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Machine learning algorithms based on artificial neural networks have proven very useful for a variety
of classification problems. Here we apply them to a well-known problem in crystallography, namely the
classification of x-ray diffraction (XRD) patterns of inorganic powder specimens by the respective crystal system
and space group. Over 105 theoretically computed powder XRD patterns were obtained from inorganic crystal
structure databases and used to train a deep dense neural network. For space group classification, we obtain an
accuracy of around 54% on experimental data. Finally, we introduce a scheme where the network has the option
to refuse the classification of XRD patterns that would be classified with a large uncertainty. This enhances
the accuracy on experimental data to 82% at the expense of having half of the experimental data unclassified.
With further improvements of neural network architecture and experimental data availability, machine learning
constitutes a promising complement to classical structure determination methodology.
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I. INTRODUCTION

Elastic scattering of plane waves is a powerful technique
to reveal the structure of translationally invariant systems.
Diffraction has been successfully applied to atomic [1], mag-
netic [2], superconducting vortex [3], and even protein lattices
[4] to uncover their crystal structures. Such structure deter-
mination can have far reaching implications and prominent
examples are as follows: (i) The correct helical DNA structure
was first inferred from interpretation of diffraction patterns
[5,6]. (ii) For the production of widely used carbon steel
avoiding certain crystal structures by thermal quenching is
imperative for high-quality material properties [7]. (iii) In
drug design, diffraction determination of protein structures is
crucial [8]. The determination of crystal structures based on
diffraction experiments is therefore an important activity. A
subproblem is the determination of crystal symmetries. As
there is a finite number of space groups, interpretation of
diffraction patterns is then in essence a classification prob-
lem. A prevalent strategy is to model the diffracted Bragg
reflections through the form and structure factors [1]. Crystal
structure determination is then settled by the best fit to the
experimental data. The recent broad dissemination of machine
learning algorithms in science, game theory, and technology
is driven, for a large part, by the ability of neural networks
to—after training—classify data [9–25]. There, neural net-
works are able to acquire implicit knowledge through which
classification can be achieved without prior information about
which features in the data are relevant for the classification.
It is thus of great interest to apply these algorithms to the
interpretation of diffraction patterns [23].

In this work, we study the problem of space group deter-
mination from powder x-ray diffraction (XRD) patterns using
artificial neural networks. We restrict ourselves to inorganic
nonmagnetic materials and employ a fully supervised learning
scheme for this classification task. To train the network, we
generate a large amount of data theoretically, by computing

diffraction patterns based on crystal structure information
of real crystals obtained from various databases [26–32].
The trained network is then tested on both theoretical and
experimental data, the latter being obtained from the RRUFF
database [33]. A recent study [23] reported, using a convolu-
tional neural network architecture, a remarkable classification
accuracy of over 80% on theoretical data despite failing to
correctly classify the few experimental data they obtained.
We contrast the performance of this convolutional network
with a simple dense network and demonstrate that the dense
network performs significantly better on experimental data.
Furthermore, it is found that when the network misclassifies
a structure, the wrongly predicted space group often differs
from the correct one by only a few symmetry elements.
Finally, we show that a classification accuracy of above 80%
can be achieved for experimental data, if about half of the data
is left unclassified because the network is not certain about
it. This is practically relevant since it is better to know that
a network is uncertain than for the network to give a wrong
classification.

Our results demonstrate that neural networks can be useful
in classifying experimental XRD patterns by the space group
of the crystal even when training is done only with theoret-
ically computed data. While the accuracy achieved in this
classification is not sufficient to rely on this method alone, it
may be used to enhance and complement existing algorithms.
In any case, the classification accuracy of 50% we obtain for
experimental data is already a considerable achievement given
that (i) there are 230 space groups to differentiate, (ii) the
experimental data is not perfect due to finite counting statistics
and backgrounds, crystal defects, and minority phases, and
(iii) no prior knowledge about the task is used in training the
network and the data is not pre-processed.

The paper is structured as follows: In Sec. II we explain
in more detail the problem that the neural network is set
out to solve. Section III introduces the structure of the neu-
ral networks that we use as well as the training algorithm.
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FIG. 1. Typical samples of powder XRD patterns. (a) XRD pat-
tern for Borax Na2[B4O5(OH)4] · 8H2O (obtained from the RRUFF
database); (b) theoretically computed XRD pattern for C2(Si6Cl14)
including noise and background. Both compounds belong to the
space group 15.

Section IV shows how the theoretical training data is prepared,
and Sec. V discusses all the results including the performance
comparison between the convolutional and the dense network.

II. X-RAY DIFFRACTION AND CRYSTAL SYMMETRIES

The goal of our machine learning task is to predict crystal
symmetry (crystal system and space group) from powder
XRD patterns. There are seven crystal systems and 230 space
groups. In an XRD experiment, the photons scatter off the
atoms in the crystal, and interfere and produce Bragg diffrac-
tion patterns which are collected by a detector. Since the
sample is powdered, all crystal orientations are represented
and hence the diffraction pattern shows rings centered about
the beam axis, i.e., the intensity pattern S(2θ ) is a function
of the scattering angle 2θ with respect to the beam axis.
In Fig. 1, examples of such diffraction patterns are shown.
Since the interference depends on the relative positions of
the atoms within the crystal, information regarding the crystal
symmetries is contained within the XRD pattern.

Conventional methods [34–39] for obtaining the space
group from the XRD pattern generally involve performing
some peak finding algorithm. Our objective is to train a neural
network such that it learns the relevant features of the interfer-
ence pattern in order to correctly predict the crystal symmetry
without relying on preprocessing of the data to identify peaks.
The XRD pattern, i.e., the Bragg peak positions in 2θ , depends
on the wavelength of the photons. Generally, the patterns
can be expressed in terms of scattering wave vectors q =

4π sin(θ )/λ. However, for direct comparison with Ref. [23],
we fixed the wavelength at the copper Kα line (λ = 1.54 Å)
and hence we display our results as a function of 2θ . Since a
neural network takes a finite number of inputs, we express
the intensity function S(2θ ) as a vector. We set the range
from 5◦ < 2θ < 90◦ with a spacing of 0.01◦. In addition, we
normalize the functions such that its largest value is one.

III. NEURAL NETWORK AND TRAINING ALGORITHM

Artificial neural networks are variational approximations
to arbitrary functions. Many variants and architectures exist.
Here, we consider the so-called feed-forward neural networks
(FFNN). They consist of a series of successively applied
maps. Each map constitutes a “layer” of the network. By
definition, the first layer is the input layer and the last layer
is the output layer of the network.

Let vn be the output of layer n and define the input to
the network to be v0. The output of layer n is then the input
for layer n + 1. At each layer, we perform a transformation
to go from one layer to the next. The most important layer
consists of an affine map followed by a nonlinear function (or
activation function) gn, i.e.,

vn → vn+1 = gn(W nvn + bn), (1)

where W n is the so-called weight matrix and bn is the bias
vector. When no further constraints are imposed on the weight
matrix and bias vector, the layer is called a dense layer. In
a so-called convolutional layer, by contrast, not all elements
of the weight matrix can be freely chosen. There is a set of
constraints which reduces the number of learnable parameters.
This allows one to effectively use networks for much larger
dimensions of the input vectors and to build both “deeper” and
“wider” networks consisting of more layers. There are other
types of layers with specific purpose, such as pooling layers
and dropout layers [40].

An important freedom in the setup of the network is the
choice of activation function gn. For all layers apart from
the final output layer, we use the rectified linear unit (ReLU)
defined by

ReLU(z) = max(0, z), (2)

which is applied element wise to the vector vn. For the output
layer, we use the SOFTMAX function given by

SOFTMAX(vn)i =
exp(vn,i )

∑

j exp(vn, j )
. (3)

This SOFTMAX function is positive definite and normalized to
1 such that the output layer can be interpreted as a probability
distribution.
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FIG. 2. Network architectures used for classifying space groups from powder XRD patterns. (a) Convolutional neural network as used
in Ref. [23]. (b) Dense network. Blue layers represents convolutional layers with f filters of size k and stride s, green layers correspond to
dense layers with the number of nodes given by the value within and yellow layers are dropout layers with the indicated dropout rate. The
gray layers are the input layers with the number denoting the corresponding input size. The XRD patterns are zero padded to match the input
size. Evaluated on the experimental samples from the RRUFF database, we achieved an accuracy of 42% for the convolutional network and an
accuracy of 54% for the dense network.

In this paper, we consider two different network architec-
tures, a convolutional network (this is the same architecture
as in Ref. [23]) and a dense network. We use a one-hot
encoding for representing the different possible classification
categories. This means that the final layer of the network has
as many nodes as there are categories for a certain classifica-
tion of the input data, i.e., seven nodes if we are classifying
crystal systems and 230 if we are classifying space groups. A
fully confident classification into category i then corresponds
to an output vector equal to the unit vector in i direction.
More generally, the network’s prediction is taken to be the
category with the largest component of the output vector.
The precise network architectures we used for space group
classification are shown in Fig. 2. Notice that the final layer
contains 230 nodes corresponding to different possible space
groups. The networks used for classifying crystal systems are
nearly identical apart from the final few layers since the output
layer should have only seven nodes.

We now proceed to explain how the network is trained. For
that, we use a labeled dataset {(x, lx)} where x is the sample
input (the XRD pattern) and lx is the correct label (the space
group or crystal system to which the pattern belongs). Let
the network output distribution corresponding to the input x

be given by yx, and that corresponding to the correct label
is defined via its components yc

x,i = δi,lx . The network is
trained by minimizing the following cost functions: the mean-
squared-error or quadratic cost,

Cquad =
1

n

∑

x

∣

∣yx − yc
x

∣

∣

2
, (4)

and the categorical cross entropy,

Ccross = −
1

n

∑

x

[

yc
x · ln yx +

(

1 − yc
x

)

· ln(1 − yx)
]

, (5)

where the sum is over the training dataset. To minimize the
cost function, we use a gradient decent type optimizer called
adaptive moment estimation (Adam) [41] which proceeds
as follows. We denote by αr the collection of all network
parameters, i.e., all the entries of weight matrices and bias
vectors, where r indexes all these quantities.

(1) At step t , compute the gradient of the cost function C

with respect to the network parameters,

gr;t = ∇αr
C. (6)

(2) Compute the decaying first and second moments of the
past gradients.

mr;t = β1mr;t−1 + (1 − β1)gr;t ,

vr;t = β2vr;t−1 + (1 − β2)g2
r;t ,

(7)

where β1 and β2 are the hyperparameters controlling the decay
rate.

(3) Because these moments are initialized to zero (mr;0 =

vr;0 = 0), there is a bias towards zero. To counteract this, we
define the bias-corrected moments,

m̂r;t =
mr;t

1 − βt
1

,

v̂r;t =
vr;t

1 − βt
2

. (8)

(4) Update the parameters of the network as

αr → αr −
η

√

v̂r;t + ǫ
m̂r;t , (9)

where η is the learning rate and ǫ is a smoothing term to
prevent division by zero.

We used the standard values for the hyperparameters of
the Adam optimizer: η = 0.001, β1 = 0.9, β2 = 0.999, and
ǫ = 10−8.
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In order to speed up the training, instead of summing over
the entire dataset in the cost functions C, we can perform
the sum over a randomly selected batch of samples. This
introduces noise in the computation of the derivative. The
smaller the batch size, the larger the noise. It is thus necessary
to find a trade-off between speed and accuracy. However, it
should be noted that a certain amount of noise can be useful
to prevent the network from getting trapped in local minima.

In each iteration, a batch of samples from the training data
is fed to the network and the parameters are updated according
to the algorithm above. An epoch is one full training cycle of
the machine learning algorithm such that that every sample in
the training set is exposed. During the training, we alternate
between the quadratic cost Cquad on even epochs and the cross
entropy Ccross on odd epochs. The reason for this is that the
categorical cross entropy helps to speed up convergence while
the quadratic error is necessary for the network to produce
a more meaningful output distribution. Without the quadratic
error, the output of the dense network is always close to a
one-hot encoded vector even for wrong predictions.

IV. DATA PREPARATION

The XRD patterns used for training the networks were
computed theoretically from the crystal structure informa-
tion obtained from the Inorganic Crystal Structure Database
(ICSD) [26] which provides the crystallographic information
file (CIF) of many inorganic substances. We removed dupli-
cates (some crystal structures appeared more than once in
the database) from the training data. With this restriction, a
dataset of 1 28 404 samples was obtained.

The CIF contains the necessary information required to
compute XRD patterns. Using the Python pymatgen library
[42], we computed the theoretical XRD pattern in terms of
peak heights and positions from the CIF. The peak heights
and positions are then convolved with a Gaussian function of
variable standard deviation σ to mimic the finite experimental
resolution.

However, these theoretically computed patterns still lack
counting statistics and background signals present in real ex-
perimental data. A network trained using only such data may
interpret the experimental noise as Bragg peaks potentially
causing a misclassification. To simulate statistical noise, we
augment our XRD patterns with a random signal drawn from a
uniform distribution. In addition, we add a background signal
f (θ ) which is the sum of the following functions.

(1) Smooth step functions:

fstepup(θ ) = h

(

1

1 + exp[a(θ − θstep)]

)

,

fstepdown(θ ) = h

(

1 −
1

1 + exp[a(θ − θstep)]

)

,

(10)

where h, a, and θs gives the height, steepness, and position of
the step, respectively.

(2) Fourth-order polynomials,

fp(θ ) =

∣

∣

∣

∣

∣

4
∑

n=0

anθ
n

∣

∣

∣

∣

∣

, (11)

where the coefficient an are chosen randomly.

(3) To mimic enhanced background near the direct beam
(small scattering angles 2θ ), but before the beam stop, we used

fbump(θ ) = h(nθ )2e−nθ , (12)

where h is setting the magnitude and n is a measure of the
steepness.
The exact details of how these background and noise parame-
ters are chosen is given in the Appendix.

In Fig. 1, we compare the XRD pattern produced using
the above procedure with a true experimental data from the
RRUFF database. The noise and background signals in the
two patterns are relatively similar suggesting that the method
we used to create the data could help the network generalize
better to experimental conditions. As a side note, it can be
seen that although both crystals in Fig. 1 correspond to space
group 15, their XRD patterns barely have any similarities that
can be easily picked out by the naked eye. This illustrates
the significant difficulty in the classification problem that the
network faces.

The full dataset is then divided into three sets: test, vali-
dation, and training. The test and validation sets have a size
of 7000 each, leaving us with 1 14 404 samples in the training
set.

V. RESULTS AND DISCUSSION

A. Training

Using the dataset described in the previous section, we
train the network architectures shown in Fig. 2. The evolution
of the classification accuracies of the networks over both the
test set and the RRUFF database (real experimental data)
during the training are shown in Fig. 3. The accuracies were
averaged over 10 trained networks initialized with a different
random seed. For the final prediction, the output of the net-
work was averaged over the ensemble of 10 networks. The
final accuracies of the network ensembles are summarized in
Table I. Figures 3(a) and 3(b) show the results for the crystal
systems and space groups, respectively.

As expected, the networks are clearly more accurate in
classifying the theoretical test data (which has the same
noise and background structure as the training data) than
the experimental data (which contains noise and background
structures not present in the training data). This suggests that
despite the addition of background and noise there are still
important systematic differences between the theoretical and
experimental data which may be one of the main obstacles
for obtaining a higher classification accuracy on the experi-
mental data. However, it is remarkable that this discrepancy is
much larger in the convolutional network as compared to the
dense network. In fact this discrepancy is so large that, even
though the former had a higher accuracy over the test set, the
RRUFF database is significantly better classified by the dense
network. This means that the dense network generalizes better
to imperfect data.

As an additional remark, it should be noted that the correct
classification may not be possible, for instance, in the case
of noncentrosymmetric crystals in which the experiment av-
erages over twin domains. For completeness, we also restrict
the classification to only centrosymmetric groups, but we do
not see a significant improvement in the accuracies of the

245120-4
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(a) (b) (c)

FIG. 3. Network classification accuracies. (a) and (b) The evolution of the network accuracies evaluated over the test set and the RRUFF
database, which consists of experimentally obtained XRD patterns, for (a) the classification of crystal systems and (b) the classification of space
groups. The accuracies are averaged over 10 networks initialized with a different random seeds. While the convolutional network performs
better on the training data in both cases, the dense network generalizes better to the experimental RRUFF database. (c) Histogram of the
distances between network’s prediction and correct space group classification. This distance is defined on the maximal subgroup graph.

networks. This is in part due to the fact that most of the
samples both in the training and testing datasets are cen-
trosymmetric since most crystals have this property. This is
a reflection of the class imbalance problem. In order to better
visualize this issue, a plot of the confusion matrix is included
in the Appendix.

B. Classification accuracy of individual space groups

Next, we look at the classification accuracies of individual
space groups. Since the distribution of space groups within
the training set is highly nonuniform, we expect that the
trained network would perform better at classifying the more
common space groups. As can be seen in Fig. 4, this is indeed
the case. Moreover, we also observed that the larger space
groups (i.e., space groups with more symmetry elements) are
more accurately classified. This is not surprising since with
more symmetry elements there are more constraints on the
structure factors giving rise to simpler XRD patterns with
fewer Bragg peaks.

C. Maximal subgroup distance

To further elucidate the classification quality of the net-
work, we consider the distance measure on the set of space
groups to assess how far a wrong classification by the net-
work is off the correct classification. This distance measure
is defined through the concept of maximal subgroups. A
maximal subgroup B of A is a proper subgroup such that
no other proper subgroup C strictly contains B. This allows

TABLE I. Obtained classification accuracies of the convolutional
and dense networks for the theoretically computed test set data and
for the experimental RRUFF data. In the last column, we restrict the
classification to only centrosymmetric space groups.

Crystal systems Space groups Centrosymmetric
Test set RRUFF Test set RRUFF RRUFF

Convolutional 85% 56% 76% 42% 43%
Dense 73% 70% 57% 54% 59%

us to construct a graph where the nodes represent the space
group and two nodes are connected by an edge if one of
the corresponding space groups is a maximal subgroup of
the other. We can then define the maximal subgroup distance
between two space groups to be the shortest path connecting
their respective nodes. Intuitively, one may expect that A

and B differ by a few symmetry elements such that their
respective XRD patterns should be relatively similar and the
network may confuse them more easily. Figure 3(b) shows
the histogram of distances in the maximal subgroup graph for
the network’s prediction over both the test set and the RRUFF
database. It clearly illustrates that even when the network’s
prediction is incorrect, it is far from random. It often lies

FIG. 4. Classification accuracy of individual space groups. The
colors denote the corresponding crystal system and the area of the
circle indicates its relative abundance in the training set. Space
groups corresponding to larger indices tend to contain more sym-
metry elements. For instance, space group 1 contains no point group
symmetries whereas space group 230 contains the full set of cubic
symmetries. Depicted here are the accuracies for the theoretically
obtained test set, because the RRUFF database is too small to provide
meaningful statistics for individual space groups. (There are around
800 samples for 230 space groups in the RRUFF database.)
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(d)

(e)

(a) (b)

(c)

FIG. 5. (a) Ratio of samples whose corresponding space group is among the n highest outputs of the network. (b) and (c) Histograms
showing the number of samples in the RRUFF database which are classified correctly or wrongly with a given certainty [defined in Eq. (13)].
One can see that when the network is more certain, it is also more often correct. (b) Convolutional network. (c) Dense network. (d) and (e)
Depicts the accuracy (fraction of correctly classified samples on the RRUFF database) of the network if we restrict the network’s certainty
to be above a certain cutoff threshold. Given a XRD sample, if the network gives a certainty below the threshold, then the sample is ignored
or unclassified. The orange line gives the ratio of unclassified samples as the cutoff is varied while the blue lines shows the accuracy of the
network given a certain ratio of unclassified samples. The dotted lines indicate the accuracy when 50% of the samples are left unclassified. At
this cutoff level, the accuracies are 65% and 82% for the (d) convolutional network and the (e) dense network, respectively.

closer to the correct prediction than one would expect from
a random choice. This also suggests a possible alternative
to interpret the classification output of the network: A space
group prediction X indicates with high probability that the
corresponding crystal is in X or in one of the neighboring
space groups in the maximal subgroup graph.

D. Analysis of the full output distribution of the network

So far, we have only considered the space group/crystal
system that corresponds to the maximum of the output vector
y as the classification result of the network. However, the
network’s output y is in fact a probability distribution over
the possible categories that contains much more information.
We define the network’s first prediction (this is the same as the
network’s prediction result) as the most probable category, the
second prediction as the next most probable, and so on.

In Fig. 5(a), we show the first 10 predictions of neural
networks evaluated on the test set and RRUFF database. As
expected, we can see from the decreasing distance between
consecutive data points that the first prediction is more often
correct than the second prediction, the second prediction is
more often correct than the third, and so on. This shows
that there is additional useful information contained within
the network’s output on top of just its prediction which
corresponds to its first prediction. Therefore, if we find that
the network’s prediction is wrong, the next most likely correct
answer is indeed the second prediction. In other words, the
probability distribution over the various categories as given
by the network’s output vector y is a good prior.

E. Network certainty

Finally, we consider how to use network’s certainty of
its prediction to enhance the classification accuracies. Given

a network output y, the certainty is then defined by the
probability of the network’s prediction, i.e.,

certainty = max
i

yi, (13)

where i runs over all space groups/crystal systems.
In Figs. 5(b) and 5(c), we show the classification certainties

of both the convolutional and dense networks evaluated over
the RRUFF dataset. The figures show that for the dense
network, when the prediction is correct, the certainty is high.
This result can be used to increase the accuracy of network
classifications, if one allows the network to not classify inputs
with low certainty, as follows: Let y be the network’s output
for some input XRD pattern that is to be classified. If the
network’s certainty is above a certain threshold, we accept the
classification. Otherwise we say that the network is uncertain
and leave the input unclassified. Figures 5(d) and 5(e) show
the result of such a scheme: Placing the certainty threshold
at 0.45, we get a classification accuracy of around 82% for
the dense network on the RRUFF database at the cost of
having half of the data unclassified. The rationale behind such
a tradeoff is that it is better to know that the network is
uncertain about a (possibly low-quality) input rather than for
the network to give a wrong classification.

It is imperative to use Fig. 5 for a comparison between
the convolutional and the dense network. Whereas the dense
network’s prediction is often correct when it is certain, the
correlation between certainty and correct classification is
much weaker in the convolutional network. For instance, if we
impose the same certainty threshold of 0.45 on the convolu-
tional network, we would have around 69% unclassified data,
and if we impose a threshold such that only half of the data
is unclassified, the final classification accuracy is only 65%.
This once again suggests that the convolutional network is not
generalizing well to the experimental data.
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VI. CONCLUSION

We have trained neural networks for the purpose of classi-
fying powder XRD patterns by the respective crystal system
and space group of the crystal. The training was performed
with theoretically computed training data based on real crystal
structures. In order for the trained network to classify ex-
perimentally obtained data, we added noise and artificially
constructed background signals to the training data.

In particular, we compared the performance of a convo-
lutional network that was previously introduced in Ref. [23]
for the same purpose and a deep dense neural network.
We find that although the convolutional network classifies
theoretical data much more accurately, it generalizes poorly
to experimental data. This is consistent with the results in
Ref. [23], where it was found that even though the network
had above 80% accuracy on theoretical data, it failed on all
of three experimental samples studied. We find that the deep
dense network has a higher classification accuracy (54%) on
experimental data than the convolutional network (42%).

Next, to better understand the quality of the network’s pre-
diction, we used the concept of maximal subgroups to provide
a distance measure on the set of space groups. We found that
even though the network might give a wrong prediction, this
predicted space group is not random but instead lies close to
the correct answer.

Finally, we analyzed the network’s certainty to enhance
the classification accuracy. By allowing the network to be
undecided about a subset of the predictions, we were able to
enhance the classification accuracy of the dense network (on
experimental data) to 82% at the expense of leaving around
half of the samples unclassified. This could be considered an
improvement since it is helpful to know beforehand that a
network’s prediction is wrong. For the convolutional network,
in contrast, we find that the certainty is not as good an
indicator of correctness of the network’s prediction.

Several routes for future improvements on our results
present themselves and may lead to broad applications of
machine learning techniques for crystallography. For one, the
models we employ for artificial noise and background signals
may be improved to increase the accuracy. Second, perfor-
mant algorithms may be obtained by combining traditional
and machine-learning methods, for instance, by using a neural
network to identify the relevant peaks in the XRD pattern
and then using standard crystallographic tools to classify
the peaks. Finally, a growing experimental database of XRD
samples may provide better, experimental training data.
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APPENDIX A: DATA PREPARATION

The XRD patterns used for training the networks were
computed theoretically from the crystal structures informa-
tion obtained from the Inorganic Crystal Structure Database
[26]. We denote the theoretically computed XRD pattern by
ftheory(θ ) which is defined on the domain θmin < θ < θmax and
takes values in the codomain 0 � ftheory(θ ) � 1. However,
these patterns still lack the noise and background signals
present in real experimental data. A network trained using
only such data may interpret the experimental noise as Bragg
peaks potentially causing a misclassification. To introduce
noise, we augment our XRD patterns with a random signal
drawn from a uniform distribution U (0.002, 0.02) between
0.002 and 0.02.

Next, to simulate a background we add a signal which is
composed of four different functions. These four functions
are selected with a 50% probability each, i.e., not all four
functions have to appear in our background signal. We also
define a threshold T given by

T =
0.1

number of different background functions chosen
,

which controls the amplitude of each background function.
For convenience, we also define the relative angle θrel =

θ−θmin
θmax−θmin

. The four background functions are given by
(1) Smooth step functions,

fstepup(θ ) = h

(

1

1 + exp[a(θrel − θrel,step)]

)

,

fstepdown(θ ) = h

(

1 −
1

1 + exp[a(θrel − θrel,step)]

)

, (A1)

where h, a, and θrel,step gives the height, steepness, and posi-
tion of the step, respectively. These parameters are chosen as
follows: h is drawn a truncated normal distribution h ∈ [0, T ]
with mean μ = T/3 and standard deviation σ = T/7, a is
sampled from a uniform distribution U (10, 60), and θrel,step

for the step-up (step-down) function is taken from a uniform
distribution, with a width of W = 1/7, at the left edge (right
edge) of the domain, i.e., U (0,W ) for the step-up function and
U (1 − W, 1) for the step-down function.

(2) Polynomials (up to fourth order),

fp(θ ) =

∣

∣

∣

∣

∣

nmax
∑

n=0

anθ
n
rel

∣

∣

∣

∣

∣

, (A2)

where nmax is a a random integer between 0 and 4. The
coefficient an are chosen according to

an =

{

0 with probability 0.5
3T

2(nmax+1)U (−1, 1) with probability 0.5. (A3)

(3) Bumps near the left edge of the XRD pattern (near
θmin), to mimic the enhanced background near the direct beam,

fbump(θ ) = h(nθrel)
2e−nθrel , (A4)

where h is the height of the bump and n is a measure of the
steepness. h is drawn from a truncated normal distribution h ∈

[0, 3T/5] with mean μ = 2T/5 and standard deviation σ =

3T/35, and n is taken from a uniform distribution U (40, 70).
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FIG. 6. Confusion matrices are evaluated only on the theoretical test data (7000 samples), because the experimental RRUFF database is
too small to provide meaningful statistics for individual space groups. (There are around 800 samples for 230 space groups in the RRUFF
database.) The white strips in the figure corresponds to space groups which are not present among the 7000 test samples. (a) Convolutional
network. (b) Dense network.

The full augmented XRD pattern is then given by

f (θ ) = ftheory(θ ) + fstepup(θ ) + fstepdown(θ )

+ fp(θ ) + fbump(θ ) + noise, (A5)

where the parameters of the individual functions are chosen
independently according to the procedure described above.

APPENDIX B: CONFUSION MATRIX

The confusion matrix is a common method to visualize the
performance of a classifier. For a classification problem with

N possible classes, the confusion matrix C is a N by N matrix
with coefficients defined by

Ci j =
Number of class i samples classified as class j

Number of class i samples
. (B1)

Defined as such, a perfect classifier would have a confusion
matrix corresponding to the identity. In Fig. 6, we show a color
plot of the confusion matrices corresponding to convolutional
and dense networks, evaluated on a testing dataset of 7000
samples.
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