimization algo-

rithm in conjunction with RSSI can minimize the localization

error.

The most intensely researched areas in indoor localization

have involved the application of indoor localization such as

the detection of people indoors, detection of patients in a

hospital setting, and tracking blind individuals inside a build-

ing [14]. Several technologies such as ZigBee, Bluetooth,

LoRa [15], and Wi-Fi [16] have proved useful in indoor

localization. Among them, ZigBee appears to be the best way

of implementing a localization system to monitor patients

compared with other technologies [17] due to low power

consumption [18], ease of use, cost-effectiveness, no require-

ment for external hardware and suitable communication

distance.

This article aimed to design and implement a small wear-

able device to determine the 2D location of an Alzheimer’s

patient while improving localization error based on a

backpropagation-based artificial neural network (BP-ANN).

The contributions of this article can be highlighted as

follows:

1) A wearable prototype device was designed and imple-

mented for the localization of Alzheimer’s patients

based on the RSSI of the ZigBee wireless protocol.

2) The localization error for Alzheimer’s patients was

improved by using BP-ANN in an indoor environment.

3) The localization error for Alzheimer’s patients was

compared to that reported in related works to verify the

performance of the prototype.

II. RELATED WORKS

Several traditional approaches and artificial intelligence-

based approaches to indoor localization systems have been

presented in the literature. One study [19] combined particle

swarm optimization (PSO) andANN tominimize localization

error in indoor conditions based on Wi-Fi technology. The

PSOwas able to reduce the time involved and provided closer

convergence. The authors compared the proposed method

to common approaches such as a backpropagation neural

network (BPNN) and k-nearest neighbor (KNN). The results

disclosed that combining PSO and ANN overcame the local-

ization error of BPNN and KNN by 8% and 24%, respec-

tively, achieving an error of 1.89m. In comparison, in [20]

the authors proposed a fall-detection system for older adults

in indoor environments based on ZigBee technology. The

targets of this study included providing an accurate location

of the happening and to detect falling in an elderly individual.

The researchers adopted the ANN algorithm to detect the

location of an older adult. The system consisted of ZigBee,

a microcontroller, an accelerometer sensor, and a battery.

The results demonstrated that this system minimized elderly

indoor localization error to 0.0454 m of mean absolute error.

The investigation in [21] described an approach for indoor

localization using Bluetooth beacons and a modern smart-

phone. The authors developed a localization algorithm based

on particle swarm optimization and fuzzy path loss mod-

els implemented in the MATLAB environment. The results

obtained showed that 95% of the position estimated errors

were less than 1m. In [22], the authors suggested a novel

indoor localization approach based on the fingerprints of

RSSI measurements. They used Wi-Fi and machine learning

techniques based on long short-termmemory neural networks

to estimate location. In their results, mean absolute error

decreased when the number of hidden neurons increased.

In comparison, a convolutional neural network was imple-

mented in [23] to determine the target location using Wi-Fi

technology in indoor circumstances. The Wi-Fi information

was collected from the access point to train the neural network

in the first phase, while the target information was gathered

and applied to the neural network in the second phase, allow-

ing the target location to be determined. The proposedmethod

yielded a localization error of 1.365m.

In [24], a neural network-based multilayer perceptron

was proposed, employing an extended Kalman filter for

indoor positioning using the collected RSSI of Bluetooth Low

Energy (BLE) technology. This research achieved an error
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of 2.21 m. A genetic algorithm (GA) and ANN were used

in [25] to improve localization error in indoor environments.

The authors concluded that the GA algorithm performed

less well than ANN in terms of error accuracy. Moreover,

the ANN provided higher accuracy, less run-time, and more

stability than the GA, achieving a localization error of 1.05m.

The researchers in [26] adopted a fuzzy logic (FL) algorithm

and the weighted centroid localization method to locate a

node with an unknown location. Fuzzy logic based on the

Sugeno inference system and fuzzy Mamdani were used to

measure the distance between the sensor and anchor nodes.

Then, the authors employed a centroid algorithm to estimate

the unknown position of the node. The results disclosed a

localization error in the range of 1.2–0.15 and 0.8–0.05 based

on the Mamdani-type and Sugeno-type FL, respectively.

In [27], a type-2 FL system was employed to determine the

location of visually impaired persons based on the RSSI of

the BLEwireless protocol in indoor circumstances. Themean

localization error obtained using type-2 FL was about 0.43 m,

with a navigation accuracy of 98.2%. The Random Forest

(RF)-based fingerprinting localization technique using Wi-Fi

channel information for indoor positioning was proposed

in [28] and compared with other localization techniques such

as KNN and weighted KNN (WKNN). The RF algorithm

outperformed the KNN and WKNN in terms of localization

accuracy, achieving 0.4033 m compared to KNN’s results of

1.7782 m and WKNN’s of 1.0517 m in a non-line-of-sight

circumstance.

In [29], the fingerprint localization method was proposed

to localize and track a patient with Alzheimer’s disease

in indoor surroundings. The experiment took place in an

area comprising three rooms having different environmental

characteristics. The patient was equipped with a Raspberry

Pi microcontroller while BLE was used as a beacon node

located in several positions in the hospital. The unknown node

(carried by the Alzheimer’s patient) was used to collect the

RSSI of the beacon nodes. The experimental results yielded

an average error of 1.6 m from all tracking locations.

This article seeks to overcome the limitations (i.e. localiza-

tion accuracy) in prior studies by introducing a localization

assistance system for Alzheimer’s patients in indoor loca-

tions with credible localization accuracy supported by a cost-

effective, low-complexity, easy-to-use system.

III. EXPERIMENTAL CONFIGURATION

The experiment involving proposed localization of an

Alzheimer’s patient in indoor surroundings was performed

in an area sized 28 × 28 m2 on the second floor of the

lab building of the Electrical Engineering Technical Col-

lege (EETC) as shown in Figure 1. The Alzheimer’s patient

localization system was based on ZigBee (XBee S2C) WSN.

The WSN consisted of five nodes: four anchor nodes (AN1,

AN2, AN3, and AN4) and one mobile node (MN) carried

by the Alzheimer’s patient. The anchor nodes were fixed

in each corner of the ceiling of the building and powered

by an electrical main source from the laboratory adjacent to

FIGURE 1. Experimental layout for indoor localization of Alzheimer’s
patient.

FIGURE 2. The hardware for the Alzheimer’s patient indoor localization
system: (a) anchor node and (b) MN with the laptop.

the location of each node as shown in Figure 2a. The MN

(configured as a coordinator node) was designed to collect

the RSSI of the anchor nodes. In practice, the MN should be

mounted in or on the belt of the Alzheimer’s patient, but in

this study, it was fixed on a stand at a height of about 1.2 m

from the ground (approximating the height of an Alzheimer’s

patient’s waist) as shown in Figure 2b.

TheMNwas connected to a laptop via USB cable and pow-

ered from the laptop. However, an MN carried by a patient

in a real-life application should be powered by a battery.
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The laptop used X-CTU software to record the RSSI sam-

ples of the anchor nodes collected by the MN. In addition,

this software was used to configure the wireless connection

between the anchor nodes and the MN. In the experiment,

57 locations were pre-defined on the second floor for RSSI

measurements with 2 meters of distance between points.

Forty samples were collected from four anchor nodes in

each location (i.e. 10 samples per anchor node). A total of

2,280 samples (570 samples per anchor node) were collected

from the 57 locations. The RSSI samples were employed to

train, test, and validate the ANN to improve the localization

accuracy of the Alzheimer’s patient in an indoor environment.

In this article, the proposed indoor localization method

was tested in the line-of-sight (LOS) and non-line-of-sight

(NLOS) conditions. Barriers or obstacles such as walls,

doors, or windows were situated in the path of the trans-

mitted signal from the anchor nodes to the MN. The results

presented in reference [20] show that the path loss of the

signals in NLOS is greater than those in LOS surroundings,

and the received power in NLOS is attenuated more than

in LOS. Therefore, the localization accuracy in NLOS is

reduced compared to LOS environments. Localization inside

the LABs was not highlighted in this study because we

conducted the experiments in an environment similar to the

NLOS condition (i.e. inside the LABs) where the barriers

(i.e. walls, doors, and windows) are available in the tested

area. When the Alzheimer’s patient moves in the paths from

(AN1 to AN2), (AN2 to AN3), (AN3 to AN4), and (AN4 to

AN1), the (AN3 andAN4), (AN1 andAN4), (AN1 andAN2),

and (AN2 and AN3) will be in the NLOS condition with the

patient, as shown in Figure 1. In addition, the localization in

NLOS conditions was extensively addressed in our published

article, which can be found in reference [20].

IV. ADOPTED ANN STRUCTURE

Neural networks are efficient computational methods that

are used for knowledge representation, machine learning,

and applying developed knowledge to forecast the out-

put response of composite systems [30]. Artificial neural

networks have recently been applied effectively, realizing

significant achievements [31]. A biological neural network

simulates the activity in the biological brain. The neurons are

organized by synapses that can be improved by the training

process and carry information. Various training processes

have been used to train an artificial neural network, among

them, the BP training method. BP involves calculation, back-

propagation of error, and a feed-forward input training pat-

tern [32]. BP-ANN consists of an input layer, output layer,

and one or more hidden layers. The layers are connected seri-

ally, initiating from the input layer through the hidden layer

and output layer. Each layer includes one or more neurons;

the connections between layers are calledweights. Two stages

in the BP procedure were used: forward and backward [33].

In the design of the neural network, two important parameters

that affected the final prototypical performance in unforeseen

ways were the learning rate and the number of neurons in the

hidden layer of the network [34].

In this work, the BP-ANN architecture consisted of four

inputs (called RSSI1, RSSI2, RSSI3, and RSSI4), two hid-

den layers each having 20 neurons and two output layers

x-location and y-location that considered the positional coor-

dinates for the Alzheimer’s patient as illustrated in Figure 3.

FIGURE 3. RSSI collected by the MN.

FIGURE 4. Training performance for different ANN architectures.

To perform a low localization error, the chosen number of

hidden layers and neurons was achieved by training 15 differ-

ent ANN architectures, as shown in Figure 4. Hence, the num-

ber of hidden layers and neurons was increased to obtain

the best ANN performance, since the Alzheimer’s patient

localization requires a lower error and higher correlation

coefficient (R) between estimated and actual locations. First,

one hidden layer was executed by changing the number of

neurons from 5 to 20 in increments of 5 (1-5, 1-10, 1-15, and

1-20), as shown in Figure 4. Based on the ANN performance

presented in Figure 4, we noticed that the mean square error

(MSE) value of ANN training was unsatisfactory. Therefore,

the number of hidden layers was increased to two and the

number of neurons was changed from 5 to 25 (2-5-5, 2-5-10,

2-5-15, 2-5-20, 2-10-10, 2-10-15, 2-10-20, 2-15-20, 2-15-15,

2-20-20, and 2-25-25). As a result, two hidden layers and
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20 neurons (2-20-20) and two hidden layers and 25 neurons

(2-25-25) constitute the minimum MSE relative to the other

ANN architectures. However, the 2-25-25 architecture pro-

duces a relatively similar performance to that of the 2-20-20,

as shown in Figure 4. Therefore, the 2-25-25 architecture was

excluded from the current work, and the 2-20-20 was con-

sidered to reduce the architecture complexity with a suitable

convergence time relative to the 2-25-25 architecture.

FIGURE 5. The architecture of adopted ANN.

Figure 5 shows the architecture of the ANN that was

adopted. The BP-ANN was selected to improve the local-

ization accuracy of the Alzheimer’s patient while moving

about in an indoor environment. From each anchor node,

570 samples were collected to train, test, and validate the

data. The samples were divided into 70%, 15%, and 15% for

training, testing, and validating data [20], [35], [36] corre-

sponding to 398, 86, and 86 RSSI samples.

The flow chart of the ANN is depicted in Figure 6. It was

important to identify the hidden layers, the neurons in each

hidden layer and the learning rate before the ANN started the

training, testing, and validation phases. Accordingly, the two

hidden layers and 20 neurons in each hidden layer were

selected as recommended in [13], while the learning rate was

chosen based on the ANN algorithm. One hundred loops

(0.01–1 with a step of 0.01) were fused with the ANN algo-

rithm to select the value for the learning rate that could give

a minimum MSE of ANN. Then, the ANN was run to find

the objective function (i.e. MSE). The ANN iteration was

configured to 1,000 to allow the ANN to obtain optimalMSE.

However, the ANN stopped running either when reaching the

best MSE or the goal was achieved (i.e. 10−3).

V. RESULTS AND DISCUSSION

A. BP-ANN RESULTS

This section introduces the feed-forward BP-ANN results.

The BP-ANNwas adopted in the current work because it pro-

duces a superior performance than other types of neural net-

works, such as the cascade forward-artificial neural network

(CF-ANN), Elman-artificial neural network (ELM-ANN),

FIGURE 6. Flowchart of the adopted ANN.

FIGURE 7. Comparison of training performance for different ANN types
and learning methods.

feed-forward distributed time delay- artificial neural network

(FFDTD-ANN), radial basis function (RBF-ANN), and other

learning methods such as random forest (RF) in terms of

MSE and convergence, as shown in Figure 7. Accordingly,

the MSE for the BP-ANN was 0.027, which is significantly

lower than other varieties of neural networks. In addition,

the fundamental reason for using the BP-ANN algorithm in

this study was to minimize inclusive output errors during the

learning process such that the error could be backpropagated

to modify the weights and to decrease the error between the

estimated and actual values [37].

The MN collected 570 RSSI values for each anchor node

as shown in Figure 8. All of the 2,280 RSSI data collected

by the MN were used to train, test, and validate the ANN

performance and to locate the Alzheimer’s patient in the
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FIGURE 8. Collected RSSI by the MN of the anchor nodes: (a) AN1,
(b) AN2, (c) AN3, and (d) AN4.

indoor environment. In the beginning, 70% (398 samples) of

the collected RSSI data were used to train the ANN. Next,

15% (86 samples) were used to test the ANN performance.

Then, 15% (86 samples) were used for validation. The per-

formance of the BP-ANN was extracted in terms of MSE and

correlation coefficient as shown in Figures 9 and 10, respec-

tively, for the training, testing, and validation processes.

Figure 9 demonstrates the development of the objective

function of the BP-ANN in terms of MSE during training,

validating, and testing performance. The number of epochs

to evaluate the performance for BP-ANN was set to 1,000.

Figure 9 reveals that the training, testing, and validation per-

formance did not reach the target set (i.e. 0.001 m). However,

the best performances in terms of MSE were 0.027, 0.069,

and 0.081 m for training, testing, and validation, respectively,

at 1,000 epochs. Figure 9a confirms that the MSE of the

training performance was better than the testing and vali-

dation at 1,000 epochs. Figure 9b illustrates that the testing

performance was better than that for validation. However,

Figure 9c provides convincing results in terms of localization

accuracy, especially when used in indoor environments.

Figure 10 depicts the correlation coefficient of the train-

ing, testing, and validation of the ANN. The correlation

coefficient is a good indicator for assessing the degree of

agreement between actual measurements and an estimate.

Therefore, it can be considered in this article to evalu-

ate the agreement between the actual (Target) 2D locations

(i.e. x and y-axis’s) of the Alzheimer’s patient while moving

and the indoor estimated (output) locations obtained from

the ANN. Figures 10a, 10b and 10c demonstrate R values

FIGURE 9. MSE of ANN for (a) training, (b) testing, and (c) validation.

of 0.9999 (training), 0.9997 (testing) and 0.9996 (valida-

tion), respectively. As a result, the correlation coefficients

of ANN provide strong evidence that the proposed BP-ANN

can be used to obtain high localization accuracy and improve

localization error between actual and estimated locations.

Consequently, the proposed localization method can produce

accurate Alzheimer’s patient localization.

B. LOCALIZATION ERROR RESULTS

After the training phase, the BP-ANNwas used for validation

and testing to localize 57 unknown pre-defined locations in

the area of interest, having dimensions of 28 × 28 m2 as
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FIGURE 10. Correlation coefficient for (a) training, (b) testing and
(c) validation.

shown in Figure 11. The figure illustrates the actual locations

represented by blue squares, while the estimated locations

are denoted by red circles. A slight difference between esti-

mated and real Alzheimer’s patient locations was noted for

training as shown in Figure 11a. In this context, the mean

error was found to be around 0.055 m, whereas a small

difference was observed for testing and validation as shown

in Figures 11b and 11c, respectively. The mean errors were

found to be 0.964 and 0.921 m for validation and testing,

respectively.

Figure 12 presents a 3D graph that clarifies the relationship

between actual x-location (x-axis), y-location (y-axis), and

obtained error from ANN (z-axis). Figure 10a represents

the Alzheimer’s patient localization error for the training

FIGURE 11. Estimated and actual locations of Alzheimer’s patient in an
indoor environment for (a) training, (b) testing and (c) validation.

phase, which varies between 0.000145 (min) and 0.96 (max).

Based on the gradual alteration of the color in Figure 11a,

we can deduce that most of the error lies beyond the dark

blue and blue colors where the error is less than 0.2 m.

Figures 11b and 11c introduce the localization error for the

testing and validation phases, respectively. The error changes

between 0.0241 (min) and 5.646 (max) for the testing phase,

while it varies between 0.0036 (min) and 5.075 (max) for

the validation phase. Based on the piecemeal change of the

colors in Figure 11b and 11c, we can observe that most of

the localization errors venture beyond the dark blue and blue

colors where the error is less than 1.5 m.

In examining the overall cumulative localization error of

an Alzheimer’s patient in an indoor environment produced
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FIGURE 12. 3D graph of error concerning x- and y-locations for
(a) training, (b) testing and (c) validation.

by ANN, the cumulative distribution function (CDF) shown

in Figure 12 can be considered. The figure depicts the cumu-

lative errors for 57 different locations for the training, testing,

and validation phases. The CDF plot discloses that 73%, 70%,

and 65% of the error for training, testing, and validation is

less than 0.055, 0.921, and 0.964 m, respectively. However,

the error is less than 0.1346, 2.106, and 2.498 m for train-

ing, testing, and validation, respectively, when the CDF plot

reaches 90%.

The x-y plot (Figure 10), 3D graph (Figure 11), and CDF

plot (Figure 12) provide clear evidence that using ANN can

improve localization error for Alzheimer’s patients who are

moving about in an indoor environment. Consequently, the

proposed Alzheimer’s patient localization based on the BP-

ANN technique can produce accurate localization.

VI. COMPARISON RESULTS

In this section, the mean localization error produced from

applying the BP-ANN is compared with other scholars’ find-

ings to confirm the proposed method for Alzheimer’s patient

localization as presented in Table 1. The table also introduces

the adopted wireless technology for each research paper.

Traditional and artificial intelligence-based localization tech-

niques have been considered for this purpose. The traditional

methods include coupled RSSI and inertial navigation sys-

tem localization (CRIL), Bayesian graphical model (BGM),

hierarchical voting based mixed filter (HVMF), inertial mea-

surement unit (IMU), weighted k-nearest neighbor (WKNN),

and minimum mean square error (MMSE). In comparison,

the intelligent localization techniques or algorithms include

ANN, PSO, FL, neural-fuzzy inference system (ANFIS),

radial basis function network (RBFN), Random Forest (RF),

Feedforward ANN (FFANN), non-linear regression neural

network (NL-NN), support vector regression (SVR), extreme

learning machine (ELM), Wi-Fi deep learning (WiDeep),

generalized regression neural network (GRNN), intelligent

water drops-continuous optimization (IWD-CO), deep neu-

ral network (DNN), multilayer perceptron neural network

(MLPNN), recurrent neural networks (RNN), and discrete

Hopfield-type neural network (DHNN).

The majority of previous articles resemble our work in

that they use the RSSI metric to estimate the location of a

target or MN in indoor surroundings and that they adopt soft

computing techniques or intelligent algorithms. In addition,

for comparative purposes, we used themean localization error

obtained directly from the calculations in previous studies and

presented in their results. However, some parameters of our

study differ from previous studies, such as the ANN architec-

tures, which include hidden layers and neurons within each

hidden layer, the numbers of iterations, the RSSI samples, the

anchor nodes, and the size of the tested area. Most of these

parameters presented in previous works (shown in Table 1)

had higher values than our work. Nevertheless, our current

work has surpassed the aforementioned studies in terms of

our localization error. The training, testing, and validation of

the dataset in the current work uses an approach that is similar

to previous work but is not identical because it is difficult to

find a matching dataset in earlier studies.

The mean absolute error of the localization estimation was

employed to assess the average 2D localization error between

estimated and actual location, in contrast to those obtained

from previous papers. Based on the comparison introduced

in Table 1, it is obvious that the adopted BP-ANN method –

with a mean localization error of the predictable locations

of 0.921 m (testing phase) and 0.964 m (validation phase)

for indoor environments – outperforms other algorithms and

techniques introduced in recent works.

The superiority of our proposed method, i.e. BP-ANN,

over traditional methods stems from the fact that ANN
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TABLE 1. Comparison of mean localization error of the current method with localization techniques of previous works.

includes fast implementation, ease of use, learning capa-

bilities, flexible modeling, and lower predicted errors, and

it does not require knowledge of the propagation channel

surroundings or the channel features. As a key advantage,

ANN is not affected by the fluctuation of the RSSI measure-

ment caused by the multipath effect, environmental noise,

and node mobility. On the other hand, our proposed method

did have to cope with the other soft computing localization

techniques presented in Table 1, which we attributed to the

fact that we adopted two hidden layers with 20 neurons in

each hidden layer. In this case, when the number of hidden

layers and neurons increases the localization error decreases

and the overall performance will be improved. In addition,

we adopted 4 anchor nodes, positioned on each corner of

the ceiling of the tested area, to reduce the fluctuation and

degradation of RSSI produced from the multipath effect and

noise during the RSSI collection.

VII. LIMITATION OF STUDY

In the current work, the Alzheimer’s patient localization

method largely relied on ANN to improve localization accu-

racy. Fifteen architecture combinations were trained to select
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FIGURE 13. CDF plot for training, testing, and validation.

the best ANN performance in terms of the MSE. However,

this strategy consumes a significant amount of time. There-

fore, in future work, an optimization technique such as

PSO, IWD-CO, Gravitational Search Algorithm (GSA),

Backtracking Search Algorithm (BSA), or Slime Mould

Algorithm (SMA), could be used to select the number of

hidden layers and neurons directly without testing several

ANN architectures. As a result, efficiency will be enhanced.

In addition, other intelligent techniques, algorithms, or a

combination of multiple soft computing techniques could

be used to minimize the localization error. Another disad-

vantage of this study is that participants’ movement during

experimentation was limited inside the tested area. However,

localization accuracy decreases when the number of people

inside the tested area increases since these additional people

act as obstacles between the Alzheimer’s patient and the

anchor nodes.

VIII. CONCLUSION

In this article, ANN-based Alzheimer’s patient localization

for a WSN in an indoor environment was presented. The

backpropagation algorithm was used for training, testing,

and validation of ANN. Five-ZigBee wireless technology

was considered for the proposed localization technique using

four anchor nodes as beacons and one MN carried by an

Alzheimer’s patient. The anchor nodes were fixed on the

ceiling of the second floor of the EETC lab building to ensure

line-of-sight between the anchor nodes and MN. The MN

collected RSSI data for the anchor nodes to train, test, and

validate the ANN. The number of hidden layers, neurons in

each hidden layer, learning rate, and iteration of ANN were

selected to confirm an optimal localization error with low sys-

tem complexity and less run-time consumption. As a result,

the Alzheimer’s patient localization error was 0.055, 0.921,

and 0.964 m for the training, testing, and validation phases,

respectively. However, the localization error can be further

improved to some centimeters by increasing the number of

hidden layers or neurons at the expense of increasing the

ANN run-time. The results show that the proposed system

yields a satisfactory localization error and can be utilized

for localization and tracking an Alzheimer’s patient moving

about in an indoor environment.

For the outdoor environment, some possible solutions can

be implemented in future work. The Geolocations of the

Alzheimer’s patient can be determined by GPS. The GPS

is effective in outdoor settings but cannot be used indoors

due to the absence of a line-of-sight between the GPS and

satellite. Real-time GPS Geolocations can be provided by a

smartphone over specific navigation software or by using a

GPS receiving module interface with a low-power microcon-

troller supported by specific code and functions compatible

with GPS readings. To send GPS messages containing each

Alzheimer’s patient’s location to the caregivers or family

members, GPS modules should be physically connected with

wireless technologies such as a GSM module. The outdoor

Alzheimer’s patient positioning system can also be incorpo-

rated with an accelerometer and tilt sensors to detect the daily

activity and, in case of a fall, the location of each Alzheimer’s

patient. However, the performance of the GPS is influenced

by various factors, including multipath delays, atmospheric

delays, and receiver thermal noise. Consequently, positioning

errors will result from time delays. These positioning errors

can be resolved by utilizing an advanced GPS such as the

NEO-M8N module. The NEO-M8N preserves helpful infor-

mation, such as an almanac, ephemeris, and approximate last

position and time, which improve acquisition sensitivity. The

NEO-M8N has high positioning accuracy, sensitivity, and a

short acquisition time while operating under a low-power

system with a maximum current of 70 mA.
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