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Abstract 

Cellular beams are an attractive option for the steel construction industry due to their versatility in 

terms of strength, size, and weight. Further benefits are the integration of services thereby reducing 

ceiling-to-floor depth (thus, building’s height), which has a great economic impact. Moreover, the 

complex localised and global failures characterizing those members have led several scientists to focus 

their research on the development of more efficient design guidelines. This paper aims to propose an 

artificial neural network (ANN)-based formula to estimate the critical elastic buckling load of simply 

supported cellular beams under uniformly distributed vertical loads. The 3645-point dataset used in 

ANN design was obtained from an extensive parametric finite element analysis performed in ABAQUS. 

The independent variables adopted as ANN inputs are the following: beam’s length, opening diameter, 

web-post width, cross-section height, web thickness, flange width, flange thickness, and the distance 

between the last opening edge and the end support. The proposed model shows a strong potential as an 

effective design tool. The maximum and average relative errors among the 3645 data points were found 

to be 3.7% and 0.4%, respectively, whereas the average computing time per data point is smaller than 

a millisecond for any current personal computer.  

 
Keywords: Elastic Buckling, Cellular Steel Beams, FEA, Artificial Neural Networks, Design Formula 

 

1. Introduction 

The use of cellular beams (i.e., perforated beams with circular web openings) in the 

construction sector has significantly increased over the past decade on account of the distinct 
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and discreet advantages they offer. Cellular beams are applicable for long span structures, 

where integration of services such as ventilation ducts and lightings systems within the beam 

is attained, but also for short spans, where spatial interference among concentrated mechanical 

devices and structural elements may require a compromised solution. Cellular beams allow 

reducing the height of buildings to fit a required number of floors, otherwise fitting more floors 

in a given height limit having a significant economic impact to the whole structure’s budget. 

Furthermore, cellular beams offer practical advantages such as the possibility of (i) fixing the 

ceilings directly to the beams’ lower flanges instead of requiring additional suspension 

elements, and (ii) allowing future equipment addition or replacement within the existent void 

holes. In fact, with the wider adoption of Building Information Modelling (BIM), the 

knowledge of those expansion possibilities is becoming a valuable asset for the building 

management. 

Long span and lightweight structures also benefit from flexible designs with the fewer 

number of columns and foundations, and thus from the reduced construction time (Tsavdaridis 

2010). The increase in beam depth due to the castellation process (i.e., profile cutting 

manufacturing) also provides greater flexural stiffness having a final section with larger section 

modulus (Morkhade and Gupta 2015). However, the presence of web openings significantly 

influences the structural performance of the beams, which in particular is dependent on the 

geometry (shape, diameter, and critical opening length), location (shear-moment interaction), 

and spacing (closely and widely spaced) between perforations. The perforations lead to 

complex structural behaviours, attributed to the distribution of forces and stresses in the vicinity 
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of the openings. This results in rather complicated and conservative design procedures 

(Morkhade and Gupta 2015, Akrami and Erfani 2016). 

The first analytical model proposed by Uenoya and Redwood (1978) provided critical 

baseline data relating to the behaviour of perforated beams by studying the in-plane stress 

distribution pattern using perforated plates. Later, Lucas and Darwin (1990) proposed a design 

process based on the identification of the maximum bending and shear capacities at the web 

openings. It was afterwards suggested that the nominal capacities for the combinations of the 

bending moment and shear at each opening were determined. This method was accepted by the 

AISC (Darwin, 1990) and the ASCE 23-97 (SEI/ASCE, 1998). However, the method only 

provided a reasonable accurate load estimate for beams with small height, whereas for greater 

heights becomes conservative. The method is also restrictive to a maximum opening height of 

0.7h, since the average errors were found to increase significantly above this range. Also, in 

1990, Ward proposed a simplified semi-empirical web-post model using finite element 

modelling; however, this model was restrictive as it was based on a limited number of 

geometric configurations and best results were found with an error of 30%. Following, Chung 

et al. (2001) studied the Vierendeel mechanism and derived moment-shear interaction curves 

for various types of perforated beams which ultimately led to the development of a generalised 

moment-shear curve to assess the load carrying capacities of beams with various openings. In 

2003, Chung at al. further analysed this moment-shear interaction curve and concluded that 

different shapes and sizes of openings can affect a beam differently and that this curve is more 

relevant for beams with large openings. In the same year, Chung et al. reported that the 
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moment-shear curve can be somewhat conservative when analysing beams with small web 

openings. However, Chung et al.’s findings were identified as a relatively good method as it 

provided a good approximation with mean errors of 15-25% (for various shapes of web 

openings), where cellular beams indicated an error of 15.8%. Since 2009, Tsavdaridis et al. 

published studies (Tsavdaridis and D’Mello 2009; Tsavdaridis 2010; Tsavdaridis and D’Mello 

2011; Tsavdaridis and D’Mello 2012; Tsavdaridis et al. 2015) on thin-walled perforated beams 

with circular and other novel non-standard web openings investigating the web-post buckling 

failure mode for closely spaced web openings as well as the Vierendeel mechanism when large 

isolated web openings. The studies revealed that the Vierendeel bending is influenced by both 

the shape and size of an opening and the load carrying capacity of beams with large web 

openings can be found by examining the formation (the order and position) of plastic hinges. 

The extreme opening diameter (0.8h) as opposed to the maximum value of 0.75h presented in 

earlier literature, was introduced by Tsavdaridis and D’Mello (2012) in order to 

comprehensively develop an understanding of the parameters which affect the structural 

behaviour of perforated beams. Akrami and Erfani (2016), in a comparative analysis of the 

design methodologies for perforated beams, found that the works of Chung et al (2003) and 

Tsavdaridis and D’Mello (2012) were less restrictive as compared to other design methods 

(ASCE 23-97, SCI-P100, SCI-P355) and produce the lowest errors. In 2011, Lawson and Hicks 

published the SCI-P355 (Lawson and Hicks 2011) design guidelines, an update to SCI-P068 

(Lawson 1987) and SCI-P100 (Ward 1990) which proposed that the Vierendeel bending 

resistance is dependent on the classification of the web of the T-beams. This approach produced 
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acceptable approximations for openings of specific dimensions where the best results were 

found with an error of 25-30%. It is worth noting that Chung et al. (2003), Verweij (2010) and 

Morkhade and Gupta (2015) have reported that the current guidelines, specifically SCI-P100 

(Ward 1990) and SCI-P355 (Lawson and Hicks 2011), are inadequate, complicated and 

conservative when it comes to the design of perforated steel beams.  

Artificial Neural Networks (ANN) have become a popular method to predict the response 

of structures. Gholizadeh et al. (2011) presented a study relating the use of ANN in the 

evaluation of the load carrying capacity of the web-post of castellated steam beams based on 

140 FE models. The computational technique generated predictions with great accuracy when 

compared to other methods. Sharifi and Tohidi (2014) also illustrated the application of ANN 

to accurately estimate the elastic buckling load capacity of steel bridge girders that have 

rectangular openings at the bottom zone in the web. This is considered as the worse possible 

location to place an opening to resist lateral torsional buckling. The ANN formula was derived 

from 21 FE models which managed to accurately predict the elastic buckling load. In 2014, 

Tohidi and Sharifi demonstrated the versatility of ANN by studying the buckling capacity of 

steel beams with rectangular web openings that has experienced corrosion in the web. In 

addition, Tohidi and Sharifi (2015) developed an ANN model to estimate the bearing capacity 

of steel girders with corrosion at the bearing region. The ANN empirical formulas obtained 

were reported to be accurate in predicting the residual capacity of deteriorated steel beams.  

The current study was motivated by the lack of rational (simple, efficient and accurate) 

design procedures relating to the buckling response of cellular beams. This paper proposes an 
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ANN-based formula to estimate the critical elastic buckling load of simply supported cellular 

beams under uniformly distributed vertical loads, as function of eight independent geometrical 

parameters. This research is the first step of an ongoing investigation that aims to propose a 

novel and simple analytical design method to accurately compute the inelastic resistance of 

cellular steel beams. Α FE-based dataset comprising 3645 points was generated for this study, 

in order to allow the ANN model to have a significant generalization ability and be considered 

as a powerful tool for structural engineers and scientists to (i) estimate the elastic buckling load 

of cellular steel beams, and (ii) efficiently perform sensitivity analyses to further assess the 

behaviour of those members. 

2. Data Generation 

2.1 FE Modelling 

Three-dimensional FE models were developed using ABAQUS (Dassault Systèmes Simulia 

Corp, 2017), which were then parametrised to generated 3645 simulations. Typical values for 

the modulus of elasticity and Poisson’s ratio were adopted (E = 210 GPa, ν=0.3). All models 

are simply supported where one end allows in-plane rotations but not translations and the other 

admits translations along the beam axis, beyond in-plane rotations. End twisting rotations were 

prevented by restraining both the top and bottom flange tips against out-of-plane displacements 

at the supports. A unitary load was applied to the top flange as a uniformly distributed pressure 

(then converted to a line load for ANN simulation purposes – see Tab. 1). The FE mesh adopted 

was quad-dominated using shell elements of type SR8, which was tested against experimental 
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work conducted by Tsavdaridis and D’Mello (2011), and Surtees and Liu (1995), providing 

accurate and reliable results (Rajana 2018). The mesh sizes recommended by El-Sawy et al. 

(2014) for web and flanges were adopted. Fig. 1(a) illustrates the various parameters considered 

in the parametric analysis, whereas Fig. 1(b) illustrates one application of these type of 

structural members. 

 

 
(a) 

 
(b) 

Fig. 1. Steel Cellular Members: (a) input (parametric) variables, and (b) application in an office building floor 
system in Lisbon, Portugal. 
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2.2 Parametric Analysis 

The parametric models were submitted to the ABAQUS Lanczos Eigensolver using Python 

scripts. Tab. 1 presents the possible values taken for each independent (parametric) variable 

(see Fig. 1(a)) considered in the FEA. The ‘first’ web opening was placed at the centre of the 

beam whereas the remaining ones were offset from the former until (for a fixed beam’s length, 

opening diameter, and web-post width) no more circular openings could fit within member’s 

length. This approach resulted in 135 different distances from the end opening edge to the 

centre-line of the endplate (distance named ‘opening-support end distance’ in Tab. 1). Thus, 

combining all values of variables 1 and 3 to 8, presented in Tab. 1, one has (3^6) x 5 lengths = 

3645 distinct steel beams for FEA (also called data points or examples in this manuscript). The 

3645-point dataset considered in ANN simulations is available in Developer (2018a). 

 

Tab. 1. Variables, values and units employed in the parametric FEA and the ANN model. 

Inputs Variables - Fig. 1(a) ANN Node No. Possible Values 

Beam’s length L (m) 1 4 5 6 7 8 

Opening-support end distance led (mm) 2 135 values in [12, 718] 

Opening diameter Φ (mm) 3 H/1.25 H/1.5 H/1.7 - - 

Web-post width bwp (mm) 4 Φ/10 Φ/3.45 Φ/2.04 - - 

Section height H (mm) 5 700 560 420 - - 

Web thickness tw (mm) 6 15 12 9 - - 

Flange width bf (mm) 7 270 216 162 - - 

Flange thickness tf (mm) 8 25 20 15 - - 

Target / Output Variable 

Elastic Buckling Load λb (KN/m) 
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3. Artificial Neural Networks 

3.1 Introduction 

Machine learning, one of the six disciplines of Artificial Intelligence (AI) without which the 

task of having machines acting humanly could not be accomplished, allows us to ‘teach’ 

computers how to perform tasks by providing examples of how they should be done 

(Hertzmann and Fleet 2012). When there is abundant data (also called examples or patterns) 

explaining a certain phenomenon, but its theory richness is poor, machine learning can be a 

perfect tool. The world is quietly being reshaped by machine learning, being the Artificial 

Neural Network (also referred in this manuscript as ANN or neural net) its (i) oldest 

(McCulloch and Pitts 1943) and (ii) most powerful (Hern 2016) technique. ANNs also lead the 

number of practical applications, virtually covering any field of knowledge (Wilamowski and 

Irwin 2011, Prieto et. al 2016). In its most general form, an ANN is a mathematical model 

designed to perform a particular task, based in the way the human brain processes information, 

i.e. with the help of its processing units (the neurons). ANNs have been employed to perform 

several types of real-world basic tasks. Concerning functional approximation, ANN-based 

solutions are frequently more accurate than those provided by traditional approaches, such as 

multi-variate nonlinear regression, besides not requiring a good knowledge of the function 

shape being modelled (Flood 2008). 

The general ANN structure consists of several nodes disposed in L vertical layers (input 

layer, hidden layers, and output layer) and connected between them, as depicted in Fig. 2. 
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Associated to each node in layers 2 to L, also called neuron, is a linear or nonlinear transfer 

(also called activation) function, which receives the so-called net input and transmits an output 

(see Fig. 5). All ANNs implemented in this work are called feedforward, since data presented 

in the input layer flows in the forward direction only, i.e. every node only connects to nodes 

belonging to layers located at the right-hand-side of its layer, as shown in Fig. 2. ANN’s 

computing power makes them suitable to efficiently solve small to large-scale complex 

problems, which can be attributed to their (i) massively parallel distributed structure and (ii) 

ability to learn and generalize, i.e., produce reasonably accurate outputs for inputs not used 

during the learning (also called training) phase.  

 

 

Fig. 2. Example of a feedforward neural network. 

 

3.2 Learning 

Each connection between 2 nodes is associated to a synaptic weight (real value), which, 

together with each neuron’s bias (also a real value), are the most common types of neural net 
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unknown parameters that will be determined through learning. Learning is nothing else than 

determining network unknown parameters through some algorithm in order to minimize 

network’s performance measure, typically a function of the difference between predicted and 

target (desired) outputs. When ANN learning has an iterative nature, it consists of three phases: 

(i) training, (ii) validation, and (iii) testing. From previous knowledge, examples or data points 

are selected to train the neural net, grouped in the so-called training dataset. Those examples are 

said to be ‘labelled’ or ‘unlabeled’, whether they consist of inputs paired with their targets, or 

just of the inputs themselves – learning is called supervised (e.g., functional approximation, 

classification) or unsupervised (e.g., clustering), whether data used is labelled or unlabeled, 

respectively. During an iterative learning, while the training dataset is used to tune network 

unknowns, a process of cross-validation takes place by using a set of data completely distinct 

from the training counterpart (the validation dataset), so that the generalization performance of 

the network can be attested. Once ‘optimum’ network parameters are determined, typically 

associated to a minimum of the validation performance curve (called early stop – see Fig. 3), 

many authors still perform a final assessment of model’s accuracy, by presenting to it a third 

fully distinct dataset called ‘testing’. Heuristics suggests that early stopping avoids overfitting, 

i.e. the loss of ANN’s generalization ability. One of the causes of overfitting might be learning 

too many input-target examples suffering from data noise, since the network might learn some 

of its features, which do not belong to the underlying function being modelled (Haykin 2009). 
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3.3 Implemented ANN features 

The ‘behavior’ of any ANN depends on many ‘features’, having been considered 15 ANN 

features in this work (including data pre/post processing ones). For those features, it is 

important to bear in mind that no ANN guarantees good approximations via extrapolation 

(either in functional approximation or classification problems), i.e. the implemented ANNs 

should not be applied outside the input variable ranges used for network training. Since there 

 

 

Fig. 3. Cross-validation - assessing network’s generalization ability. 

 

are no objective rules dictating which method per feature guarantees the best network 

performance for a specific problem, an extensive parametric analysis (composed of nine 

parametric sub-analyses) was carried out to find ‘the optimum’ net design. A description of all 

implemented methods, selected from state of art literature on ANNs (including both traditional 

and promising modern techniques), is presented next – Tabs. 2-4 present all features and 

methods per feature. The whole work was coded in MATLAB (The Mathworks, Inc. 2017), 

making use of its neural network toolbox when dealing with popular learning algorithms (1-3 
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in Tab. 4). Each parametric sub-analysis (SA) consists of running all feasible combinations 

(also called ‘combos’) of pre-selected methods for each ANN feature, in order to get 

performance results for each designed net, thus allowing the selection of the best ANN 

according to a certain criterion. The best network in each parametric SA is the one exhibiting 

the smallest average relative error (called performance) for all learning data.  

It is worth highlighting that, in this manuscript, whenever a vector is added to a matrix, it 

means the former is to be added to all columns of the latter (valid in MATLAB). 

 

Tab. 2. Implemented ANN features (F) 1-5. 

FEATURE 
METHOD 

F1 F2 F3 F4 F5 

Qualitative 
Var Represent 

Dimensional 
Analysis 

Input Dimensionality 
Reduction 

% 
Train-Valid-Test 

Input 
Normalization 

1 Boolean Vectors Yes Linear Correlation 80-10-10 Linear Max Abs 

2 Eq Spaced in ]0,1] No Auto-Encoder 70-15-15 Linear [0, 1] 

3 - - - 60-20-20 Linear [-1, 1] 

4 - - Ortho Rand Proj 50-25-25 Nonlinear 

5 - - Sparse Rand Proj - Lin Mean Std 

6 - - No - No 

 
 

3.3.1 Qualitative Variable Representation (feature 1) 

A qualitative variable taking n distinct ‘values’ (usually called classes) can be represented in 

any of the following formats: one variable taking n equally spaced values in ]0,1], or 1-of-n 

encoding (boolean vectors – e.g., n=3: [1 0 0] represents class 1, [0 1 0] represents class 2, and [0 

0 1] represents class 3). After transformation, qualitative variables are placed at the end of the 

corresponding (input or output) dataset, in the same original order. 
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3.3.2 Dimensional Analysis (feature 2) 

The most widely used form of dimensional analysis is the Buckingham's π-theorem, which  

was implemented in this work as described in Bhaskar and Nigam (1990). 

 

3.3.3 Input Dimensionality Reduction (feature 3) 

When designing any ANN, it is crucial for its accuracy that the input variables are independent 

and relevant to the problem (Gholizadeh et al. 2011, Kasun et al. 2016). There are two types of 

dimensionality reduction, namely (i) feature selection (a subset of the original set of input variables 

is used), and (ii) feature extraction (transformation of initial variables into a smaller set). In this 

work, dimensionality reduction is never performed when the number of input variables is less than 

six. The implemented methods are described next. 

 
Tab. 3. Implemented ANN features (F) 6-10. 

FEATURE 
METHOD 

F6 F7 F8 F9 F10 

Output  
Transfer 

Output  
Normalization 

Net  
Architecture 

Hidden  
Layers 

Connectivity 

1 Logistic Lin [a, b] = 0.7[φmin, φmax] MLPN 1 HL Adjacent Layers 

2 - Lin [a, b] = 0.6[φmin, φmax] RBFN 2 HL Adj Layers + In-Out 

3 Hyperbolic Tang Lin [a, b] = 0.5[φmin, φmax] - 3 HL Fully-Connected 

4 - Linear Mean Std - - - 

5 Bilinear No - - - 

6 Compet - - - - 

7 Identity - - - - 
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Linear Correlation  

In this feature selection method, all possible pairs of input variables are assessed with respect to 

their linear dependence, by means of the Pearson correlation coefficient RXY, where X and Y denote 

any two distinct input variables. For a set of n data points (xi, yi), the Pearson correlation reads 

( )( )

( ) ( )
1

2 2

1 1

( , )

( ) ( )

n

i i

i
XY

n n

i i

i i

x x y y
Cov X Y

R
Var X Var Y

x x y y

=

= =

− −
= =

− −



                ,   (1) 

where (i) Var(X) and Cov(X, Y) are the variance of X and covariance of X and Y, respectively, 

and (ii) 𝑥̅ and 𝑦̅ are the mean values of each variable. In this work, cases where |𝑅𝑋𝑌| ≥ 0.99 

indicate that one of the variables in the pair must be removed from the ANN modelling. The one 

to be removed is the one appearing less in the remaining pairs (𝑋, 𝑌) where |𝑅𝑋𝑌| ≥ 0.99. Once 

a variable is selected for removal, all pairs (𝑋, 𝑌) involving it must be disregarded in the 

subsequent steps for variable removal. 

 
 
Auto-Encoder 

This feature extraction technique uses itself a 3-layer feedforward ANN called auto-encoder 

(AE). After training, the hidden layer output (y2p) for the presentation of each problem’s input 

pattern (y1p) is a compressed vector (Q2 x 1) that can be used to replace the original input layer by 

a (much) smaller one, thus reducing the size of the ANN model. In this work, Q2=round(Q1/2) was 

adopted, being round a function that rounds the argument to the nearest integer. The implemented 
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AE was trained using the ‘trainAutoencoder(…)’ function from MATLAB’s neural net toolbox. In 

order to select the best AE, 40 AEs were simulated, and their performance compared by means of 

the performance variable defined in sub-section 3.4. Each AE considered distinct (random) 

initialization parameters, half of the models used the ‘logsig’ hidden transfer functions, and the 

other half used the ‘satlin’ counterpart, being the identity function the common option for the output 

activation. In each AE, the maximum number of epochs – number of times the whole training 

dataset is presented to the network during learning, was defined (regardless the amount of data) by  

1

1

3000, 8
max

1500, 8

Q
epochs

Q


=  

 .  (2)

 

Concerning the learning algorithm used for all AEs, no L2 weight regularization was employed, 

which was the only default specification not adopted in ‘trainAutoencoder(…)’. 

 

Tab. 4. Implemented ANN features (F) 11-15. 

FEATURE 
METHOD 

F11 F12 F13 F14 F15 

Hidden  
Transfer 

Parameter  
Initialization 

Learning 
Algorithm 

Performance 
Improvement 

Training  
Mode 

1 Logistic Midpoint (W) + Rands (b) BP NNC Batch 

2 Identity-Logistic Rands BPA - Mini-Batch 

3 Hyperbolic Tang Randnc (W) + Rands (b) LM - Online 

4 Bipolar Randnr (W) + Rands (b) ELM - - 

5 Bilinear Randsmall mb ELM - - 

6 Positive Sat Linear Rand [-Δ, Δ] I-ELM - - 

7 Sinusoid SVD CI-ELM - - 

8 Thin-Plate Spline MB SVD - - - 

9 Gaussian - - - - 

10 Multiquadratic - - - - 

11 Radbas - - - - 
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Orthogonal and Sparse Random Projections 

This is another feature extraction technique aiming to reduce the dimension of input data Y1 

(Q1 x P) while retaining the Euclidean distance between data points in the new feature space. 

This is attained by projecting all data along the (i) orthogonal or (ii) sparse random matrix A 

(Q1 x Q2, Q2 < Q1), as described by Kasun et al. (2016)

 

 

 

3.3.4 Training, Validation and Testing Datasets (feature 4) 

Four distributions of data (methods) were implemented, namely pt-pv-ptt = {80-10-10, 70-

15-15, 60-20-20, 50-25-25}, where pt-pv-ptt represent the amount of training, validation and 

testing examples as % of all learning data (P), respectively. Aiming to divide learning data into 

training, validation and testing subsets according to a predefined distribution pt-pv-ptt, the 

following algorithm was implemented (all variables are involved in these steps, including 

qualitative ones after converted to numeric – see 3.3.1): 

1) For each variable q (row) in the complete input dataset, compute its minimum and 

maximum values. 

2) Select all patterns (if some) from the learning dataset where each variable takes either 

its minimum or maximum value. Those patterns must be included in the training dataset, 

regardless what pt is. However, if the number of patterns ‘does not reach’ pt, one should 

add the missing amount, providing those patterns are the ones having more variables 

taking extreme (minimum or maximum) values.  
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3) In order to select the validation patterns, randomly select pv / (pv + ptt) of those patterns 

not belonging to the previously defined training dataset. The remainder defines the 

testing dataset. 

It might happen that the actual distribution pt-pv-ptt is not equal to the one imposed a priori 

(before step 1), which is due to the minimum required training patterns specified in step 2. 

 

3.3.5 Input Normalization (feature 5) 

The progress of training can be impaired if training data defines a region that is relatively narrow 

in some dimensions and elongated in others, which can be alleviated by normalizing each input 

variable across all data patterns. The implemented techniques are the following: 

 
Linear Max Abs 

Lachtermacher and Fuller (1995) proposed a simple normalization technique given by  

 
1

1

1

( ,:)
{ } ( ,:)   

max ( ,:)
n

Y i
Y i

Y i
=

                ,   (3) 

where {Y1}n (i, :) and Y1 (i, :) are the normalized and non-normalized values of the ith input variable 

for all learning patterns, respectively. Notation ‘:’ in the column index, indicate the selection of all 

columns (learning patterns). 

 
Linear [0, 1] and [-1, 1] 

A linear transformation for each input variable (i), mapping values in Y1(i,:) from [a*, 

b*]=[min(Y1(i,:)), max(Y1(i,:))] to a generic range [a, b], is obtained from 
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( ) ( )( )
( )
1

1

,: *
{ ,:  

*
} )

*
(n

Y i a
Y aa

b
bi

a

−

−
−= +

               .   (4) 

Ranges [a, b]=[0, 1] and [a, b]=[-1, 1] were considered. 

 
Nonlinear 

Proposed by Pu and Mesbahi (2006), although in the context of output normalization, the 

only nonlinear normalization method implemented for input data reads  

  ( ) ( )( ) ( )1

1 1

,
  ,  , ( )

10n t

Y i j
Y i j sign Y i j C i= +

               ,   (5) 

where (i) Y1(i, j) is the non-normalized value of input variable i for pattern j, (ii) t is the number 

of digits in the integer part of Y1(i, j), (iii) sign(…) yields the sign of the argument, and (iv) 

C(i) is the average of two values concerning variable i, C1(i) and C2(i), where the former leads 

to a minimum normalized value of 0.2 for all patterns, and the latter leads to a maximum 

normalized value of 0.8 for all patterns. 

 
Linear Mean Std 

Tohidi and Sharifi (2014) proposed the following technique  

  ( )
( ) ( )

( )

1

1

1 ,:

1

,:

,:
  ,:  

Y i

n

Y i

Y i
Y i





−
=

               ,   (6) 

where 𝜇𝑌1(𝑖,:) and 𝜎𝑌1(𝑖,:) are the mean and standard deviation of all non-normalized values (all 

patterns) stored by variable i.  
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3.3.6 Output Transfer Functions (feature 6) 

 

Logistic 

The most usual form of transfer functions is called Sigmoid. An example is the logistic 

function given by 

1
( )

1 s
s

e
 −=

+
                .   (7)

 

Hyperbolic Tang 

The Hyperbolic Tangent function is also of sigmoid type, being defined as 

( )
s s

s s

e e
s

e e


−

−

−
=

+
       .    (8) 

Bilinear 

The implemented Bilinear function is defined as  

, 0
( )

0, 0

s s
s

s



=  

 

.   (9) 

Identity 

The Identity activation is often employed in output neurons, reading 

( )s s =  

 .   (10) 
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3.3.7 Output Normalization (feature 7) 

Normalization can also be applied to the output variables so that, for instance, the amplitude of 

the solution surface at each variable is the same. Otherwise, training may tend to focus (at least in 

the earlier stages) on the solution surface with the greatest amplitude (Flood and Kartam 1994a). 

Normalization ranges not including the zero value might be a useful alternative since convergence 

issues may arise due to the presence of many small (close to zero) target values (Mukherjee et al. 

1996). Four normalization methods were implemented. The first three follow eq. (4), where (i) [a, 

b] = 70% [φmin, φmax], (ii) [a, b] = 60% [φmin, φmax], and (iii) [a, b] = 50% [φmin, φmax], being [φmin, 

φmax] the output transfer function range, and [a, b] determined to be centered within [φmin, φmax] and 

to span the specified % (e.g., (b-a) = 0.7 (φmax - φmin)). Whenever the output transfer functions are 

unbounded (Bilinear and Identity), it was considered [a, b] = [0, 1] and [a, b] = [-1, 1], respectively. 

The fourth normalization method implemented is the one described by eq. (6). 

 

3.3.8 Network Architecture (feature 8) 

 

Multi-Layer Perceptron Network (MLPN) 

This is a feedforward ANN exhibiting at least one hidden layer. Fig. 2 depicts a 3-2-1 MLPN 

(3 input nodes, 2 hidden neurons and 1 output neuron), where units in each layer link only to 

some nodes located ahead. At this moment, it is appropriate to define the concept of partially- 

(PC) and fully-connected (FC) ANNs. In this work a FC feedforward network is characterized 

by having each node connected to every node in a different layer placed forward – any other 

type of network is said to be PC (e.g., the one in Fig. 2). According to Wilamowski (2009), PC 
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MLPNs are less powerful than MLPN where connections across layers are allowed, which 

usually lead to smaller networks (less neurons).  

Fig. 4 represents a generic MLFN composed of L layers, where l (l = 1,…, L) is a generic layer 

and ‘ql’ a generic node, being q = 1,…, Ql its position in layer l (1 is reserved to the top node). Fig. 5 

represents the model of a generic neuron (l = 2,…, L), where (i) p represents the data pattern presented 

to the network, (ii) subscripts m = 1,…, Qn and n = 1,…, l-1 are summation indexes representing all 

possible nodes connecting to neuron ‘ql’ (recall Fig. 4), (iii) bql is neuron’s bias, and (iv) wmnql 

represents the synaptic weight connecting units ‘mn’ and ‘ql’. Neuron’s net input for the presentation 

of pattern p (Sqlp) is defined as  

Q 1

1 1

,
n l

lp

m n

q mnp mnp mnpmnql ql mnql mnqlw b w wS y y y
−

= =

= +   ,   (11) 

where ym1p is the value of the mth network input concerning example p. The output of a generic 

neuron can then be written as (l = 2,…, L) 

( )lqlp qlpy S=  ,   (12) 

where φl is the transfer function used for all neurons in layer l. 
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Fig. 4. Generic multi-layer feedforward network. 

 

Radial-Basis Function Network (RBFN)  

Although having similar topologies, RBFN and MLPN behave very differently due to 

distinct hidden neuron models – unlike the MLPN, RBFN have hidden neurons behaving 

differently than output neurons. According to Xie et al. (2011), RBFN (i) are specially  

 

Fig. 5. Generic neuron placed anywhere in the MLPN of Fig. 4 (l = 2,…, L). 
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recommended in functional approximation problems when the function surface exhibits regular 

peaks and valleys, and (ii) perform more robustly than MLPN when dealing with noisy input 

data. Although traditional RBFN have 3 layers, a generic multi-hidden layer (see Fig. 4) RBFN 

is allowed in this work, being the generic hidden neuron’s model concerning node ‘l1l2’ (l1 = 

1,…,Ql2, l2 = 2,…, L-1) presented in Fig. 6. In this model, (i) 𝑣𝑙1𝑙2𝑝 and 𝜉𝑙1𝑙2 (called RBF center) 

are vectors of the same size (𝜉𝑧𝑙1𝑙2 denotes de z component of vector 𝜉𝑙1𝑙2, and it is a network 

unknown), being the former associated to the presentation of data pattern p,  (ii) 𝜎𝑙1𝑙2 is called 

RBF width (a positive scalar) and also belongs, along with synaptic weights and RBF centers, 

to the set of network unknowns to be determined through learning, (iii) 𝜑𝑙2 is the user-defined 

radial basis (transfer) function (RBF), described in eqs. (20)-(23), and (iv) 𝑦𝑙1𝑙2𝑝 is neuron’s 

output when pattern p is presented to the network. In ANNs not involving learning algorithms 

1-3 in Tab. 4, vectors 𝑣𝑙1𝑙2𝑝 and 𝜉𝑙1𝑙2 are defined as (two versions of 𝑣𝑙1𝑙2𝑝 where implemented 

and the one yielding the best results was selected) 

1 2 2 2 1 2 2 2 1 2 2 2 1 2

1 2 2 2 2

1 2 1 2 1 2 1 2

1 12 2

12

12

1( 1) 1( 1) ( 1) ( 1) ( 1) ( 1)

1( 1) ( 1) ( 1)

1
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and

... ...

... ...

... ...

l l

l

l

p

p

l l l p l l l z l p z l l l Q l p Q l l l

l l l p z l p Q l p

l l l l zl l Q l l

v w w w

v

y y y

y y y

   

− −

−

−

− − − − − −

− − −

 =  

 =  

 =  

, (13) 

whereas the RBFNs implemented through MATLAB neural net toolbox (involving learning 

algorithms 1-3 in Tab. 4) are based on the following definitions 

http://doi.org/10.31224/osf.io/wg7hd


 

DOI: http://doi.org/10.31224/osf.io/wg7hd 

© 2018 by Abambres M, Rajana K, Tsavdaridis K, Ribeiro T (CC BY 4.0) 

 
 
 
 

 
 

25 
Abambres M, Rajana K, Tsavdaridis K, Ribeiro T (2018). Neural Network-based formula for the buckling load 
Prediction of I-section cellular steel beams. engrXiv (December), 1-50, doi: http://doi.org/10.31224/osf.io/wg7hd 

 
 

 

1 2 2 2 2

1 2 2 1 2 2 1 2 2 1 2

12

12

1( 1) ( 1) ( 1)

1( 1) ( 1) ( 1)

... ...

... ...

l

l

pl l l p z l p Q l p

l l l l l z l l l Q l l l

v

w w w

y y y



−

−

− − −

− − −

 =  
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 .   (14) 

 

 

 

Fig. 6. Generic hidden neuron l1l2 placed anywhere in the RBFN of Fig. 4 (l2 = 2,…, L-1). 

 

Lastly, according to the implementation carried out for initialization purposes (described in 

3.3.12), (i) RBF center vectors per hidden layer (one per hidden neuron) are initialized as integrated 

in a matrix (termed RBF center matrix) having the same size of a weight matrix linking the previous 

layer to that specific hidden layer, and (ii) RBF widths (one per hidden neuron) are initialized as 

integrated in a vector (called RBF width vector) with the same size of a hypothetic bias vector. 
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3.3.9 Hidden Nodes (feature 9) 

Inspired by several heuristics found in the literature for the determination of a suitable number 

of hidden neurons in a single hidden layer net (Aymerich and Serra 1998, Rafiq et al. 2001, Xu 

and Chen 2008), each value in hntest, defined in eq. (15), was tested in this work as the total 

number of hidden nodes in the model, ie the sum of nodes in all hidden layers (initially defined 

with the same number of neurons). The number yielding the smallest performance measure for 

all patterns (as defined in 3.4, with outputs and targets not postprocessed), is adopted as the best 

solution. The aforementioned hntest is defined by 

 

( )( )( )

1 1 1

1

2

1 1 1 2 2

 = [4, 4, 4, 10, 10, 10, 10]

 = [1, 1, 1, 10, 10, 10, 10]

 = min round max 2 + , 4 , , 1500
ln( )

 = max min round 0.1 ,1500 , 300

 = [ , , , ,

L

incr

minimum

P
max Q Q Q

Q P

max P

maximum max max max max max

   
         

2

3 13

2

13 1(F

, , ]

) : (F ) : (F )hntest minimum incr maxi

max ma

m

x

mu=

 

,   (15) 

 

where (i) Q1 and QL are the number of input and output nodes, respectively, (ii) P and Pt are 

the number of learning and training patterns, respectively, and (iii) F13 is the number of feature 

13’s method (see Tab. 4). 
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3.3.10 Connectivity (feature 10) 

For this ANN feature, three methods were implemented, namely (i) adjacent layers – only 

connections between adjacent layers are made possible, (ii) adjacent layers + input-output – 

only connections between (ii1) adjacent and (ii2) input and output layers are allowed, and (iii) 

fully-connected (all possible feedforward connections). 

 

3.3.11 Hidden Transfer Functions (feature 11) 

Besides functions (i) Logistic – eq. (7), (ii) Hyperbolic Tangent – eq. (8), and (iii) Bilinear – eq. 

(9), defined in 3.3.6, the ones defined next were also implemented as hidden transfer functions. 

During software validation it was observed that some hidden node outputs could be infinite or NaN 

(not-a-number in MATLAB – e.g., 0/0=Inf/Inf=NaN), due to numerical issues concerning some 

hidden transfer functions and/or their calculated input. In those cases, it was decided to convert 

infinite to unitary values and NaNs to zero (the only exception was the bipolar sigmoid function, 

where NaNs were converted to -1).  Other implemented trick was to convert possible Gaussian 

function’s NaN inputs to zero.  

 
 

Identity-Logistic 

In Gunaratnam and Gero (1994), issues associated with flat spots at the extremes of a 

sigmoid function were eliminated by adding a linear function to the latter, reading  

1
( )

1 s
s s

e
 −= +

+
 

.   (16) 

http://doi.org/10.31224/osf.io/wg7hd


 

DOI: http://doi.org/10.31224/osf.io/wg7hd 

© 2018 by Abambres M, Rajana K, Tsavdaridis K, Ribeiro T (CC BY 4.0) 

 
 
 
 

 
 

28 
Abambres M, Rajana K, Tsavdaridis K, Ribeiro T (2018). Neural Network-based formula for the buckling load 
Prediction of I-section cellular steel beams. engrXiv (December), 1-50, doi: http://doi.org/10.31224/osf.io/wg7hd 

 
 

Bipolar   

The so-called bipolar sigmoid activation function mentioned in Lefik and Schrefler (2003), 

ranging in [-1, 1], reads  

1
( )

1

s

s

e
s

e


−

−

−
=

+
        .   (17) 

Positive Saturating Linear 

In MATLAB neural net toolbox, the so-called Positive Saturating Linear transfer function, 

ranging in [0, 1], is defined as   

1, 1

( ) , 0 1

0, 0

s

s s s

s




=  
 

 

.   (18) 

Sinusoid 

Concerning less popular transfer functions, reference is made in Bai et al. (2014) to the 

sinusoid, which in this work was implemented as  

( ) sin
2

s s
  =  
          .   (19)

 

Radial Basis Functions (RBF) 

Although Gaussian activation often exhibits desirable properties as a RBF, several authors 

(e.g., Schwenker et al. 2001) have suggested several alternatives. Following nomenclature used 

in 3.3.8, (i) the Thin-Plate Spline function is defined by 

http://doi.org/10.31224/osf.io/wg7hd


 

DOI: http://doi.org/10.31224/osf.io/wg7hd 

© 2018 by Abambres M, Rajana K, Tsavdaridis K, Ribeiro T (CC BY 4.0) 

 
 
 
 

 
 

29 
Abambres M, Rajana K, Tsavdaridis K, Ribeiro T (2018). Neural Network-based formula for the buckling load 
Prediction of I-section cellular steel beams. engrXiv (December), 1-50, doi: http://doi.org/10.31224/osf.io/wg7hd 

 
 

( ) ( )
2 1 2 1 2

2

ln ,l l l p l ls s s s v = = −  ,   (20) 

(ii) the next function is employed as Gaussian-type function when learning algorithms 4-7 are 

used (see Tab. 4) 

( )
2 1 2 1 2 1 2

20.5 2
,

s

l l l p l l l l
s s ve  −= = −  ,   (21) 

(iii) the Multiquadratic function is given by 

( )
2 1 2 1 2 1 2

2
2,

l l l p l l l l
s s s v  = = − +  ,   (22) 

and (iv) the Gaussian-type function (called ‘radbas’ in MATLAB toolbox) used by RBFNs 

trained with learning algorithms 1-3 (see Tab. 4), is defined by 

( )
2 1 2 1 2 1 2

2
,

l l l p l l l l

s
s s ve  −= = −

 ,   (23) 

where || … || denotes the Euclidean distance in all functions.  

 

3.3.12 Parameter Initialization (feature 12) 

The initialization of (i) weight matrices (Qa x Qb, being Qa and Qb node numbers in layers a and 

b being connected, respectively), (ii) bias vectors (Qb x 1), (iii) RBF center matrices (Qc-1 x Qc, being 

c the hidden layer that matrix refers to), and (iv) RBF width vectors (Qc x 1), are independent and in 

most cases randomly generated. For each ANN design carried out in the context of each parametric 

analysis combo, and whenever the parameter initialization method is not the ‘Mini-Batch SVD’, ten 
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distinct simulations varying (due to their random nature) initialization values are carried out, in order 

to find the best solution. The implemented initialization methods are described next.  

 
Midpoint, Rands, Randnc, Randnr, Randsmall 

These are all MATLAB built-in functions. Midpoint is used to initialize weight and RBF center 

matrices only (not vectors). All columns of the initialized matrix are equal, being each entry equal 

to the midpoint of the (training) output range leaving the corresponding initial layer node – recall 

that in weight matrices, columns represent each node in the final layer being connected, whereas 

rows represent each node in the initial layer counterpart. Rands generates random numbers with 

uniform distribution in [-1, 1]. Randnc (only used to initialize matrices) generates random numbers 

with uniform distribution in [-1, 1], and normalizes each array column to 1 (unitary Euclidean norm). 

Randnr (only used to initialize matrices) generates random numbers with uniform distribution in [-1, 

1], and normalizes each array row to 1 (unitary Euclidean norm). Randsmall generates random 

numbers with uniform distribution in [-0.1, 0.1]. 

 
Rand [-lim, lim] 

This function is based on the proposal in Waszczyszyn (1999), and generates random numbers 

with uniform distribution in [-lim, lim], being lim layer-dependent and defined by 

1/ , < 
 = 

0.5 , = 

aQ

b
Q b L

 lim
b L





 ,   (24) 
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where a and b refer to the initial and final layers integrating the matrix being initialized, and L 

is the total number of layers in the network. In the case of a bias or RBF width vector, lim is 

always taken as 0.5.    

 
SVD  

Although Deng et al. (2016) proposed this method for a 3-layer network, it was implemented 

in this work regardless the number of hidden layers.  

 
Mini-Batch SVD  

Based on Deng et al. (2016), this scheme is an alternative version of the former SVD. Now, 

training data is split into min{Qb, Pt} chunks (or subsets) of equal size Pti = max{floor(Pt / Qb), 

1} – floor rounds the argument to the previous integer (whenever it is decimal) or yields the 

argument itself, being each chunk aimed to derive Qbi = 1 hidden node.  

 

3.3.13 Learning Algorithm (feature 13) 

The most popular learning algorithm is called error back-propagation (BP), a first-order 

gradient method. Second-order gradient methods are known to have higher training speed and 

accuracy (Wilamowski 2011). The most employed is called Levenberg-Marquardt (LM). All these 

traditional schemes were implemented using MATLAB toolbox (The Mathworks, Inc 2017).  
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Back-Propagation (BP, BPA), Levenberg-Marquardt (LM)  

Two types of BP schemes were implemented, one with constant learning rate (BP) –

‘traingd’ in MATLAB, and another with iteration-dependent rate, named BP with adaptive 

learning rate (BPA) – ‘traingda’ in MATLAB. The learning parameters set different than their 

default values are: 

(i) Learning Rate = 0.01 / cs0.5, being cs the chunk size, as defined in 3.3.15. 

(ii) Minimum performance gradient = 0.  

Concerning the LM scheme – ‘trainlm’ in MATLAB, the only learning parameter set 

different than its default value was the abovementioned (ii).  

 
Extreme Learning Machine (ELM, mb ELM, I-ELM, CI-ELM) 

Besides these traditional learning schemes, iterative and time-consuming by nature, four 

versions of a recent, powerful and non-iterative learning algorithm, called Extreme Learning 

Machine (ELM), were implemented (unlike initially proposed by the authors of ELM, connections 

across layers were allowed in this work), namely: (batch) ELM (Huang et al. 2006a), Mini-Batch 

ELM (mb ELM) (Liang et al. 2006), Incremental ELM (I-ELM) (Huang et al. 2006b), Convex 

Incremental ELM (CI-ELM) (Huang and Chen 2007).   

 

3.3.14 Performance Improvement (feature 14) 

A simple and recursive approach aiming to improve ANN accuracy is called Neural 

Network Composite (NNC), as described in Beyer et al. (2006). In this work, a maximum of 
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10 extra ANNs were added to the original one, until maximum error was not improved between 

successive NNC solutions. Later in this manuscript, a solution given by a single neural net 

might be denoted as ANN, whereas the other possible solution is called NNC. 

 

3.3.15 Training Mode (feature 15) 

Depending on the relative amount of training patterns, with respect to the whole training 

dataset, that is presented to the network in each iteration of the learning process, several types 

of training modes can be used, namely (i) batch or (ii) mini-batch. Whereas in the batch mode 

all training patterns are presented (called an epoch) to the network in each iteration, in the mini-

batch counterpart the training dataset is split into several data chunks (or subsets) and in each 

iteration a single and new chunk is presented to the network, until (eventually) all chunks have 

been presented. Learning involving iterative schemes (e.g., BP- or LM-based) might require 

many epochs until an ‘optimum’ design is found. The particular case of having a mini-batch 

mode where all chunks are composed by a single (distinct) training pattern (number of data 

chunks = Pt , chunk size = 1), is called online or sequential mode. Wilson and Martinez (2003) 

suggested that if one wants to use mini-batch training with the same stability as online training, a 

rough estimate of the suitable learning rate to be used in learning algorithms such as the BP, is 

ηonline /√𝑐𝑠, where cs is the chunk size and ηonline is the online learning rate – their proposal was 

adopted in this work. Based on the proposal of Liang et al. (2006), the constant chunk size (cs) 

adopted for all chunks in mini-batch mode reads cs = min{mean(hn) + 50, Pt}, being hn a vector 
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storing the number of hidden nodes in each hidden layer in the beginning of training, and mean(hn) 

the average of all values in hn.  

 

3.4 Network Performance Assessment 

Several types of results were computed to assess network outputs, namely (i) maximum 

error, (ii) % errors greater than 3%, and (iii) performance, which are defined next. All 

abovementioned errors are relative errors (expressed in %) based on the following definition, 

concerning a single output variable and data pattern, 

100 qp qLp

qp

qp

d y

d
e

−
=

                               ,   (25) 

where (i) dqp is the qth desired (or target) output when pattern p within iteration i (p=1,…, Pi) 

is presented to the network, and (ii) yqLp is net’s qth output for the same data pattern. Moreover, 

denominator in eq. (25) is replaced by 1 whenever |dqp| < 0.05 – dqp in the nominator keeps its 

real value.  This exception to eq. (25) aims to reduce the apparent negative effect of large 

relative errors associated to target values close to zero. Even so, this trick may still lead to 

(relatively) large solution errors while groundbreaking results are depicted as regression plots 

(target vs. predicted outputs).     
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3.4.1 Maximum Error 

This variable measures the maximum relative error, as defined by eq. (25), among all output 

variables and learning patterns. 

 

3.4.2 Percentage of Errors > 3% 

This variable measures the percentage of relative errors, as defined by eq. (25), among all 

output variables and learning patterns, that are greater than 3%. 

 

3.4.3 Performance 

In functional approximation problems, network performance is defined as the average 

relative error, as defined in eq. (25), among all output variables and data patterns being 

evaluated (e.g., training, all data).  

 

3.5 Software Validation  

Several benchmark datasets/functions were used to validate the developed software, involving 

low- to high-dimensional problems and small to large volumes of data. Due to paper length limit, 

validation results are not presented herein but they were made public by Researcher (2018b).  
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3.6 Parametric Analysis Results  

Aiming to reduce the computing time by cutting in the number of combos to be run – note that 

all features combined lead to hundreds of millions of combos, the whole parametric simulation was 

divided into nine parametric SAs, where in each one feature 7 only takes a single value. This 

measure aims to make the performance ranking of all combos within each ‘small’ analysis more 

‘reliable’, since results used for comparison are based on target and output datasets as used in ANN 

training and yielded by the designed network, respectively (they are free of any postprocessing that 

eliminates output normalization effects on relative error values). Whereas (i) the 1st and 2nd SAs 

aimed to select the best methods from features 1, 2, 5, 8 and 13 (all combined), while adopting a 

single popular method for each of the remaining features (F3: 6, F4: 2, F6: {1 or 7}, F7: 1, F9: 1, F10: 

1, F11: {3, 9 or 11}, F12: 2, F14: 1, F15: 1 – see Tabs. 2-4) – SA 1 involved learning algorithms 1-3 

and SA 2 involved the ELM-based counterpart, (ii) the 3rd – 7th SAs combined all possible methods 

from features 3, 4, 6 and 7, and concerning all other features, adopted the methods integrating the 

best combination from the aforementioned first SA, (iii) the 8th SA combined all possible methods 

from features 11, 12 and 14, and concerning all other features, adopted the methods integrating the 

best combination (results compared after postprocessing) among the previous five sub-analyses, 

and lastly (iv) the 9th SA combined all possible methods from features 9, 10 and 15, and concerning 

all other features, adopted the methods integrating the best combination from the previous analysis. 

Summing up the ANN feature combinations for all parametric SAs, a total of 475 combos were 

run for this work.   
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ANN feature methods used in the best combo from each of the abovementioned nine parametric 

sub-analyses, are specified in Tab. 5 (the numbers represent the method number as in Tabs 2-4). 

Tab. 6 shows the corresponding relevant results for those combos, namely (i) maximum error, (ii) 

% errors > 3%, (iii) performance (all described in section 3, and evaluated for all learning data), 

(iv) total number of hidden nodes in the model, and (v) average computing time per example 

(including data pre- and post-processing). All results shown in Tab. 6 are based on target and output 

datasets computed in their original format, i.e. free of any transformations due to output 

normalization and/or dimensional analysis.  The microprocessors used in this work have the 

following features: OS: Win10Home 64bits, RAMs: 48/128 GB, Local Disk Memory: 1 TB, 

CPUs: Intel® Core™ i7 8700K @ 3.70-4.70 GHz / i9 7960X @ 2.80-4.20 GHz. 

 

Tab. 5. ANN feature (F) methods used in the best combo from each parametric sub-analysis (SA). 

SA F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 

1 1 2 6 2 1 1 1 1 1 1 3 2 3 1 3 

2 1 2 6 2 1 7 1 1 1 1 3 2 5 1 3 

3 1 2 6 2 1 1 1 1 1 1 3 2 3 1 3 

4 1 2 6 2 1 1 2 1 1 1 3 2 3 1 3 

5 1 2 6 3 1 1 3 1 1 1 3 2 3 1 3 

6 1 2 6 2 1 7 4 1 1 1 3 2 3 1 3 

7 1 2 6 3 1 7 5 1 1 1 3 2 3 1 3 

8 1 2 6 3 1 7 5 1 1 1 1 5 3 1 3 

9 1 2 6 3 1 7 5 1 3 3 1 5 3 1 3 

 

3.7 Proposed ANN-Based Model 

The proposed model is the one, among the best ones from all parametric SAs, exhibiting the 

lowest maximum error (SA 9). That model is characterized by the ANN feature methods {1, 2, 1, 
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3, 1, 7, 5, 1, 3, 3, 1, 5, 3, 1, 3} in Tabs. 2-4. Aiming to allow implementation of this model by any 

user, all variables/equations required for (i) data preprocessing, (ii) ANN simulation, and (iii) data 

postprocessing, are presented in 3.7.1-3.7.3, respectively. The proposed model is a single MLPN 

with 5 layers and a distribution of nodes/layer of 8-11-11-11-1. Concerning connectivity, the 

network is fully-connected, and the hidden and output transfer functions are all Logistic (eq. 

(7)) and Identity (eq. (10)), respectively. The network was trained using the LM algorithm 

(1500 epochs). After design, the average network computing time concerning the presentation 

of a single example (including data pre/postprocessing) is 6.93E-05 s – Fig. 7 depicts a 

simplified scheme of some of network key features. Lastly, all relevant performance results 

concerning the proposed ANN are illustrated in 3.7.4. The obtained ANN solution for every 

data point can be found in Developer (2018a).  

 

Fig. 7. Proposed 8-11-11-11-1 fully-connected MLPN – simplified scheme. 

 

It is worth recalling that, in this manuscript, whenever a vector is added to a matrix, it means 

the former is to be added to all columns of the latter (valid in MATLAB). 
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Tab. 6. Performance results for the best design from each parametric sub-analysis: (a) ANN, (b) NNC. 

SA 

ANN 

Max Error 
(%) 

Performance 
All Data        

(%) 

Errors > 3% 
(%) 

Total Hidden 
Nodes 

Running Time / 
Data Point 

(s) 

1 7.5 0.7 1.8 32 7.33E-05 

2 201.0 5.7 54.9 365 7.06E-05 

3 8.2 0.7 1.2 32 8.49E-05 

4 8.5 0.7 1.3 32 7.67E-05 

5 6.8 0.7 1.8 32 6.86E-05 

6 7.2 0.7 1.6 32 7.57E-05 

7 28.9 1.5 13.2 29 6.82E-05 

8 8.2 0.9 3.4 29 6.70E-05 

9 3.7 0.4 0.1 33 6.93E-05 

(a) 

SA 

NNC 

Max Error 
(%) 

Performance 
All Data        

(%) 

Errors > 3% 
(%) 

Total Hidden 
Nodes 

Running Time / 
Data Point 

(s) 

1 - - - - - 

2 180.0 5.2 51.4 365 8.16E-05 

3 - - - - - 

4 8.6 0.6 0.9 32 7.83E-05 

5 - - - - - 

6 2.6 0.3 0.0 32 8.34E-05 

7 9.5 0.9 3.9 29 6.93E-05 

8 7.0 0.7 1.9 29 6.80E-05 

9 - - - - - 

(b) 

 

3.7.1 Input Data Preprocessing 

For future use of the proposed ANN to simulate new data Y1,sim (8 x Psim matrix) concerning 

Psim patterns, the same data preprocessing (if any) performed before training must be applied to 

the input dataset. That preprocessing is defined by the methods used for ANN features 2, 3 and 

5 (respectively 2, 6 and 1 – see Tab. 2), which should be applied after all (eventual) qualitative 

variables in the input dataset are converted to numerical (using feature 1’s method). Next, the 

necessary preprocessing to be applied to Y1,sim, concerning features 2, 3 and 5, is fully described.  
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Dimensional Analysis and Dimensionality Reduction 

Since dimensional analysis (d.a.) and dimensionality reduction (d.r.) were not carried out, 

one has 

   1, 1, 1,. . . .
   

after after

sim sim simd r d a
Y Y Y= =  

.   (26)

 

 
Input Normalization 

After input normalization, the new input dataset {𝑌1,𝑠𝑖𝑚}𝑛𝑎𝑓𝑡𝑒𝑟
 is defined as function of the 

previously determined {𝑌1,𝑠𝑖𝑚}𝑑.𝑟𝑎𝑓𝑡𝑒𝑟
, and they have the same size, reading 

   1, 1, .

0.125

0.00139275766016713

0.00178571428571429

0.00364431486880467

0.00142857142857143

0.0666666666666667

0.0037037037037037

0.0

INP

4

  INP .x   
after after

sim simn d r
Y Y

=

=

 
 
 
 
 
 
 
 
 
 
   

,   (29) 

where one recalls that operator ‘.x’ multiplies component i in vector INP by all components in 

row i of {Y1,sim}d.r
after.  
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3.7.2 ANN-Based Analytical Model 

Once determined the preprocessed input dataset {Y1,sim}n
after(8 x Psim matrix), the next step is 

to present it to the proposed ANN to obtain the predicted output dataset {Y5,sim}n
after (1 x Psim 

vector), which will be given in the same preprocessed format of the target dataset used in 

learning. In order to convert the predicted outputs to their ‘original format’ (i.e., without any 

transformation due to normalization or dimensional analysis – the only transformation visible 

will be the (eventual) qualitative variables written in their numeric representation), some 

postprocessing is needed, as described in detail in 3.7.3. Next, the mathematical representation 

of the proposed ANN is given, so that any user can implement it to determine {Y5,sim}n
after

 , thus 

eliminating all rumors that ANNs are ‘black boxes’. 

 

 ( )
 ( )
 ( )
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1 2

3 1 3
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1,
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5,

2 3 2

4 1 4 2 4 2 3 4 3

1 5 2 5 2 3 5 3 4 5 41,
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,   (30) 

where 

5

2 3 4

5

1
( )

1

( )

s
s

e

s s
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
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.  (31) 
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Arrays Wj-s and bs are stored online in Developer (2018b), aiming to avoid an overlong article 

and ease model’s implementation by any interested reader. 

 

3.7.3 Output Data Postprocessing 

In order to transform the output dataset obtained by the proposed ANN, {Y5,sim}n
after (1 x 

Psim vector), to its original format (Y5,sim), i.e. without the effects of dimensional analysis and/or 

output normalization (possibly) taken in target dataset preprocessing prior training, the 

postprocessing addressed next must be performed. 

Once obtained {Y5,sim}n
after, the following relations hold for its relation to its non-normalized 

({𝑌5,𝑠𝑖𝑚}𝑑.𝑎.𝑎𝑓𝑡𝑒𝑟
) and original (Y5,sim) formats (just after the dimensional analysis stage, and free 

of any pre-processing effects, respectively), reading 

   5, 5, 5,. .
 =  = 

after

sim sim simd

after

na
Y Y Y  

,   (32) 

since no output normalization nor dimensional analysis were carried out.  

 

3.7.4 Performance Results 

Finally, results yielded by the proposed ANN, in terms of performance variables defined in 

sub-section 3.4, are presented in this section in the form of several graphs: (i) a regression plot 

(Fig. 8) where network target and output data are plotted, for each data point, as x- and y- 

coordinates respectively – a measure of linear correlation is given by the Pearson Correlation 

Coefficient (R), as defined in eq. (1); (ii) a performance plot (Fig. 9), where performance 
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(average error) values are displayed for several learning datasets; and (iii) an error plot (Fig. 

10), where values concern all data (iii1) maximum error and (iii2) % of errors greater than 3%. 

It´s worth highlighting that all graphical results just mentioned are based on effective target 

and output values, i.e. computed in their original format.   

 

 
Fig. 8. Regression plot for the proposed ANN. 
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Fig. 9. Performance plot (mean errors) for the proposed ANN. 

 

 

Fig. 10. Error plot for the proposed ANN. 
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4. Design Considerations 

The bar chart in Fi. 11, where beams numbers in the horizontal axis are referenced to the data 

point ID in the ANN dataset (Developer 2018a), presents (i) the design loads given by SCI-P355 

(Lawson and Hicks 2011), and (ii) the FEA-based elastic buckling loads obtained from this work. 

As expected, SCI-P355 yielded significantly lower loads and it is worth noting that the differences 

between the two approaches do not produce the same percentage variance in load estimates for the 

8 randomly selected beams. In particular, for slender web-posts (i.e., closely spaced web openings) 

such as in beams 82, 136, 163, and 217, buckling of the web-post will always govern the design in 

SCI-P355, hence the reduced design load. As for the FEAs, parameter led (end web-post distance 

to the support – see Figure 1(a)) governs the design for widely spaced web openings. SCI-P355 

does not consider the distance led and recommends it to be greater than 50% of the opening 

diameter. In this work, the opening diameter and web-post width were taken within the 

recommended design limits (1.25<H/Φ<1.75 and 1.08<(bwp+Φ)/Φ<1.5, respectively). 

 

Fig. 11. SCI P355 design strength vs. FE-based elastic buckling prediction. 
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5. Discussion 

In future publications it will be guaranteed that the validation and testing data subsets will 

be composed only by points where at least one variable (does not have to be the same for all) 

takes a value not taken in the training subset by that same variable. Based on very recent 

empirical conclusions by Abambres, the author believes it will lead to more robust ANN-based 

analytical models concerning their generalization ability (i.e. prediction accuracy for any data 

point within the variable ranges of the design data). 

6. Concluding Remarks 

An ANN-based analytical model is proposed to effectively predict the elastic buckling load 

of simply supported cellular steel beams subjected to a uniformly distributed load. Finite 

element solutions from 3645 distinct beams were used for ANN design (training, validation, 

and testing). The independent variables adopted as ANN inputs are the following: beam’s 

length, opening diameter, web-post width, cross-section height, web thickness, flange width, 

flange thickness, and the distance between the last opening edge and the end support. The 

maximum and average relative errors yielded by the proposed ANN among the 3645 data 

points were 3.7% and 0.4%, respectively. Moreover, that model is able to compute the buckling 

load of a single beam in less than a millisecond, for any current personal computer. These facts 

make the proposed model a potential tool for structural engineers and researchers who aim to 

accurately estimate the elastic buckling load of cellular steel beams (i) within the ranges of the 
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input variables adopted in this study (see Tab. 1), and (ii) without the burden of the costly 

resources associated to FEA. 

This research is the first step of an ongoing investigation that aims to propose a novel and simple 

analytical design method to accurately compute the inelastic resistance of cellular steel beams. 
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