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Abstract—Network virtualisation has received attention as a
way to allow for sharing of physical network resources. Sharing
resources involves mapping of virtual nodes and links onto
physical nodes and links respectively, and thereafter managing
the allocated resources to ensure efficient resource utilisation. In
this paper, we apply artificial neural networks for a dynamic,
decentralised and autonomous allocation of physical network
resources to the virtual networks. The objective is to achieve
better efficiency in the utilisation of substrate network resources
while ensuring that the quality of service requirements of the
virtual networks are not violated. The proposed approach is
evaluated by comparison with two static resource allocation
schemes and a reinforcement learning-based approach.

Keywords—Artificial neural networks, network virtualisation,
resource allocation, reinforcement learning, autonomous systems.

I. INTRODUCTION

Network Virtualisation [1] allows substrate network (SN)
owners to lease out part of their infrastructure as a service to
service providers who create virtual networks (VN) to provide
end-to-end services to end-users. A VN is made up of a set of
virtual links and nodes which are supported by SN physical
paths and nodes respectively. Efficient sharing of SN resources
amoung VNs can be achieved in two steps [2]. The first, known
as virtual network embedding (VNE) [1], involves mapping of
virtual nodes and links to substrate nodes and paths, subject
to a set of pre-defined constraints (e.g. topology, node queue
size and bandwidth). The second step dynamically manages the
allocation of resources to virtual nodes and links throughout
the lifetime of a VN.

While many approaches have been proposed for man-
agement of resources in virtual networks, the number of
decentralised and dynamic solutions is still limited [1]. In
a previous work [3], we proposed a decentralised scheme
for dynamic resource allocation (DRA) in VNs based on
reinforcement learning (RL) [4] and a look-up table based
policy. Since a look-up table representation suffers from the
curse of dimensionality [5], the state and action space was
discretised to limit the size, as well as the high memory
for reading, writing and storage of the learning policy. This
however comes at a cost of efficiency, as the learning algorithm
is constrained in terms of perception and action granularity.

In this paper, we improve the efficiency of [3] by proposing
an autonomous system based on artificial neural networks
(ANN) [6] to achieve an adaptable allocation of resources
to virtual networks, without restricting the input-output space
dimensions. We start by representing each substrate node and

link as an ANN whose input is the network resource status and
the output an allocation action. We then use a reinforcement-
like error function to evaluate the desirability of ANN outputs,
and hence perform online training of the ANN.

The rest of the paper is organised as follows: We present
related work in Section II. Section III gives a brief theoretical
background on the resource management problem in network
virtualisation, and ANNs. The proposed approach is presented
in Section IV and evaluated in Section V. Finally, Section VI
concludes the paper, giving an outlook for future work.

II. RELATED WORK

A comprehensive survey on the state-of-the-art in VNE
can be found in [1]. Most of the approaches perform a
static embedding without any considerations for possibilities
of adjustments to initial embeddings, while those that propose
dynamic solutions do allocate a fixed amount of node and link
resources to the VNs throughout their life time. Since network
load varies with time due to non-uniform user traffic, allocating
a fixed amount of resources based on peak load could lead to
an inefficient utilisation of overall SN resources, especially
during periods when the virtual nodes and/or links are lightly
loaded.

Existing work on DRA is based on three main approaches:
control theory, performance dynamics modelling and workload
prediction. For example, [7] is a control theoretic approach, [8]
is based on performance dynamics, while [9] uses workload
prediction. The difference between our proposal and these
works is not only with respect to the solution tool (ANN),
but also in application domain (network virtualisation). DRA
in VNs presents additional challenges as we have to deal with
different resource types (such as bandwidth and queue size)
which are not only segmented into many links and nodes, but
also require different quality of service guarantees. In addition,
in a VN environment, the managed resources are dependent on
each other, for example, a given virtual link can be mapped
on more than one substrate link, and the resources allocated
to a virtual node may affect the performance of virtual links
attached to it, say in terms of increased routing delays.

A combination of ANNs and RL has been applied to many
problems such as [10], [11], [12]. In these proposals, ANNs are
used as function approximators for the RL policy. The proposal
in this paper differs from these works on two fronts: (1) we use
RL to train the ANN rather than using ANNs to approximate
the RL policy. This, remarkably, allows us the possibility to do
away with the need for training examples and/or target outputs



usually needed for learning in neural networks1, and (2) we
apply the combination ANN and RL to a network virtualisation
environment.

III. THEORETICAL BACKGROUND

This Section introduces the two main steps−virtual net-
work embedding (VNE) and dynamic resource allocation
(DRA)−involved in resource management in VNs. We also
introduce artificial neural networks (ANN).

A. Virtual Network Embedding (VNE)

VNE involves mapping of VNs onto a SN, and is initiated
by a service provider (SP) specifying resource requirements
for both nodes and links to an infrastructure provider. The
specification of VN resource requirements is usually repre-
sented by a weighted undirected graph Gv = (Nv, Lv), where
Nv and Lv represent the sets of virtual nodes and links
respectively. Each virtual link lij ∈ Lv or virtual node i ∈ Nv

usually has requirements such as maximum delay, CPU, queue
size, bandwidth etc. In a similar way, the SN node and link
capacities can be represented. For a successful mapping, all the
VN node and link mappings should be in accordance to the
VNE constraints [13]. VNE is out of the scope of this work.
Any of the static approaches in [1] can be used for this stage.

B. Dynamic Resource Allocation (DRA)

The next step, which is the focus of this paper, follows
a successful VNE. It involves the lifecycle management of
resources allocated/reserved for the mapped VN, and is aimed
at ensuring optimal utilisation of overall SN resources. Our
consideration is that SPs reserve resources to be used for trans-
mitting user traffic, and therefore, after successful mapping of
a given VN, user traffic is transmitted over the VN. Actual
usage of allocated resources is then monitored and based on
the level of utilisation, we dynamically and opportunistically
adjust allocated resources. The opportunistic use of resources
involves carefully taking advantage of unused virtual node and
link resources to ensure that other VN requests are not rejected
when resources reserved to already mapped VNs are idle. It is
however a delicate balancing approach that ensures that while
VNs should not have idle resources, the allocated resources are
sufficient to ensure that the quality of service parameters such
as packet drop rate and delay for the VNs are not affected. In
Section IV, we detail the proposed ANN approach.

C. Artificial Neural Networks (ANN)

ANNs are collections of computing nodes known as neu-
rons which operate as summing devices, interconnected by
links [14]. A neuron receives one or more inputs, which are
first multiplied by weights along each link, and then summed
to produce an output. The output is then passed through an
activation function (such as the logistic function [6]), which
determines the input-output behaviour of the neuron. In ANNs,
neurons are arranged in layers, with each layer consisting

1While we still use some training examples in our proposal (see Section
IV-B3), it is only aimed at guiding in the ANN structure design as well
as ensuring a faster convergence of the algorithm (through problem specific
weight initialisation) rather than as a requirement as would have been in a
typical ANN learning scenario.
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Fig. 1. Artificial Neural Network-based Resource Allocation Model

of one or more neurons. The most commonly used structure
of ANNs is made up of 3 layers; an input layer, a hidden
layer, and an output layer [14]. The learning ability of neural
networks lies in their ability to adjust their weights. This is
achieved by gradually minimising an error, defined as the
difference between an actual output and a target output. The
most popular method for learning in ANNs is called back-
propagation (BP) [14]. In BP, after an output is obtained, an
error signal - which is the difference between actual output
and target output - is determined. The error signal is then
“propagated backwards” from the output layer to the input
layer, adjusting the network weights. Therefore, learning in
ANNs requires that for every input, a target output must be
known so as to determine the error. An introduction to ANNs,
and the back propagation algorithm (and how it is used for
learning in ANNs) can be found in [14].

IV. ANN-BASED DYNAMIC RESOURCE ALLOCATION

The system model used for our proposal is shown in Fig.
1. As can be observed from the figure, there are three main
components: the multi-agent system representing the substrate
network, the ANN that represents the internal components of
each agent, and the evaluative feedback block that produces
the error signal. In the following subsections, each of these
elements of the model is detailed.

A. Multi-Agent System

The multi-agent system consists of all the agents that
represent the SN. Specifically, each substrate node and link
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Fig. 2. Variation of RMSE with Number of Neurons in Hidden Layer

is represented by a node agent na ∈ Na and a link agent
la ∈ La, where Na and La are the sets of node agents and
link agents respectively. The node agents manage node queue
sizes while the link agents manage link bandwidths. The agents
dynamically adjust the resources allocated to virtual nodes and
links, ensuring that resources are not left under-utilised, and
that enough resources are available to meet VN requirements.
As shown in Fig. 1, a given agent receives as input the state,
s of the substrate node it manages, and outputs an action, a.

B. Artificial Neural Network

Our proposal uses a 3-layer ANN. An important design
issue of any ANN is determining network topology, i.e. number
of neurons in each of the network layers.

1) Input Layer: We model the state of any virtual resource
(node queue size or link bandwidth) v hosted on a substrate
resource z, by a 3-tuple, s = (Rv

a, Rv
u, Rz

u), where Rv
a

is the percentage of the virtual resource demand currently
allocated to it, Rv

u is the percentage of allocated resources
currently unused, and Rz

u is the percentage of total substrate
resources currently unused. Therefore, the input layer consists
of 3 neurons, one for each of the variables Rv

a, Rv
u and Rz

u.

2) Output Layer: During each learning episode, an agent
should perceive the state s and give an output. This output,
a, is a scalar that indicates which action should be taken to
change the resource allocation for the virtual resource v under
consideration. The action may be aimed at increasing (if it
is positive) or reducing the resources allocated to any virtual
node or link respectively. Therefore, the output layer consists
of 1 neuron, representing the action, a. To illustrate the effect
of an action, if a given virtual resource, v has total allocated
resources vr and the agent action is a (where −1 ≤ a ≤ +1),
then the resulting resource allocation is: vr = vr + a × vt,
where vt is the total initial demand of the virtual resource (as
specified in the VN request before the VNE).

3) Hidden Layer: The optimal number of neurons in a
hidden layer of any ANN is problem specific, and is still an
open research question [6]. In this paper, we determine this
number by experimentation. We perform a search from number
of hidden layer neurons, NHL = 1 to 15.

In order to achieve this, we need a test dataset. The dataset
used for this purpose was saved from the q-table of a RL
approach proposed in [3]. This q-table was a result of a
learning system for a similar DRA task and it gives the state-
action-values for the learning task. This dataset contains 512
entries, each showing the best action value in each of the
possible 512 states.

With the above training set, a 10−fold cross-validation
was performed in Weka 3.6 [15], using the default parameters
(learning rate, validation threshold, momentum, etc.) for the
multilayer perceptron in Weka. Fig. 2 shows the average root
mean square error (RMSE) values for 20 experiments. From
the figure, the optimal number of neurons for the hidden layer
is 4. The reason for choosing to use 4 neurons is not only
to allow for a low RMSE, but also to avoid a possibility of
over-fitting which could be caused by a network with many
neurons. This experimentation also provides initial weights that
are used to initialise the neural network, and hence avoid the
slow learning characteristics (and hence slow convergence) of
BP.

C. Evaluative Feedback

After each learning episode, the affected substrate and
virtual nodes/links are monitored, taking note of average
utilisation of substrate resources, the delay on virtual links
and packets dropped by virtual nodes due to buffer overflows.
These values are fed back to the agent in form of a perfor-
mance evaluation, used by the error function to produce an
error signal, which is used by the BP algorithm to adjust the
weights of the ANN, and hence improve future actions.

Error Function: The error e(v), is an indication of the
deviation of the agent’s actual , from a target action. The
objective of the error function is to encourage high virtual
resource utilisation while punishing na ∈ Na for dropping
packets and la ∈ La for having high delays. Good actions by
an agent are characterised by an e(v) equal or close to 0, while
any deviations indicate undesirable actions. Therefore, the
value of e(v) gives the degree of desirability or undesirability
the agent’s action, and is dependent on resources allocated to
the virtual resources, unutilised resources, link delay in case
of la ∈ La and the number of dropped packets in the case of
na ∈ Na. The proposed error function is shown in (1).

e(v) =



















(

Rv
u + αPv

)

∀na ∈ Na

(

Rv
u + βDv

)

∀la ∈ La

(1a)

(1b)

where α and β are constants aimed at ensuring that the
magnitudes of the two terms in each of (1a) and (1b) are
comparable. The values α = 0.05 and β = 40 used in this
paper, were determined by simulations. For example, looking
at Fig. 5 shows that the maximum value of Pv is about 20.
Therefore, to make these values comparable to 0 ≤ Rv

u ≤ 1,
we divide each value by 20 (multiply it by α = 0.05). Pv

is the number of packets dropped by node na ∈ Na from
the time the allocation action was taken, and Dv is the extra
delay encountered by a packet using la ∈ La. The extra delay
is calculated as the difference between actual delay and the
theoretical delay. We define theoretical delay as the delay



TABLE I. NETWORK TOPOLOGY PARAMETERS

Parameter Substrate Network Virtual Network

Name (Model) Router Waxman Router Waxman

Size of main plane (HS) 250 250

Size of inner plane (LS) 250 250

Node Placement Random Random

GrowthType Incremental Incremental

Neighbouring Nodes 3 2

alpha (Waxman Parameter) 0.15 0.15

beta (Waxman Parameter) 0.2 0.2

BWDist Uniform Uniform

TABLE II. NS3 PARAMETERS

Parameter Value

Queue Type Drop Tail

Queue drop Mode Bytes

Maximum Queue Size 6,553,500 Bytes

Maximum Packets Per VN 3500 Packets

Number of VNs 1024

Network Mask 255.255.224.0

IP Adress Range 10.0.0.0 − 10.255.224.0

Network Protocol IPv4

Transport Protocol TCP

Packet MTU 1518 Bytes

Packet Error Rate 0.000001 per Byte

Error distribution Uniform (0, 1)

Port 8080

TABLE III. SN AND VN PROPERTIES

Parameter Substrate Network Virtual Network

Minimum Number of Nodes 25 5

Maximum Number of Nodes 35 15

Minimum Node Queue Size (100 × 1518) Bytes (10 × 1518) Bytes

Maximum Node Queue Size (200 × 1518) Bytes (20 × 1518) Bytes

Minimum Link Bandwidth 2.0Mbps 1.0Mbps

Maximum Link Bandwidth 10.0Mbps 2.0Mbps

TABLE IV. COMPARED ALGORITHMS

Code Resource Allocation Approach

D-ANN Dynamic, based on Artificial Neural Networks [Our Contribution]

D-RL Dynamic, based on Reinforcement Learning[3]

S-CNMMCF Static, Coordinated Node Mapping and MCF for link mapping[13]

S-OS Static, link based optimal one shot Virtual Network Embedding[3]

the virtual link would have if it was allocated 100% of its
bandwidth demand2. The actual delay is determined as the
difference between when a packet is received at one end of
the link, to when it is delivered to the other end. Once the
error is determined, the ANN weights are adjusted using BP.

V. PERFORMANCE EVALUATION

A. Simulation Environment

To evaluate our proposal, SN and VN topologies were
generated using Brite [16] with settings shown in Table I.
Thereafter, VN requests arrive, one at a time to the SN. When-
ever a VN request is accepted by the SN, the VN topology is
created in NS3 [17] (we added a network virtualisation module
to NS3 based on parameters in Table II). Our NS3 module
allows us to create a traffic application for each accepted VN
request, and the traffic application starts transferring packets
over the VN. The traffic application generates packets based
on real traffic traces from CAIDA anonymised Internet traces
[18]. This dataset contains anonymised passive traffic traces
from CAIDA’s equinix-chicago and equinix-sanjose monitors
on high-speed Internet backbone links, and is mainly used
for research on the characteristics of Internet traffic, including
flow volume and duration [18]. The trace source used in this
paper was collected on 20th December 2012 and contains over
3.5Million packets. We divide these packets amoung 1000
VNs, so that each VN receives about 3500 packets. These
traces are used to obtain packet sizes and time between packet
arrivals for each VN. As the source and destination of the
packets are anonymised, for each packet in a given VN, we
generate a source and destination IP address in NS-3 using a
uniform distribution. Simulations were run on an Ubuntu 12.04

2The simulations in this paper determine this value from a parallel simula-
tion using a virtual network with 100% resource allocation.

LTS Virtual Machine with 4.00GB RAM and 3.00GHz CPU
specifications.

B. Simulation Parameters

Both substrate and virtual networks were generated on a
250 × 250 grid. The queue size and bandwidth capacities of
substrate nodes and links as well as the demands of virtual
networks are all uniformly distributed between minimum and
maximum values shown in Table III. Link delays are as
determined by Brite. Each virtual node is allowed to be located
within a uniformly distributed distance 75 ≤ x ≤ 150 of its
requested location, measured in grid units. We assumed that
VN requests arrive following a Poisson distribution with an
average rate of 1 per minute. The average service time of each
VN is 60 minutes and is assumed to follow a negative expo-
nential distribution. The ANN algorithm runs every minute3.

C. Compared Algorithms

We compare the performance of our proposal with 3 repre-
sentative state-of-art solutions. The first, [3], uses RL for DRA;
the second performs a coordinated node and link mapping
[13]; and the third is also a static baseline formulation that
performs a one shot mapping, and also used in performance
evaluations in [3]. The solution in [13] was adapted to fit
into our formulation of the problem. In particular, for [13]
the link delay requirements were neglected at the embedding
stage, and for this reason, it is not used in QoS evaluations.
In addition, our consideration in this paper is for unsplittable
flows. We identify and name the compared approaches in table
IV. The mathematical programs in all proposals are solved
using CPLEX 12.5 [19].

3It is worth remarking that while this paper has not studied the effect of the
frequency of running the algorithm, we expect that a lower running frequency
would make the dynamic allocation become comparable to the static one,
while a higher frequency might negatively impact system stability.
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D. Performance Metrics

1) Embedding Quality: We define embedding quality as
a measure of how efficiently the algorithm uses the SN
resources for accepting VN requests. This is evaluated using
the acceptance ratio and the average level of utilisation of
SN resources. The acceptance ratio is a measure of the long
term number of VN requests that are accepted by the substrate
network. The average level of utilisation of substrate resources
is a measure of how efficiently the SN resources are used.

2) Quality of Service: We use both packet drop a well as
delay variation as indications of the quality of service. As
shown in Table II, we model the networks to drop packets
due to both node buffer overflow as well as packet errors. We
determine the packet delay variation as the difference in delays
encountered by packets transmitted over the network over two
successive time intervals, while packet drop is the number of
packets dropped by a given VN during a given time interval.
For these evaluations, the time interval used to update these
measurements corresponds to the transmission of every 100
packets.

E. Discussion of Results

The simulation results are shown in Figs. 3 − 6. As can
be seen from Fig. 3, while both dynamic approaches perform
better than the static ones in terms of VN acceptance ratio,
the ANN approach outperforms all three. The reason for the
dynamic approaches performing better than the static ones is
that in former cases, the substrate network always has more
available resources than in the later case, which is a direct
result of allocating and reserving only the required resources
for the virtual networks. The fact that ANN outperforms the RL
approach can be attributed to the fact that the ANN approach
models the states and actions with better granularity i.e.
without restricting the states and actions to few discrete levels.
We also note that S-OS has a better acceptance ratio than S-
CNMMCF. This is due to the fact that since S-CNMMCF
performs node and link mapping in two separate steps, link
mappings could fail due to locations of already mapped nodes.

Fig. 4 shows the average utilisation of SN resources. It
can be observed that except for S-CNMMCF, the other three
approaches on average use the same amount of SN resources.
The fact that S-CNMMCF has a lower resource utilisation
is expected as a result of having slightly more resource



requests rejected either due to a node mapping that makes
link mapping impossible, or for previous link mappings using
more resources. The fact that S-OS, D-RL and D-ANN all
have on average the same resource utilisation profile is mainly
due to all of them having the same initial mapping algorithm
(which is S-OS). It can however be noted that while S-OS,
D-RL and D-ANN all have similar resource utilisation levels,
D-ANN uses these resources to achieve a higher acceptance
of VNs, which further confirms the extra resource allocation
efficiency of the ANN approach.

Fig. 5 shows that S-OS has an almost constant packet drop
rate while that for D-RL and D-ANN is initially high, but
gradually converges to that of S-OS. At the beginning of the
learning processes, the dynamic approaches vary the queue
sizes quite considerably leading to more packet drops. The
fact that D-ANN has a lower packet drop rate than D-RL over
the learning period can be explained since D-ANN has better
granularity in perceiving the state of resources and allocation.
We also note that the initial drop rate of D-ANN is lower than
that of D-RL which can be attributed to the weight initialisation
obtained from Weka (See Section IV-B3).

Finally, Fig. 6 shows that packet delay variations for the
two dynamic approaches is initially higher but reduces over the
learning period. Once more, these differences are attributed to
the initial learning period, and the difference between D-RL
and D-ANN is due to better options in perception and action
for D-ANN, as well as the weight initialisation in D-ANN.

VI. CONCLUSION

This paper has proposed a distributed and dynamic ap-
proach for allocation of resources in virtual networks. We
applied artificial neural networks to ensure that the allocation
agents perceive a continuous network state and take continuous
resource allocation actions. We have been able to show through
simulation that our proposal improves the acceptance ratio of
virtual networks, which would translate into higher revenue
for the infrastructure providers, while ensuring that the quality
of service to the virtual networks is not negatively affected.

In future, we intend to extend this proposal to the multi-
domain environment, which raises more questions especially
with regard to cooperation and trust between agents as well as
the need for negotiation. We will also study the possibilities
of implementing our proposal in a real network, say, by
setting up a server to collect VN requirements and user traffic
characteristics, and using this in a prototype LAN.
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