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Abstract –We introduce a novel empirical model to forecast, 24 h in advance, the Total Electron Content
(TEC) at global scale. The technique leverages on the Global Ionospheric Map (GIM), provided by the
International GNSS Service (IGS), and applies a nonlinear autoregressive neural network with external
input (NARX) to selected GIM grid points for the 24 h single-point TEC forecasting, taking into account
the actual and forecasted geomagnetic conditions. To extend the forecasting at a global scale, the technique
makes use of the NeQuick2 Model fed by an effective sunspot number R12 (R12eff), estimated by
minimizing the root mean square error (RMSE) between NARX output and NeQuick2 applied at the same
GIM grid points. The novel approach is able to reproduce the features of the ionosphere especially during
disturbed periods. The performance of the forecasting approach is extensively tested under different
geospatial conditions, against both TEC maps products by UPC (Universitat Politècnica de Catalunya)
and independent TEC data from Jason-3 spacecraft. The testing results are very satisfactory in terms of
RMSE, as it has been found to range between 3 and 5 TECu. RMSE depend on the latitude sectors, time
of the day, geomagnetic conditions, and provide a statistical estimation of the accuracy of the 24-h
forecasting technique even over the oceans. The validation of the forecasting during five geomagnetic
storms reveals that the model performance is not deteriorated during disturbed periods. This 24-h empirical
approach is currently implemented on the Ionosphere Prediction Service (IPS), a prototype platform to
support different classes of GNSS users.
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1 Introduction

The provision of accurate ionospheric forecasts depends on
a variety of constraints, including a better understanding of the
phenomena ruling the interactions between the Sun and the
near-Earth space, the availability of suitable measurements as
well as the modelling capability of ionospheric-related quanti-
ties. Development of proper ionospheric forecasting solutions
further complicates not only because helio-geophysical distur-
bances alter the “regular” properties and dynamics of the
ionospheric plasma, but also because the users demanding for
their implementation in real-time to support a variety of needs,
e.g. for mitigating the ionospheric effects of space weather on
modern technological infrastructures relying on space-based

navigation systems (Cesaroni et al., 2015; Park et al., 2016).
Accordingly, efforts are continuously devoted to upgrade the
so-called “climatological models”, able to provide median fea-
tures of, e.g., the ionospheric electron density profile, to the
real-time weather predictions. This is for example the case of
the well-known International Reference Ionosphere (IRI;
Bilitza, 2001; Bilitza et al., 2017) and NeQuick (Radicella &
Leitinger, 2001; Nava et al., 2008; 2011) models, built on
empirical approaches and multi-instruments data ingestion and
assimilation (see, e.g., Nava et al., 2006; Galkin et al., 2012).

Focusing on the Total Electron Content (TEC, i.e. the inte-
gral of electron density along the path satellite-receiver at
ground), nowadays the availability of dense network of GNSS
receivers allows its short-term forecasting with horizon of tens
of minutes in advance in real time based on physical and/or
empirical approaches. Among the former, a model providing
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maps of forecasted vertical TEC (vTEC) (Mannucci et al.,
1998), on the global scale is the Coupled Thermosphere
Ionosphere Plasmasphere Electrodynamics Model (CTIPe),
firstly built on the three-dimensional, time-dependent numeri-
cal model of the thermosphere introduced by Fuller Rowell
& Rees (1981). The model has been upgraded in the last
decades by including convection model as well plasmasphere
and mid-low latitude ionosphere. Further extended for real-
time operation (https://www.swpc.noaa.gov/products/ctipe-total-
electron-content-forecast), CTIPe shows its potential to compete
with empirical models for reliable short term forecast of the
ionosphere under disturbed geomagnetic conditions (Codrescu
et al., 2012 and references therein).

Short-term vTEC forecasting by empirical approaches are
adopted and implemented in regional as well as in global ser-
vices. Among the others, the Space Weather Application Center
Ionosphere (SWACI) provides in real time vTEC forecast one
hour in advance over Europe as well and at global scale
(https://impc.dlr.de/products/total-electron-content/forecast-tec/).
The empirical approach is based on the Neustrelitz TEC Model
(NTCM) (Jakowski et al., 2011), a polynomial model consisting
of linear terms used as background model. The forecasted map
results as a sum of the actual vTEC map and a weighted sum of
the temporal vTEC gradient of the previous hour and the tem-
poral gradient of the previous day at the same time. The NCTM
and other empirical models have been recently tested over
Europe revealing the NCTM capability to extend the forecast
up to 24 h in advance under quiet geospatial conditions (Badeke
et al., 2018).

Still within operational services, the International GNSS
Service (IGS) releases actual high valuable vTEC global maps
in the form of different products (rapid and final products,
https://www.igs.org/products) with variable latency (in near
real-time and/or days after) that users can access for their own
purposes. The GLOBAL Ionospheric Maps (GIM) are based
on the joint efforts for GNSS data processing by the IGS
ionospheric working group (Iono-WG) and are available on-
line since 1998 (Hernández-Pajares et al., 2009). In 2017,
Hernandez-Pajares and co-authors successfully assessed the
accuracy of the GIM-UQRG computed by Universitat Politèc-
nica de Catalunya (UPC) by comparison with external data from
difference of Slant TEC, based on independent global position-
ing system data GPS (dSTEC-GPS) and vTEC altimeter
(Hernández-Pajares et al., 2017).

The potential of Global vTEC forecasting up to 24 and 48 h
from GIM UPG has been investigated but, as claimed by the
authors, the prediction of TEC disturbances induced by geomag-
netic storms and other impulsive events was not yet accounted
for in the prediction model design (García-Rigo et al., 2011).

Bearing this in mind, the challenge we address in this paper
is the development of a global, empirical vTEC forecasting tool
with a horizon up to 24 h under quiet as well as disturbed geo-
magnetic conditions for an operational service. The disturbed
geomagnetic conditions are triggered by solar storm events,
i.e. transient phenomena originating in the Sun that modify
the regular behavior of the ionosphere through the Solar
Wind-Magnetosphere-Ionosphere interaction. Among this: geo-
effective Coronal Mass Ejections (CMEs) and fast solar wind
streams triggered by Coronal Holes (CH).

We take advantage of a Neural Network (NN) approach,
introduced since the end of 90’s for ionospheric forecasting

on different spatial/temporal scales. Such approach has been
even considered to predict ionospheric scintillation at high
latitude due to the formation of irregularities causing fluctua-
tions of the amplitude and phase of radio waves crossing them
(McGranaghan et al., 2018). Early successful attempts of NN
application were addressed to single station forecasting of the
ionospheric F2 layer related-parameters then, increasing the
availability of both ground based GNSS as well satellite
in situ data, their use has been extended to TEC as well as to
other parameters describing the Sun-Earth interactions (see,
e.g., Sai Gowtam & Tulasi Ram, 2017 and reference therein).
NN potential was discussed for the short-term forecasting (up
to 1 h in advance) of TEC over Europe on November 2013
by Tulunay et al. (2006), highlighting how the RMSE of the
prediction increases with the prediction time (from 10 min
to 1 h). Habarulema et al. (2011), provided performance of
regional NN TEC variability forecasting indicating a decreasing
performance of the model accuracy under stormy events. Short
term TEC forecasting (30 min in advance) at single station by
Back Propagation (BP) NN and by Radial Basis Function
(RBF) NN has been tested by Huang & Yuan (2014) revealing
acceptable results with a maximum RMSE of 2 TECU during
the test cases. NN combined with GIMs has been explored as
a strategy to support single frequency user for the ionospheric
delay on the global scale (Perez, 2019). IONONet, the resulting
global model for TEC prediction (1 or more days in advance)
seems promising but currently unable to represent the equatorial
anomaly behavior. Recurrent NN combined with TEC global
map by CODE (Center for Orbit Determination in Europe,
Switzerland) has been introduced for the provision of TEC
forecasted maps at a global scale from 2 h up to 48 h in advance
(Cherrier et al., 2017). The training data set refers to the period
January 2014–May 2016, while the testing was performed from
July to December 2016. The performance of the approach is
tested over single stations with promising results in terms of
RMSE that is found to increase as function of the forecasting
horizon. In addition, decrease of the performance has been
found during ionospheric disturbed conditions.

Table 1, far to be exhaustive, attempts to highlight the
NN forecasting approaches described above addressed to iono-
spheric parameters and their main features.

Inspired by the “machine learning” concept, the TEC
forecasting model uses the rapid vTEC GIM maps product to
instruct a nonlinear autoregressive network with exogenous
(external) inputs (NARX) (Nørgård et al., 2000) that learns
the vTEC behavior at selected points of the grid under different
helio-geophysical conditions. Moreover, the model makes use
of the NeQuick2 (Nava et al., 2008) and of an effective solar
activity index R12eff to extend the forecasting at a global scale.
The data and method used are described in Section 2. For
validation purposes, statistical evaluation of the model perfor-
mance is reported in Section 3. Such validation is based on
the application of the forecasting process along one year from
1 June 2017 to 31 May 2018 and by comparison between the
forecasted global vTEC maps and the final GIM UPC product,
the more reliable vTEC assessment currently available. Five
cases of storm events (from G1 to G4 classes) are also consid-
ered in order to assess the forecasting capability during
disturbed periods. To further challenge the model, forecasting
is validated against independent measurements, i.e. the vTEC
from dual frequency altimeter on board of Jason 3 spacecraft.
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The results are finally discussed in Section 4 together with the
limitations of the model and concluding remarks on the opera-
tional performance of the proposed forecasting approach within
the Ionosphere Prediction Service (IPS) prototype (Albanese
et al., 2017; Rodriguez et al., 2018; Veettil et al., 2019).

2 Data and methods

The proposed model is implemented through an algorithm
consisting of two separate parts, working in cascade. The first
part, termed “Single point TEC forecasting”, focuses onto the
24-h ahead prediction of vTEC on selected points of the globe
and it is based on the use of NARX fed by Global Ionospheric
Map (GIM) provided by the International GNSS Service (IGS)
with a spatial-temporal resolution of 2.5� (lat) � 5� (lon) � 2 h
(Hernández-Pajares et al., 2009). The second part, termed
“Global TEC forecasting”, is based on the use of the NeQuick2
Model (Radicella & Leitinger, 2001; Nava et al., 2008, 2011)
fed by the outputs of the single point vTEC forecasting with
the goal to retrieve the so-called “effective R12” (Olwendo &
Cesaroni, 2016). The effective R12 is then used to extend the
vTEC forecasting 24-h in advance at a global level. Splitting
the algorithm into two parts makes the process more flexible
giving the possibility to modify only one part of the algorithm.
For example, one can increase the number of the selected points
for the “single point TEC forecasting” in the first part of the
algorithm or use another model (e.g. IRI) to extend the forecast-
ing at global level in the second part. The block diagram
reporting the conceptual flow of the algorithm is sketched in
Figure 1 while a detailed description is given in the next two
subsections.

2.1 Single point TEC forecasting

Neural Network have been successfully used for “hours
ahead” ionospheric forecasting purposes (see, e.g. Cander
et al., 1998; Cander & Zolesi, 2014 and references therein) since
several years. A nonlinear autoregressive model with external
input, NARX (Xie et al., 2009), is here adopted and tuned for
24 h ahead TEC forecasting on each of the grid points indicated
by red dots in Figure 2 and listed in Table 2. The 18 grid points
have been chosen in order to cover different latitudinal sectors
and different local time in every forecasting step. NARX is a
recurrent dynamic network, with feedback connections enclos-
ing several layers of the network. It uses supervised training
method consisting in feeding the network with input/output
examples to minimize the error function.

By using the NARX approach, the ionospheric parame-
ter y tð Þ to be forecasted is expressed as an auto regression
function of both its previous k values and the corresponding r
previous values of an independent external input signal u tð Þ
(Araghinejad, 2013):

y tð Þ ¼ f y t � 1ð Þ; y t � 2ð Þ; . . . ; y t � kð Þ; u t � 1ð Þ;ð

u t � 2ð Þ; . . . ; u t � rð ÞÞ: ð1Þ

In this paper, the ionospheric parameter (y) to be forecasted
is the vertical TEC at a given grid point and the external input
(u) is the geomagnetic index Kp, available several hours in
advance (up to 3 days) from NOAA (https://www.swpc.noaa.
gov). In principal, the algorithm is able to use other parameters
(Dst, AE, AU, AL) as external input but, so far, Kp is the only
index available 24 h in advance. The input delay and feedback
delay (k and r in Eq. (1), respectively) are both set up at 24 h
taking into account that the main variation on TEC is due to

Table 1. Summary of the described ionospheric parameters forecasting based on NN.

Reference Approach Prediction lead time Main features

Sai Gowtam &
Tulasi Ram (2017)

ANN prediction model of NmF2 and hmF2
as function of LT, LAT, LONG, SEASON

Climatological model NmF2 and hmF2 percentage error ranged
between 15% and 20%. The NmF2 model
performance decreases at low latitudes
during the predawn hours and around
midnight at middle-high latitude.
The hmF2 model performance decreases at
low latitude at postsunset.

Tulunay et al.
(2006)

Regional TEC forecasting model, NN 10 min up to 1 h Short term forecasting. RMSE increases
with forecasting horizon up to about 4
TECU over mid latitude grid points.

Habarulema et al.
(2011)

ANN regional TEC variability forecasting
model as function of time of the day, season,
solar and magnetic activity, latitude and
longitude

Climatological model The model accuracy is decreases under
geomagnetically disturbed conditions.

Huang & Yuan
(2014)

TEC single station forecasting model based on
BP NN and RBF NN

30 mins Short term forecasting. RMSE less than 5
TECU, the model performance decreases at
lower latitude.

Cherrier et al.
(2017)

Global TEC maps forecasting model based on
recurrent NN and TEC global map by CODE

2–48 h RMSE increases with forecasting horizon.
The model performance decreases under
disturbed conditions.

Perez (2019) Global TEC maps forecasting model NN
combined with GIM map

24-h or more Equatorial Ionospheric Anomaly not
represented
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the diurnal cycle. For each grid points, a different NARX is
trained with a Bayesian Regularization process according to
Levenberg-Marquardt optimization (Madsen et al., 1999) by
using 11 years long (2005–2015) TEC and Kp time series
randomly divided into training (70%), validation (15%) and
testing (15%) datasets. The TEC time series is obtained, for
each grid points, by extracting vTEC for the considered grid
point from Global Ionospheric Maps (final products) provided
by IGS in IONEX (see Schaer et al., 1998) format with time
resolution of 2 h. Kp time series is obtained by interpolating
3-h resolution data to obtain a value of the Kp every 2 h. The
interpolation method used is the nearest neighbor.

As the dataset is a time-series and it has been randomly
divided to train, test and validate the NARX, some implicit leak-
age (Schelter et al., 2018) could affect the performance of the
“single point TEC forecasting” and has to be considered in dis-
cussing the results.

To illustrate how the different geomagnetic conditions are
accounted in the considered dataset, left panel of Figure 3 shows

the Kp for the period 2005–2015 in which colors indicate the
NOAA scale of geomagnetic storms: quiet conditions (G0,
green), minor/moderate conditions (G1/G2, yellow) and
strong/severe/extreme conditions (G3/G4/G5, red). In the same
panel, black dashed curve reports the corresponding value of
R12. In the right panel of Figure 3, relative percentage of the
Kp conditions according to the color code of the right panel
is reported. As expected, the bulk of the considered geomag-
netic conditions refers to quiet times (98%), while the storm
conditions mostly occur during the descending, ascending and
maximum phases of the solar cycle. As a consequence, the
training dataset includes mostly data under quiet geomagnetic
conditions. This could limit the performance of the model in
reproducing storm conditions.

The NARX design used in the TEC forecasting approach is
the so-called “closed loop network” or “parallel architecture”,
where the output is repeated in input at Hidden Layer to
minimize the error of the output. In Figure 4, a sketch of the
block diagram reporting the use of NARX on TEC time series

Fig. 1. Flowchart of the algorithm.
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is shown. In the figure, W is the weight of each input parameter
(y, u) and b is the bias (Sexton et al., 2019).

All the training is done in open loop (also called series-
parallel architecture), including the validation and testing steps.
Typically, the network is created in “open loop”, and only when
it has been trained (which includes validation and testing steps)

it is transformed to closed loop for multistep-ahead prediction.
In fact, the “open loop” network is able to provide the forecast-
ing only one time step ahead (2 h) while the “closed loop”
configuration allows extending the forecasting up to 12 time
step ahead (24 h). This is done by using the output at a given
step of the closed loop as input to the following step. On the
other hand, the current prediction of y(t + 1) is used as an input
to predict y(t + 2) (Sexton et al., 2019). The standard network
used for fitting is a two-layer feedforward network, with a
sigmoid transfer function in the hidden layer and a linear trans-
fer function in the output layer (grey boxes in Fig. 4). To eval-
uate the performance of the network in order to optimize the
choice of weight and biases, we adopted as “loss function”
the mean squared error (MSE). This is a very frequent choice
among the bilateral loss function (e.g. Mean Absolute Error,
Mean Squared Logarithmic Error) usually adopted for regres-
sion problems (Nie et al., 2018).

As an example, Figure 5 reports the results of the single
point TEC forecasting for different days, different latitudes
and local time (LT) spanning 24 h. In particular, panel a and
b report the forecasting results for the 30 May 2016 considering
grid points at northern high latitude (85� N, 120� E) and south-
ern high latitude (85� S, 120� E) respectively. Panel c and d
report the forecasting results for the 21 August 2016 considering
grid points at mid (50� N, 120� E) and low latitude (20� N,
120� E) respectively. In all the four panels, top plot represents
the actual (orange line) and forecasted (blue line) TEC and
the bottom plot represents the absolute (blue lines, in TEC unit)
and relative differences (orange line, in percentage) between

Fig. 2. Location of the 18 grid points used for in the single-point forecasting.

Table 2. Coordinates of the 18 grid points used in the single point
TEC forecasting.

No. Latitude (�N) Longitude (�E)

1 �85 �120
2 �85 0
3 �85 120
4 �50 �120
5 �50 0
6 �50 120
7 �20 �120
8 �20 0
9 �20 120
10 20 �120
11 20 0
12 20 120
13 50 �120
14 50 0
15 50 120
16 85 �120
17 85 0
18 85 120
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forecasted and actual TEC. For each of the four cases consid-
ered, RMSE is reported in the top part of the bottom plot.
RMSE is defined as:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

12

i¼1

TECi
forecasted � TECi

actual

� �2

12

v

u

u

u

t

ð2Þ

where i represents each time step during the considered 24 h.
As expected, the relative error is larger at low latitude than
mid and high latitudes. In all examples, the RMSE is below
3.0 TECu. Both 30 May 2016 and 21 August 2016 can be
considered quiet/weakly disturbed from a geomagnetic point
of view (Kp � 4).

2.2 Effective R12 and global forecasting

In order to extend the forecasting at a global level,
NeQuick2 (Nava et al., 2006; Migoya-Orué et al., 2017) is
applied by using a data ingestion process to take into
account the actual ionization level of the ionosphere. NeQuick2
model is a climatological model that needs as input the
geographic coordinates, month, time of the day and the solar
conditions are also used in terms of solar flux (F10.7) or sunspot
number (R12). The paper by Olwendo & Cesaroni (2016)

describes an ingestion method capable to retrieve the so-called
“effective R12” (R12eff) that is the parameter to be used to
feed NeQuick2 to model as best as possible the actual TEC.
In this way, NeQuick2 model is forced to reproduce the
actual ionospheric conditions by considering the effective
ionization level represented by R12eff. In this paper, we
extended this approach by evaluating R12eff for the epoch to
be forecasted to let NeQuick2 model reproducing the
global TEC at that epoch. In the specific, R12eff is a global
parameter to be retrieved, for each epoch to be forecasted, by
minimizing the RMSE over all the 18 grid points in Table 2.
In formula:

RMSE R12ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

18

i¼ 1

TECi
forecasted � TECi

NeQuickðR12Þ
� �2

18

v

u

u

u

t

; ð3Þ

where TECi
forecasted is the forecasted TEC over the ith point

coming from the corresponding NARX and TECi
NeQuickðR12Þ

is the TEC over the ith point modelled by NeQuick2 model
fed by R12. By adopting this approach, we are assuming that,
despite the changing of the global ionization level, the
NeQuick2 model is able to reproduce the global distribution
of TEC under all geomagnetic condition. The choice of RMSE

Fig. 4. Block diagram of the trained neural network (parallel architecture).

Fig. 3. Left: Kp for the period 2005–2015. Colors represent the NOAA scale of geomagnetic storms: quiet conditions (G0, green),
minor/moderate conditions (G1/G2, yellow) and strong/severe/extreme conditions (G3/G4/G5, red). Black dashed curve reports the
corresponding R12. Right: Relative percentage of the geomagnetic conditions according to the color code of the right panel.
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as “target function” to be minimized comes from the needs to
take care about high values of the difference between modelled
and forecasted TEC. In particular, this target function allows to
highlight possible spikes due to possible bad performance of the
NARXs.

Figure 6 reports an example of the RMSE dependence on
R12 for the 17 April 2018 at noon. The R12eff corresponds
to the minimum of the curve as indicated by the red dot in
the figure. It is worth notice that R12eff is not physically mean-
ingful as the actual R12. This is why R12eff can be a negative
number. Once the R12eff is retrieved, it is used as input of
NeQuick2 to create a global vTEC map with the same spatial
and temporal resolution of the IGS product. As an example,
Figure 7 shows the forecasted global vTEC maps for 08
September 2017 from 00:00 UT to 22:00 UT. In the figure,
the value of R12eff is reported for each map.

3 Validation

This section details the capability of the model in giving a
reliable vTEC forecasting. To validate the performance, the maps

of TEC provided as daily IONEX files by UPC as part of the
International GNSS Service (IGS) Final Products are used as
“ionospheric reference”. In the specific, the “UPC final product”

Fig. 5. Examples of TEC forecasting as a function of the local time at high-latitude in the northern (a) and southern (b) hemispheres, at mid-
latitude (c) and at low-latitude (d). In each panel, actual (orange) and forecasted (blue) TEC are reported in the top plot, while absolute (blue)
and relative (orange) difference between forecasted and actual TEC are reported in the bottom plot.

Fig. 6. Example of the relationship between RMSE and R12 for 17
April 2018 at noon. Red dot represents the retrieved R12eff.
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is here used, being characterized by an accuracy of about
5 TECu (Hernández-Pajares et al., 2009) and provided weekly
with a latency of about 11 days (http://www.igs.org/products).

The IGS maps, as the maps by the forecasting model, have an
update rate of 2 h and a binning 5� (longitude) � 2.5�
(latitude). For validation purposes, actual Kp has been used to

Fig. 7. Example of TEC long term forecasting for the 8 September 2018, from 00:00 UT to 22:00 UT. The forecasting time and the
corresponding value of R12eff is reported on top of each map.
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feed the NARX in order the remove theKp forecasting error con-
tribution to the model error budget.

The performance is evaluated for 1 year of accumulated
statistics (Sect. 3.1) and during space weather events recently
occurred (Sect. 3.2).

The metrics selected for the evaluation of the performance
of a prediction-model are not standard. In fact, different metrics
should be adopted in order to highlight different strength and
weak features of the model in different operational conditions.
Moreover, the metrics of a model should reflect the user needs.
In Liemohn et al. (2018), the authors suggest different metrics
for the fit performance and event detection performance assess-
ment of a prediction model for geomagnetic indices. In the for-
mer case, the authors indicate Root Mean Square Error (RMSE)
or Mean Absolute Error (MAE) and Mean Error (ME) as the
basic metrics to be used. Thus, in order to give more weight
to the data-model pairs with larger differences, we selected
the RMSE and the ME (hereafter l), giving, in addition, the
standard deviation (r) of the differences between the forecasted
TEC and the corresponding IGS TEC map. These statistical
parameters are evaluated for the whole period under investiga-
tion and for all the grid points of the map. Moreover, to give
an estimation of the bias of the model with respect to time,
we consider also the time profile of the Residual Global Elec-
tron Content (RGEC) index along the considered period. RGEC
at a given time t* is defined as:

RGEC t�ð Þ ¼

P

i;j

�TEC t�; i; jð Þ

N
ð4Þ

where the sum is over all the N grid points of the maps, iden-
tified by the (i, j) coordinates. DTEC is the TEC difference
between the forecasted TEC and the corresponding IGS
TEC map in the grid point (i, j).

To further provide a measure of the forecasting perfor-
mance, the model is also validated against independent mea-
surements. To the scope, cross-validation with the vTEC
measurements obtained from dual frequency altimeter on board

of Jason 3 spacecraft is performed for the same aforementioned
space weather events (Sect. 3.3).

3.1 Results on accumulated statistics

The period used for the validation against accumulated
statistics spans from 1 June 2017 to 31 May 2018. As visible
from bottom panel of Figure 8, in which the Kp index for the
period is reported, geomagnetic conditions were from quiet to
severe (Kpmax = 8+, corresponding to G4 of the NOAA scale
of geomagnetic storms). Top panel of Figure 8 reports DR12,
being the difference between R12eff and the actual R12. From
the figure, the dependence of DR12 on Kp is evident, highlight-
ing how R12eff is a good driver for the TEC forecasting accord-
ing to the development of geomagnetic storms. In particular, the
peak value of DR12 is found in early September 2017, charac-
terized by several solar flare and CME events (Linty et al.,
2018; Qian et al., 2019). We remind the reader that by definition
the actual R12 is independent on the geomagnetic activity and
constant over each month.

Figure 9 shows the results of the forecasting performance by
using the metrics previously defined. In the specific, panel a
shows the distribution of DTEC, Figure 9b shows the map of
the mean values of DTEC, panel c reports the time profile of
the RGEC parameter and Figure 9d reports the map of the stan-
dard deviation of DTEC. The gaps visible in Figure 9c are due
to a lack of data in UPC dataset (from 8 to 13 October 2017, 21
October 2017 and 28 January 2018). It is worth noticing that the
distribution (Fig. 9a) is well centered on zero (l = �0.1 TECU),
i.e. the forecasting is accurate and that r and RMSE are 3.5
TECU, providing the precision of the forecasting. The time pro-
file of RGEC (Fig. 9c) shows how this quantity is quite constant
all over the year, giving a first proof of the ability of the model
to keep constant its performance under both disturbed and quiet
conditions. As expected (Figs. 9b and 9d), the mean and stan-
dard deviation of DTEC maximizes in correspondence with
the expected position of the southern and northern crests of
the Equatorial Ionospheric Anomaly (EIA), being a region very

Fig. 8. Difference between R12eff and actual R12 from June 2017 to May 2018 (top panel). The Kp index for the same period is reported in the
bottom panel.
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sensitive to the effect of the geomagnetic storms (see e.g., Nava
et al., 2016; Spogli et al., 2016; Olwendo et al., 2017; Piersanti
et al., 2017).

3.2 Results on case events

To better highlight the behavior of the TEC forecasting under
different level of geomagnetic disturbance, five case events of
recent geomagnetic storms (intensity from G1 to G4, according
to the NOAA scale) plus one day under quiet conditions have
been identified. Table 3 summarizes the dates of the selected
events (column 1), the maximum Kp (column 2) and the
minimumDst in nT (column 3) reached in the period and a spec-
ification of the class of the storm and the solar event generating
the disturbance (CH = Coronal Hole; CME = Coronal Mass
Ejection; column 4). We consider as “storm event” the days
between the Sudden Storm Commencement (SSC) or sudden
variation of Dst due to arrival of the disturbance at the
magnetopause until the recovery to the pre-disturbance
conditions.

As an example of the validation during case events,
Figure 10 reports the same quantities of Figure 9 considering
the G4 storm occurred between 07 and 11 September 2017
(Linty et al., 2018; Qian et al., 2019). The only difference
between the quantities reported in Figures 9 and 10 is that
Figure 10c reports the RGEC in red and the Dst in blue. This
is to better relate the performance of the model during the dif-
ferent phases of the storm. As in the case of the accumulated
statistics validation, the forecasting results to be accurate show-
ing a mean DTEC of 0.4 TECU and a standard deviation and

RMSE equal to 3.8 TECU. It is worth noticing that the RGEC
time profile, showing the time dependence of the global fore-
casting performance, does not significantly vary according to
the different phases of the storm development. In fact, RGEC
can be reasonably assumed as constant all over the storm and
no clear indications of changes in the model performance are
noticeable. This feature has also been found for all the consid-
ered storm cases (not shown). We remind the reader that the
September 2017 storm is the worst case considered for the
model validation according to the class of the storms
(G4 storm). This is the most striking feature of the proposed
model as it proves to be resilient in providing reliable forecast-
ing one day in advance under harsh geomagnetic conditions.

Table 4 summarizes the performance of the forecast-
ing model for the selected case events. In the specific, the

Fig. 9. Model performance against Final Global TEC product provided by the Universitat Politècnica de Catalunya (UPC) for the period June
2017 to May 2018: (a) distribution of TEC difference (forecast-actual), statistical parameters are reported together with a red line indicating the
mean; (b) map of the mean values of the TEC difference (forecast-actual); (c) time profile of the RGEC parameter, the black dashed line
indicates the zero reference value; (d) map of the standard deviation of the TEC difference (forecast-actual).

Table 3. Selected dates for the validation. Maximum Kp and
minimum Dst of the period is also reported together with a note on
the event features (CH = Coronal Hole; CME = Coronal Mass
Ejection).

Date Max Kp Min Dst (nT) Note

08 Feb 2018 1+ �1 G0 – quiet time
13–14 Jan 2018 5� �14 G1 storm – CH
07–12 Nov 2017 6+ �72 G2 storm – CH
26 Sep–03 Oct 2017 7� �75 G3 storm – CH
27–31 May 2017 7 �125 G3 storm – CME
07–11 Sep 2017 8+ �142 G4 storm – CME
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mean (l), standard deviation (r) and root mean square error
(RMSE) of DTEC are reported. From the table, it can be argued
that forecasted TEC agrees with the TEC final product provided
by UPC, independently on the storm class. The mean differ-
ence is in the range (�0.9, 0.4) TECu, the standard deviation
and the RMSE are below 5.1 TECu, indicating the precision
and accuracy of the proposed forecasting technique,
respectively.

To assess the actual contribution of the model, the validation
has been also performed against the “frozen ionosphere”
assumption in the case of the G4 storm occurred in September
2017. Such validation procedure is also called “recurrence test”.
In this assumption, the forecasted TEC is assumed to be equal to
the actual TEC measured one day before at the same hour. In
other words, it addresses this question: “what are precision and
accuracy of the forecasting if the vTEC tomorrow is predicted
to be exactly the same of today?”. To give a real contribution,

a model, should provide more precise and accurate predictions
with respect to the “frozen ionosphere” assumption. Similarly
to Figure 10, Figure 11 reports the results of the validation for
the period 7–11 September 2017 under “frozen ionosphere”
assumption. According to the histograms in Figures 10a and
11a, the “frozen ionosphere” assumption results into both a
slightly larger mean (0.4 TECu w.r.t. 0.5 TECu), standard devia-
tion (3.8 TECu w.r.t. 3.9 TECu) and RMSE (3.8 TECu w.r.t. 3.9
TECu) than the corresponding metrics evaluated for the model
prediction. According to the maps in Figures 10b and 11b, the
forecasting model is found to provide a larger overestimation
at the crests of the EIA and a larger underestimation at the
Equatorial Ionospheric Trough (EIT) with respect to the “frozen
ionosphere” conditions. However, the standard deviation is
significantly smaller for the model than for the “frozen iono-
sphere”. Moreover, the RGEC time profile of the latter
(Fig. 11c) shows a clear dependence on the Dst index, i.e. the

Fig. 10. Example of model performance against Final Global TEC product provided by the Universitat Politècnica de Catalunya (UPC) for the
period 7–11 September 2017: (a) distribution of TEC difference (forecast-actual), statistical parameters are reported together with a red line
indicating the mean; (b) map of the mean values of the TEC difference (forecast-actual); (c) time profile of the RGEC parameter (right y axis)
and Dst (left y axis), the black dashed line indicates the zero reference value; (d) map of the standard deviation of the TEC difference (forecast-
actual).

Table 4. Summary of the forecasting performance against the Final Global TEC maps from Universitat Politècnica de Catalunya (UPC).

Date Max Kp Min Dst (nT) Note Metrics (TECu)

l r RMSE

08 Feb 2018 1+ �1 G0 – quiet time �0.6 4.2 4.2
13–14 Jan 2018 5� �14 G1 storm – CH �0.6 3.3 3.4
07–12 Nov 2017 6+ �72 G2 storm – CH 0.04 5.1 5.1
26 Sep–03 Oct 2017 7� �75 G3 storm – CH �0.9 4.0 4.1
27–31 May 2017 7 �125 G3 storm – CME 0.3 3.6 3.6
07–11 Sep 2017 8+ �142 G4 storm – CME 0.4 3.8 3.8
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RGEC increases in both absolute mean value and standard
deviation during the storm. This behavior is the direct conse-
quence of the different ionization during positive and negative
phases of an ionospheric storm that the frozen ionosphere fails
to follow, while the forecasting model is able to predict. To better
specify, at the SSC, RGEC behavior is similar for the model and
frozen ionosphere. During the main phase, the modelled
RGECmodel (<2 TECu) is slightly smaller than the frozen
ionosphere RGECfrozen (<3 TECu). Model outperform the
frozen ionosphere assumption especially during substorm
(mid of 08 September) and recovery phase of the storm. In fact,
during the recovery phase |RGECmodel| < 2 TECu and
r (RGECmodel) < 5 TECu, while |RGECfrozen| < 6 TECu and
r (RGECfrozen) < 6 TECu.

To further remark the model performance against frozen
ionosphere assumption, Figure 12 shows the correlation
between forecasted and actual TEC for the model (green) and
for the frozen ionosphere assumption (blue). The Pearson’s
coefficient R is found to be 0.92 and 0.91, respectively. Such
difference reflects the larger spread of the scatter plot for the
frozen ionosphere with respect to the model.

3.3 Results against JASON-3 measurements

To validate the model against independent measurements,
an external source of global vTEC observations has been used.
To the scope, vTEC measured by the dual-frequency altimeter
instrument on board the JASON-3 spacecraft is considered.
JASON-3 is the latest of a series of satellites missions – JASON
and JASON-2 its predecessors – devoted to track the sea-level
rise and fall, orbiting at a mean height of about 1330 km. The
vTEC measurements are derived by altimetry data over the
oceans between latitudes of 66� N and 66� S (this restriction

is due to the inclination of the JASON mission orbit), where
no permanent GNSS receivers can be placed. Among other sen-
sors, it has a dual transmitter-receiver in C-band (5.5 GHz) and
Ku-band (13.6 GHz), that provide TEC with accuracies, includ-
ing systematic biases, of about 2–3 TECu (Ho et al., 1995).
In this way, JASON-3 provides independent reference data that

Fig. 11. Same as Figure 9 considering the “frozen ionosphere” assumption.

Fig. 12. Correlation between forecasted and actual TEC for the
model (green) and for the frozen ionosphere assumption (blue). Solid
lines indicate the corresponding linear fit, whose R is reported on the
top left.
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can be used to evaluate the performance of GNSS-derived
vTEC maps over the oceans except in the high latitude regions.

In this respect, two considerations have to be accounted for.
First, JASON vTEC measurements are very accurate but they
are affected by a certain offset with respect to the IGS products
(Azpilicueta & Brunini, 2009). Second, this is a pessimistic
scenario because JASON direct measurements are compared
with values at the same location that had to be previously inter-
polated because of insufficient collection of real data over the
oceans (lack of permanent GNSS stations). But in any case,
testing against the vTEC records provided by the JASON-3
altimeter instrument should be performed in order to verify that
the predicted products are consistent with an external vTEC
data source, even in these worst scenarios.

Similarly to Hernández-Pajares et al. (2017), a sliding win-
dow has been used to reduce the noise of the altimeter measure-
ments. An example of the final results of such smoothing
process is shown in Figure 13 where JASON-3 measurements
are smoothed by using a sliding window of 15 s (red). For a
direct comparison with JASON-3 measurements, forecasted
maps are linearly interpolated to retrieve vTEC values corre-
sponding to the JASON-3 tracks point.

3.3.1 Results on a quiet day: 8 February 2018

This section is intended to provide the baseline for the
results to be expected of the inter-comparison of the model
against JASON-3 when no particular geomagnetic activity is
ongoing. For this purposes, 8 February 2018 is selected as a
quiet day (Table 3). In addition, results are also shown for the
consolidated UPC GIMs UQRG (Hernández-Pajares et al.,
2016) released as rapid UPC GIM with a latency of one day.
This particular UPC GIM presents the best performance when
compared against co-located altimetry data, with RMSE values
of 2 TECu (Hernández-Pajares et al., 2016).

A summary of the performance against JASON-3 under
quiet conditions is reported in Table 5. The metrics show a very
small bias for the model whenever compared against JASON-3
vTEC. Sigma and RMSE are within very reasonable limits
although they almost double those for UQRG GIMs. Let us

remember that the UQRG are the best performing GIM
according to Hernández-Pajares et al. (2016) and Roma-Dollase
et al. (2018).

When considering the results sorted by UT considering time
spans of 2 h (Fig. 14), one can notice that the highest sigma and
RMSE values for the model are mostly found between [0, 4]
and [20, 24] h. Something similar can also be found for UQRG
GIMs but the order of magnitude of such parameters is lower
(about 0.5 times lower). In any case, the sigma and RMSE val-
ues for the model are quite compatible with those from UQRG
for the central hours of the day. Regarding the mean value of the
vTEC difference, UQRG presents a consistent negative value
with respect JASON-3 whereas the model shows smaller values
mostly positive.

When considering the inter-comparisons under a latitudinal
distribution (bands of 20 degrees from Equator up and down-
wards, Fig. 15), it is possible to notice that the performance
in terms of sigma and RMSE worsens between [�20, 20]
degrees, while compatible results against UQRG GIMs are
obtained from [20, 60] to [�60, �20]. Regarding the mean, it
is bouncing from positive to negative for the model but with
values significantly smaller than those for UQRG GIMs, which
are negative.

Considering the information displayed in the previous
figures, it can be confirmed that the UQRG product is a very
stable product comparing to JASON-3, in terms of RMSE
and standard deviation, therefore becoming a reliable vTEC
source as indicated by literature search. The very same can be
said about the model: considering that it is a forecast product,
it keeps the error at low level. This conclusion will be confirmed
in the next section.

Fig. 13. Example of direct comparison between smoothed TEC measurements from JASON-3 altimeter and forecasted TEC maps for 14
January 2018. (a) GPS time from 5 to 7 h. (b) GPS time from 9 to 11 h.

Table 5. Summary of the performance against JASON-3 for 8th
February 2018. Upper row: forecasting model. Lower row: UQRG
product.

l r RMSE

Model 0.97 4.21 4.32
UQRG �2.79 2.12 3.50
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3.3.2 General results on the selected dates
for the validation

The assessment corresponding to the selected dates for
the validation included in Table 3 is presented in this section.

As in previous subsection, the reference (i.e. benchmark) is
provided by JASON-3 measurements.

We notice again the reader that the comparison with
JASON-3 vTEC measurement is slightly affected by the
missing topside-plasmaspheric component in the altimeter

Fig. 15. Latitudinal dependence of the performance against JASON-3 for 08 February 2018 of the Long-Term forecasting model (red) and of
the UQRG product (black). Top plot: mean difference with JASON-3 vTEC measurements and the error bar is the 1-sigma spread. Bottom plot:
RMSE of the difference.

Fig. 14. Time dependence of the performance against JASON-3 for 08 February 2018 of the Long-Term forecasting model (red) and of the
UQRG product (black). Top plot: mean difference with JASON-3 vTEC measurements and the error bar is the 1-sigma spread. Bottom plot:
RMSE of the difference.
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measurements with respect to the GNSS vTEC. However, this
bias is of little entity (few TECu). Nevertheless, the current
results are compatible with the study performed in Hernández-
Pajares et al. (2016) where seven reliable sources of vTEC maps
were compared against altimeter measurements. In that case,
more than 190 million of inter-comparisons were made during
15 years, showing that most part of the biases were from 1
up to few TECu (in absolute value). As the results show, the
model predictions are compatible with such results in
Hernández-Pajares et al. (2016). Considering the RMSE and
sigma TEC, the latitudinal distribution shows that the largest
values (i.e. the worst results) are between [�20�, 20�]
(Fig. 16) as expected due to the quite unpredictable behavior
of the crests of the EIA during disturbed period. The hourly dis-
tribution of the TEC differences depicted in Figure 17 shows a
quite independent behavior of the mean TEC, sigma TEC and
RMSE with respect to the hour of the day even if a slightly
positive bias (between 1 and 2 TECu) is highlighted. These
results reported in Figures 14 and 15 are totally compatible with
Hernández-Pajares et al. (2016) where the sigma was typically
ranging from 3 to 10 TECu. It is remarkable for a forecast pro-
duct to be able to meet such results, which were obtained
against post processed GIMs. In addition, Ren et al. (2019)
shows a performance evaluation of the real-time GIMs provided
by different centers by comparing GIM vTEC against JASON 3
vTEC. The authors report bias in the range [3.88, 5.04] TECu,
standard deviation in the range [2.56, 6.02] TECu and RMS in
the range [4.95, 5.71] TECu. The positive bias confirms that the
topside-plasmaspheric contribution is of the order of few TECu
while the standard deviation and RMS are in accordance with
our results confirming that our forecasted TEC maps fully agree
with the TEC maps provided by IGS.

4 Discussion and conclusions

The model here presented is based on the use of a nonlinear
autoregressive neural network with external input and it is able

to predict TEC at a global scale 24 h in advance. It leverages on
a two-steps process, in which the first one is based on the vTEC
prediction over 18 selected points over the globe (Fig. 2 and
Table 2). This prediction in based on the NARX, trained with
data covering 1 solar cycle and uses as external input the Kp
index. Since the model has been conceived to operate in real
time, Kp has been selected as it is, currently, the only geomag-
netic index available in nowcasting and forecasting (up to 3
days in advance). The second step is based on the propagation
of the forecasting from local to global level, leveraging on the
joint use of the NeQuick2, properly fed by an effective R12,
whose determination is obtained through a minimization
process, being part of this second step. The model has been
thoroughly validated to provide measures of the precision and
accuracy of the prediction. The main achievements are the
following:

� The validation with 1-year accumulated statistics against
UPC GIM final product shows that a mean difference of
�0.1 TECu and a RMSE of 3.5 TECu, providing the
measure of the accuracy and precision of the model,
respectively.

� The validation during five selected geomagnetic storm
events (from G1 to G4) against UPC GIM final product
confirms the capability of the model to describe the
TEC variations following the different phases of the
storms. The mean difference is in the range [�0.9, 0.4]
TECu, the standard deviation and the RMSE are below
5.1 TECu. The performance of the model seems to be
quite independent on the storm intensity.

� The worsening of the model performance is found in
correspondence with the expected position of the crests
of the EIA and of EIT.

� The validation against independent vTEC measurements
from JASON-3 altimeter confirms the quality of the pre-
diction even over the oceans, i.e. regions over which
ground-based measurements are not available. In fact,
the results, showing a sigma in the range from 1 to 8

Fig. 16. Latitudinal dependence of bias (red square, top panel), standard deviation (error bars, top panel) and RMSE (bottom panel) of vTEC
from JASON-3 vs. vTEC from LTF.
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TECu are compatible with the performance of the UPC
rapid GIM, i.e. a post-processed product (Hernández-
Pajares et al., 2016) and real time GIM as reported in
Ren et al. (2019).

Despite the model capability of reproducing reliable iono-
spheric conditions even during storm conditions, the assump-
tions made in designing the algorithm reflect in some
limitations:

� Assuming that NeQuick2 model is capable to describe the
overall distribution of TEC, even when actual conditions
are far from a climatological behavior, allows using a sin-
gle parameter (R12eff) to globally drive NeQuick2 model.
This is obviously a simplification that may results into a
lack of capability to reproduce the local ionospheric fea-
tures, e.g. the longitudinal dependence of the effects of
a storm on the crests of the EIA.

� The use of 1 solar cycle of data is assumed to be enough
to describe all the possible geomagnetic/ionospheric
conditions. Actually, as reported in Figure 3, the data
available during Severe/Extreme (G4/G5) geomagnetic
conditions are limited (<1%). In addition, the implicit data
leakage arising when time series datasets are randomly
divided for training, testing and validation of the NARX,
may limit the performance of the single point TEC fore-
casting. This can be thought a serious limitation, but the
validation provided in this paper shows that the model
is capable to reproduce the overall ionospheric conditions
even under geomagnetic storm.

� The 18 grid points in step 1 has been selected to cover dif-
ferent geographic sectors and local times. Nevertheless,
the model could benefit for a larger number of points
and/or different reference frame in which the points are
selected (e.g. geomagnetic coordinates).

� The use of Kp as the external input to NARX is not the
best choice at least for low and high/polar latitudes. The
use of alternative indices/parameters will be tested as soon
as they will be available as forecasted values in real-time.

Making use of the forecasted Kp provided by NOAA, the
model is currently implemented as a real-time service in the
Ionosphere Prediction Service (IPS) prototype (Albanese
et al., 2017; Rodriguez et al., 2018; Veettil et al., 2019), avail-
able at http://ips.gsc-europa.eu. In addition, products of the real-
time operational model implemented at Istituto Nazionale di
Geofisica e Vulcanologia are provided to the Pan-European
Consortium for Aviation Space Weather User Services
(PECASUS, http://pecasus.eu/), as one of the key products in
the GNSS expert group.
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