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This paper presents the design of a neural network based feedback linearization (NNFBL) controller for a two degree-of-
freedom (DOF), quarter-car, servo-hydraulic vehicle suspension system. The main objective of the direct adaptive NNFBL
controller is to improve the system’s ride comfort and handling quality. A feedforward, multi-layer perceptron (MLP)
neural network (NN) model that is well suited for control by discrete input-output linearization (NNIOL) is developed
using input-output data sets obtained from mathematical model simulation. The NN model is trained using the Levenberg–
Marquardt optimization algorithm. The proposed controller is compared with a constant-gain PID controller (based on the
Ziegler–Nichols tuning method) during suspension travel setpoint tracking in the presence of deterministic road disturbance.
Simulation results demonstrate the superior performance of the proposed direct adaptive NNFBL controller over the generic
PID controller in rejecting the deterministic road disturbance. This superior performance is achieved at a much lower control
cost within the stipulated constraints.

Keywords: neural networks, direct adaptive control, feedback linearization control, PID control, ride comfort, suspension
system, servo-hydraulics.

1. Introduction

The growth in active suspension system research is at-
tributable to the progress made in vibrations research,
modern control theory, instrumentation, hydraulics and
pneumatics, and vehicle dynamics (Fiahlo and Balas,
2002; He and McPhee, 2005; Hada et al., 2007). A good
vehicle suspension system is characterized by good ride
comfort, road handling, and road holding qualities. All of
these must be achieved within an acceptable range of sus-
pension travel (Kumar and Vijayarangan, 2007; Du and
Zhang, 2009).

It is difficult to simultaneously satisfy these design
requirements because of their conflicting nature. Hence
a trade-off between them becomes imperative. The con-
trolled variable in this work is the suspension travel be-
cause it is one of the readily measurable signals that makes
the active vehicle suspension system (AVSS) design and
analysis realistic (Gao et al., 2006; Du and Zhang, 2009).

The AVSS control problem is a disturbance rejection
or vibration isolation one, where the road roughness pro-
file represents the external disturbance (Hrovat, 1997; Pe-
dro, 2007). The AVSS is a more feasible option for sus-
pension control because of its better system static stability

and performance at low frequencies.

The main challenge in AVSS controller design is
robustness against parameter and disturbance variation
(Pedro, 2007; Ehtiwesh and Dorovic, 2009). Applica-
tions of optimal and robust control techniques have en-
abled the AVSS to achieve a better trade-off of the design
parameters (Hrovat, 1997; Shen and Peng, 2003; Feng
et al., 2003; Chantranuwathana and Peng, 2004).

The continued use of electro-hydraulic systems in
AVSSs is due to its lower cost, high power-to-weight ra-
tio, fast response, high stiffness and good load bearing ca-
pability. However, these benefits can only be employed
in full in the presence of a robust tracking controller (Du
and Zhang, 2009; Nakkarat and Kuntanapreeda, 2009; Seo
et al., 2007). Moreover, the nonlinearities due to the in-
teraction between the electro-hydraulic system and the ve-
hicle suspension are further complicated by uncertainties
related to varying operating conditions of the vehicle, e.g.,
irregular road excitation inputs (Feng et al., 2003; Shira-
hatt et al., 2008).

Several conventional and nonlinear control based
methods like optimal control methods (Hassanzadeh
et al., 2010; Shirahatt et al., 2008; Pedro and Mgwenya,
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2004; Pedro, 2003; Hrovat, 1997), PID (Kumar, 2008;
Dahunsi et al. 2010a; 2010b), H2 (Pedro, 2007), H∞
(Fallah et al., 2009; Ryu et al., 2008), H2/H∞ (Du and
Zhang, 2008; Poussot-Vassal et al., 2006), sliding mode,
fuzzy logic (Salem and Aly, 2009; Yoshimura and Ter-
amura, 2005; Sharkawy, 2005; D’Amato and Viassolo,
2000) and backstepping (Nakkarat and Kuntanapreeda,
2009; Yagiz et al., 2008) have been investigated and doc-
umented.

However, the feasibility of these controllers for prac-
tical implementation is often challenged based on the fol-
lowing factors: sometimes the measurement of some nec-
essary variables or states (e.g., tire deflection) could be
difficult; the control scheme could lead to non-convex
optimization or other computational problems difficult to
solve; and there could also arise the issue of the require-
ment for the controller order to be as high as that of
the generalized plant (Du and Zhang, 2008; Biglarbegian
et al., 2008; Christophe et al., 2005).

Gaspar et al. (2003) as well as Fialho and Balas
(2002) presented a linear parameter varying (LPV) control
technique for a nonlinear active vehicle suspension sys-
tem with actuator dynamics. LPV theory is mainly useful
to tackle measurable and bounded nonlinearities (Poussot-
Vassal et al., 2006). LPV design is also one of the fixed-
gain strategies that are designed to be optimal for a nomi-
nal parameter set and specific operating conditions.

Applications of sliding mode control to AVSS con-
trol are also presented by Du and Zhang (2009), Koshk-
ouei and Burnham (2008) as well as Al-Holou et al.
(2002). Although this provides some robustness char-
acteristics and is readily applicable to nonlinear control
problems, it is commonly associated with chattering and
may excite unmodelled high frequency dynamics that
could affect system performance or cause instability.

Feedback linearization (FBL) is one of the methods
used in nonlinear control design for regulation and track-
ing problem. It algebraically transforms nonlinear system
dynamics into fully or partially linear ones, thereby en-
abling the application of linear control methods in solv-
ing the problem. FBL is normally carried out by a
model based transformation and feedback, rather than by
linear approximations of the dynamics (Goodwin et al.,
2001; Slotine and Li, 1991; Norgaard et al., 2003; Garces
et al., 2003; Seo et al., 2007).

The requirement of full-state measurements and lack
of guarantee for robustness are among the drawbacks of
FBL which motivate for its augmentation with appropriate
intelligent control techniques: neural network (Yesildirek
and Lewis, 1995; He et al., 1998; Boutalis, 2004; Kar
and Behera, 2009; Poursamad, 2009), and fuzzy logic
(Boukezzoula et al., 2007)).

Sliding mode based feedback linearization control
was applied to active vehicle suspension by Shi et al.
(2010). Vertical displacement of the vehicle body was

the controlled output signal and the system modelling in-
cluded actuator dynamics. The relative degree and system
dimension are equal so that exact feedback linearization
could be applied.

Proportional, integral and derivative (PID) based
feedback linearization control was applied to an electro-
hydraulic servo-system by Seo et al. (2007). Good
handling of nonlinearities and the fact that the applica-
tion of several other nonlinear control techniques often
lead to the design of higher order controllers are fac-
tors that make application of FBL attractive (Du and
Zhang, 2008; Chantranuwathana and Peng, 2004; Feng
et al., 2003; Shen and Peng, 2003; Goodwin et al., 2001).

The direct adaptive NNFBL controller proposed in
the present work solves the control problem by approx-
imating the nonlinear model with two separate multi-
layer feedforward neural networks (NNIOL), and then
proceeds to solve the approximated versions of the mod-
els (Yesildirek and Lewis, 1995; He et al., 1998; Norgaard
et al., 2003). It is trained off-line, thereby making it less
computationally challenging in comparison with model
predictive and model reference controllers.

In the work of Buckner et al. (2001), feedback lin-
earization within an indirect adaptive intelligent control
framework was applied to AVSS using the radial basis
function neural network (RBFNN). Gains were updated
as a result of on-line estimation and updating of the model
parameters at each sample time.

Hagan and Demuth (1999) as well as Cao et
al. (2008) highlighted various adaptive control proper-
ties of intelligent control techniques like neural networks
(NNs), fuzzy logic, genetic algorithms and sliding mode
control. NNs have found wide applications in the field
of control systems because of their ability to approximate
arbitrary nonlinear mappings and their highly parallel
structure which allows parallel implementation, thus mak-
ing it more fault tolerant than the conventional schemes.
NNs also have the ability to learn and adapt on-line,
and have good application in multivariable systems (Cao
et al., 2008; Al-Holou et al., 2002; Jin and Yu, 2008; Eski
and Yildrim, 2009).

Deng et al. (2009) utilized the constraint handling
advantage of model predictive control (MPC) during the
control of a feedback linearized system. A dynamic neu-
ral network was employed in modelling the plant for the
input-output FBL. The controller holds good prospects be-
cause it can be implemented in real time.

In the work of Dahunsi et al. (2009), approxi-
mate predictive control (APC) was applied to a nonlinear
AVSS. NN modelling was based on a multi-layer percep-
tron NN model and trained off-line using the Levenberg–
Marquardt algorithm. The NNFBL controller designs
documented by Poursamad (2009) as well as Kar and Be-
hera (2009) are based on the RBFNN architecture.

In this work, PID control will be used as a bench-
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mark because of its simplicity and wide acceptability,
even though its tuning is often done intuitively. PID con-
trol becomes unsuitable for AVSS application because of
its limitations in terms of robustness and non-linearity, and
high loop gains (Gao, 2002). These disadvantages moti-
vate the augmentation of PID controllers with genetic al-
gorithms (GAs) and fuzzy logic. For example, a GA was
used to obtain optimum PID gains by Feng et al. (2003)
as well as Kuo and Li (1999), while Lufty et al. (2009)
designed a GA-trained PID-like adaptive neuro-fuzzy in-
ference system to control nonlinear systems.

The novelty of this paper lies in the application of
the designed NNFBL controller to improve real-time sys-
tem performance as well as the achievement of reduced
control input throughout the process. The rest of the pa-
per is organized as follows. Section 2 presents the system
overview and the modelling of the servo-hydraulic vehicle
suspension system. The design of the PID and NNFBL
controllers is described in Section 3. The simulation re-
sults and discussion are presented in Section 4. Section 5
contains concluding remarks.

2. System overview and modelling

2.1. Physical modelling. Figure 1 shows the quarter-
car model of the AVSS, wherems is the sprung mass, mu

is the unsprung mass (wheel assembly), ks is the suspen-
sion spring constant, bs is the suspension damping coeffi-
cient and kt is the wheel spring constant. The vertical dis-
placement of the car body, wheel and the road disturbance
are represented by x1, x2 and w, respectively. The hy-
draulic actuator force, F , is applied in between the sprung
and unsprung masses.

Fig. 1. Simplified quarter car model.

The relative displacement between the vehicle body
and the wheel (x2 − x1) represents the suspension travel,
while the relative displacement between the wheel and the
road (x2 − w) characterizes the road holding.

2.2. Mathematical modelling. Applying Newton’s
law to the quarter-car model shown in Fig. 1 yields
the following nonlinear governing equations (Fiahlo and
Balas, 2002; Gaspar et al., 2003):

msẋ3 = kl
s(x2 − x1) + knl

s (x2 − x1)3

+ bls(x4 − x3) − bsym
s |x4 − x3|

+ bnl
s

√
|x4 − x3|sgn(x4 − x3) −Ax5, (1)

muẋ4 = −kl
s(x2 − x1) − knl

s (x2 − x1)3

− bls(x4 − x3) + bsym
s |x4 − x3|

− bnl
s

√
|x4 − x3|sgn(x4 − x3)

− kt(x2 − w) +Ax5, (2)

ẋ5 = γΦx6 − βx5 − αA(x3 − x4), (3)

ẋ6 =
1
τ
(−x6 + u), (4)

where

α =
4βe

Vt
, β = αCtp, γ = CdS

√
1
ρ
,

Φ = φ1 + φ2, φ1 = sgn[Ps − sgn(x6)x5],

and
φ2 =

√
|Ps − sgn(x6)x5|.

A is the area of the piston, x3 and x4 are vertical ve-
locities of the sprung and unsprung masses, respectively,
x5 is the pressure drop across the piston, x6 is the servo
valve displacement, Ps is the supply pressure into the hy-
draulic cylinder, Pr is return pressure from the hydraulic
cylinder, Pu and Pl represent the oil pressure in the upper
and lower portion of the cylinder, Vt is the total actuator
volume, βe is the effective bulk modulus of the system, Φ
is the hydraulic load flow, Ctp is the total leakage coef-
ficient of the piston, Cd is the discharge coefficient, S is
the spool valve area gradient and ρ is the hydraulic fluid
density.

The suspension spring and damping forces have lin-
ear and nonlinear components. Spring constant kl

s damp-
ing coefficient bls affect the spring force and damping
force in a linear manner. Moreover, bsym

s contributes
asymmetric characteristics to the overall behaviour of the
damper. Finally, knl

s and bnl
s are responsible for the non-

linear components of the spring and damper forces, re-
spectively.

Figure 2 illustrates the hydraulic actuator mounted in
between the sprung and unsprung masses. Qu and Ql are
the hydraulic fluid flow rates for the upper and the lower
chambers of the hydraulic cylinder, respectively.

The actuator is controlled by means of electro-
hydraulic servo-valves in a three land four-way spool
valve system. The maximum control input (voltage) of
10 V was applied to the servo-valves to achieve a maxi-
mum suspension travel of 10 cm.
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Fig. 2. Schematic of the double acting hydraulic strut.

The values for the system parameters are provided
in Table 1. It is assumed that the vehicle experiences a

Table 1. Parameters of the quarter-car model
(Fiahlo and Balas, 2002; Gaspar et al., 2003).

Parameters Value

Sprung mass (ms) 290 kg
Unsprung mass (mu) 40 kg
Suspension stiffness (kl

s) 2.35 · 104 N/m ,
Suspension stiffness (knl

s ) 2.35 · 106 N/m
Tyre stiffness (kt) 1.9 · 105 N/m
Suspension damping (bl

s) 700 Ns/m

Suspension damping (bnl
s ) 400N s/m

Suspension damping (bsym
s ) 400 Ns/m

Actuator parameter (α) 4.515 · 1013

Actuator parameter (β) 1
Actuator parameter (γ) 1.545 · 109

Piston area (A) 3.35 · 10−4 m2

Supply pressure (Ps) 10, 342, 500 Pa
Actuator time constant (τ ) 3.33 · 10−2 s
Bump height (a) 0.11 m
Vehicle speed (V ) 30 ms−1

Disturbance half wavelength (λ) 7.5 m

sudden disturbance, a bump, whose profile is shown in
Fig. 3 and is described as

w(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a

2

(

(1 − cos
(2πV t

λ

))

, if 1.25 ≤ t ≤ 1.5,

0, otherwise,
(5)

where a is the bump height, V is the vehicle speed and λ
is the half wavelength of the sinusoidal road undulation.
The system of equations (1)–(4) can thus be expressed in
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Fig. 3. Road profile.

state-space form:

ẋ = f (x) + g (x)u + p (w) , (6)

y = h(x) = x2 − x1, (7)

with the state vector x = [x1 x2 x3 x4 x5 x6]T , the output
variable y = x2−x1, and the control input u. The system
matrices f and g are:

f (x) =
[
f1(x) f2(x) f3(x) f4(x) f5(x) f6(x)

]T
,

(8)
g (x) =

[
0 0 0 0 0 1

τ

]T
, (9)

p (w) =
[

0 0 0
kt

mu
w 0 0

]T

, (10)

f1(x) = x3, (11)

f2(x) = x4, (12)

f3(x) =
1
ms

[
kl

s(x2 − x1) + knl
s (x2 − x1)3

+ bls(x4 − x3) − bsym
s |x4 − x3|

+ bnl
s

√
|x4 − x3|sgn(x4 − x3) −Ax5

−Ax5

]
, (13)

f4(x) =
1
mu

[−kl
s(x2 − x1) − knl

s (x2 − x1)3

− bls(x4 − x3) + bsym
s |x4 − x3|

− bnl
s

√
|x4 − x3|sgn(x4 − x3)

− ktx2 +Ax5], (14)

f5(x) = γΦx6 − βx5 − αA(x3 − x4), (15)

f6(x) =
−x6

τ
. (16)

3. Controller implementation

The main goal of the controller is to track a generated de-
sired suspension travel in the presence of the deterministic
road disturbance (Eqn. (5)). The controller should satisfy
the following requirements:
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1. nominal stability,

2. good command tracking,

3. disturbance rejection,

4. rise time not greater than 0.1 s, and

5. maximum overshoot not greater than 5%.

6. performance index: The controller should minimize
the performance index given by

J =
1
tf

∫ tf

0

[(
y(t) − yref(t)

ymax

)2

+
(
u(t)
umax

)2
]

dt,

(17)
where tf is the final time (which in this case is 5 s),
yref is the desired suspension travel, ymax is the max-
imum allowable value of the suspension travel (con-
trolled output), and umax is the maximum allowable
value of the supply voltage (control input).

3.1. PID control and tuning. The structure of the PID
controller is given as (Norgaard et al., 2003; O’Dwyer,
2006)

U(s) =
(
Kp

1 + Tis

Tis

1 + Tds

1 + αTds

)
E(s), (18)

where E(s) = Yref(s) − Y (s) is the error signal between
the reference signal Yref(s) and the actual output signal
Y (s), U(s) is the plant input signal, Kp is the propor-
tional gain, Td is the derivative time constant, Ti is the
integral time constant and α is the lag factor in the deriva-
tive component of the PID controller.

The Ziegler–Nichols tuning rule is used with a de-
cay ratio of 0.25 to obtain the PID controller gains. PID
controllers are known to often generate high control inputs
which can lead to saturation. Thus, efforts were made dur-
ing tuning to ensure that the control input was within the
stipulated range. The PID parameters used for the simula-
tions are given in Table 2.

Table 2. PID tuning parameters used.
Parameters Value

Kp 3.0
Ti 0.0133
Td 3.8404 · 10−3

α 0.047

3.2. AVSS input-output feedback linearization. The
model of the AVSS given by (6) and (7) belongs to the
class of affine controls. Given that x ∈ R

n is the state
vector, u ∈ R is the input vector, y ∈ R

m is the output
vector and h : R

n → R
m, f and g : R

n → R
n are

smooth functions on the state space R
n. The goal of the

input-output linearization is to develop a control input of
the form

u = a (x) + b (x) ν (19)

such that there is a linear input-output mapping between
the new input ν (also known as the virtual control input)
and the output y.

The first derivative of the output is

ẏ =
∂h(x)
∂x

=
∂h
∂x

[f(x) + g(x)u]

= Lfh(x) + Lgh(x)u = x4 − x3, (20)

where Lfh(x) = ∂h
∂x f(x), known as the Lie derivative of

h along f . Since Lgh(x) = ∂h
∂xg(x) = 0, we have

ẏ = Lfh(x).

Similarly,

ÿ =
∂(Lfh)
∂x

[f(x) + g(x)u]

= L2
fh(x) + LgLfh(x)u

= L2
fh(x) = ẋ4 − ẋ3, (21)

and ÿ is independent of u since LgLfh(x)u = 0. Also,

y(3) =
∂(L2

fh)
∂x

[f(x) + g(x)u]

= L3
fh(x) + LgL2

fh(x)u

= L3
fh(x) = ẍ4 − ẍ3, (22)

and y(3) is also independent of u since LgL2
fh(x)u = 0,

but

y(4) =
∂(L3

fh)
∂x

[f(x) + g(x)u]

= L4
fh(x) + LgL3

fh(x)u, (23)

and y(4) is dependent on u since LgL3
fh(x)u �= 0. There-

fore, the system’s relative degree is 4, which is less than
the system dimension of 6. Thus, it is input-output lin-
earizable via a state feedback given by (19) and the differ-
ential homeomorphic coordinate transformation:

z = Ψ(x) = [ξ η]T , (24)

where we have z1 = y, z2 = ẏ, z3 = ÿ, z4 = y(3),
z5 = ψ1(x), z6 = ψ2(x) so that we define ξ =
[z1 z2 z3 z4]T , η = [ψ1(x) ψ2(x)]T . The linearized
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system in state space form is therefore given by

η̇ = f0(η, ξ), (25)

ξ̇ = Acξ + Bcν + p̃(w)

= Acξ + Bc

[
u(t) − a(x)

b(x)

]
+ p̃(w), (26)

y = Ccξ, (27)

Ac =

⎡

⎢⎢
⎣

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤

⎥⎥
⎦ , (28)

Bc =
[

0 0 0 1
]T

(29)

Cc =
[

1 0 0 0
]T

(30)

p̃ (w) =
[

0 0 0 1
]T
, (31)

ψ(x) is carefully chosen to satisfy the diffeomorphism
conditions, and this requires that Ψ be invertible and
its derivatives be continuously differentiable. Thus (Shi
et al., 2010; Isidori, 1989)

Lgψi =
dψi

dx
g(x) = 0, r + 1 ≤ i ≤ n. (32)

The unobservable states based on the controller de-
sign are the ones termed η, the zero dynamics of the sys-
tem are given by the equation η̇ = f0(η, 0) when the ori-
gin (η = 0, ξ = 0) constitutes an equilibrium point, thus
making the system asymptotically stable. Equation (23)
reduces to

y(4) = ν, (33)

implying that

u =
1

LgL3
f

[−L4
fh(x) + ν

]
. (34)

(34) can be rearranged into the feedback form given in
(19) such that the nonlinearities of the plant are cancelled
resulting in a linear input-output relationship that is based
on (33) with a transfer function:

G(s) =
Y (s)
V (s)

=
1
s4
. (35)

The described process of feedback linearization is illus-
trated in Fig. 4.

Applying a linear control design method based on the
pole placement technique gives (Jelali and Kroll, 2003;
Norgaard et al., 2003)

ν = −ar−1y
(r−1) − · · · − a1ẏ − a0y + ν̃, (36)

where ν̃ is a new external input (any function of the refer-
ence signal yref and the output signal y). We choose the

coefficients ai (design parameters) such that the closed-
loop characteristic polynomial

p(s) = sr + ar−1s
r−1 + · · · + a1s+ a0 (37)

has all its roots strictly in the open left-half complex plane.
Thus the actual control input can then be written, follow-
ing (34), as

u(t) =
ν̃(t) − L4

fh(x) −∑4
i=1 ai−1Li−1

f h(x)
LgL3

fh(x)
. (38)

In the present study, the desired two pairs of complex
poles are selected as s1,2 = −0.7 ± 2.43 · 10−7j and
s3,4 = −0.75±2.67 · 10−7j, based on a closed-loop char-
acteristic polynomial given by

Am(s) = s4 + 2.9s3 + 3.153s2 + 1.523s+ 0.276. (39)

If the desired output is yref(t), then, by introducing
the tracking error,

e(t) = y(t) − yref(t), (40)

and selecting the new input ν(t) such that

ν(t) = y
(4)
ref (t) − C1e− C2ė− C3ë− C4e

(3), (41)

where C1, C2, C3 and C4 are constants, the tracking er-
ror of the closed loop system is given by (Slotine and
Li, 1991)

e(4) + C1e+ C2ė+ C3ë+ C4e
(3) = 0, (42)

which represents exponentially stable error dynamics if
perfect tracking is not achievable. The proper choice
of the poles ensures that all the states remain bounded
(or ensures stability in the bounded-input bounded-output
(BIBO) sense) and the asymptotic output tracking error
converges to zero exponentially. The system is also guar-
anteed for internal stability as a consequence of the global
exponential stability of the zero dynamics of the system
under the control law (34) when the external input ν(t)
equals zero (Garces et al., 2003).

3.3. AVSS neural network based input-output feed-
back linearization. Direct adaptive NNFBL controller
implementation consists of two steps: affine system non-
linear functions approximation (f ≈ f̃ ) and (g ≈ g̃), and
controller design. The function approximations are based
on the application of the universal function approximation
feature of artificial neural networks.

The nonlinear AVSS can be modelled in discretized
form as

y(k) = f [y(k − 1), . . . , y(k − naf ), u(k − 2),
. . . , u(k − nbf )] + g[y(k − 1), . . . , (43)

y(k − nag), u(k − 2), . . . ,
u(k − nbg)]u(k − 1),
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Fig. 4. Input-output feedback linearization with pole placement.

where f [·] and g[·] are two different nonlinear functions;
naf and nbf represent the number of past output and input
data sample to be controlled based on the approximation
of the function f [·] at every sampling instance; nag and
nbg represent respectively the numbers of past output and
input data samples to be controlled based on the approxi-
mation of the function g[·] at every sampling instance.

Two different multilayer perceptron neural net-
works (MLPNNs) are trained off-line to approximate the
two nonlinear functions. This is implemented in the
NNSYSID toolbox using the function NNIOL. Equa-
tions (34) and (43) can be rearranged in the following
form:

u(t) =
ν(t) − f̃ [x(t)]

g̃ [x(t)]
. (44)

(44) is given in discretized form as

u(k) =
n(k)
d(k)

, (45)

n(k) = ν(k) − f̃ [y(k − 1), . . . , y(k − naf ),
u(k − 2), . . . , u(k − nbf )] (46)

d(k) = g̃[y(k − 1), . . . , y(k − nag),
u(k − 2), . . . , u(k − nbg)] (47)

such that (44) takes the form of (19) and

a(x) = − f̃ [x(t)]
g̃[x(t)]

, b(x) =
1

g̃[x(t)]
, (48)

where g̃ [x(t)] = LgL3
f �= 0, f̃ [x(t)] = L4

fh(x), ν =
ν(t) and u = u(t).

The NNIOL feedback law given in (46) is imple-
mented within a closed-loop system that consists of the
linear controller (which is a pole placement controller in
this case, as shown in Fig. 4) and the plant using neural
networks as presented in Fig. 5.

MLPNN structures are chosen for both networks be-
cause of their simplicity and associated computational
ease. The number of neurons in the hidden layer of each

Fig. 5. Neural network based discrete input-output linearization
(NNIOL) architecture.

network is computed from the summation of their respec-
tive number of past outputs and inputs, and the time delay.
Thus, the hidden layer of the f-network has five neurons
while the hidden layer of the g-network has three neurons.
The difference in the number of hidden layer neurons is
due to the difference in the level of complexity of func-
tions f and g, as evident from (8) and (9). Figure 5 illus-
trates function approximation based on (46). The input
layers contain two neurons and a bias in each case, and
the tangent hyperbolic activation function is given by

f(x) = tanh(x) =
ex − e−x

ex + e−x
. (49)

The output layer contains one neuron with linear activa-
tion function (Norgaard et al., 2003). The training param-
eters for the function approximations are listed in Table 3.

4. Discussion and simulation results

The NNFBL and PID controllers were applied to an AVSS
nonlinear model with the actuation force generated by an
electro-hydraulic actuator. A variable but preset control
input in the form of voltage (which was ≤ 10 V) was sup-
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plied to the servo-valve to generate the actuation force at
the piston.

Table 4 presents a summary of the designed con-
trollers’ performance against specified requirements. The
suspension travel responses in Figs. 6 and 7 show good
command tracking by both controllers. Both controllers
have no overshoots and reached a zero steady state error
before the next transition point. Both controllers also have
rise times that are less than the specified rise time. The rise
time for the PID controller is about twice as much as the
one for the NNFBL controller.

Fig. 6. Suspension travel tracking for neural network based
feedback linearization control.

Figure 8 shows the control input for the NNFBL con-
troller. It is ranged between (approximately)−0.01 V and
−0.157 V. The control input was characterized by chatter-
ing at the transition points. In Fig. 9, the control input for
the PID controller varied between 1.1 V and −1.45 V (ap-
proximately) spikes at the transition points but steady con-
stant values which also vary between +0.1 V and −0.1 V.

Table 3. Parameters for the neural network model.
Parameters Value

Total number of samples 5000
Number of layers 2
Number of Iterations 500
Time delay 1
Training algorithm Levenberg–Marquandt
Total sampling time 5 s
Sampling time, Ts 0.001 s

f-network
Number of hidden layer 5
neurons
Number of past outputs, naf 2
Number past inputs, nbf 2

g-network
Number of hidden layer 3
neurons
Number of past outputs, nag 1
Number past inputs, nbg 1

Table 4. Controller performance evaluation.
Performance Specified FBL PID
parameters value

Over-shoot ≤ 5% 0% 0%
Rise time [s] ≤ 0.1 0.015 0.033
Steady state error 0% 0% 0%
Control input [V] ±10 0.017% 0.149%
Performance index J min 0.020 0.432

Fig. 7. Suspension travel tracking for PID control.

The NNFBL control was achieved at a much lower cost
than the PID control. Table 4 shows that the NNFBL con-
troller exhibits better minimization of the performance in-
dex.

Fig. 8. Feedback linearization control input.

5. Conclusion

PID and NNFBL controllers were designed for a nonlinear
active suspension system. The NNFBL controller shows
better tracking of the desired output in the presence of a
deterministic disturbance input. There were no overshoots
at the transition points of the desired output being tracked.
The controllers were characterized by the following:

1. lower rise times than the specified value,

2. chattering in the supply voltage signal for the
NNFBL controller,
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Fig. 9. PID control input.

3. lower supply voltage requirement by NNFBL than by
the PID controller throughout the tracking process,
and

4. the supply voltage to the PID controller characterized
by intermittent spikes, respectively.

Finally, the superior performance of the NNFBL con-
troller in adapting to deterministic road disturbance as
against generic PID was presented. The NNFBL con-
troller combines multilayer perceptron neural networks
with the direct adaptive-feedback linearization in can-
celling system nonlinearities and enabling the application
of a linear control law.
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