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Abstract—Motor systems are very important in modern society. to a condition where emergency action is required. Thus, it
They convert almost 60% of the electricity produced in the U.S. js important to include bearing vibration diagnosis into the
into other forms of energy to provide power to other equipment. gcheme of motor system fault diagnosis [1]-[3].

In the performance of all motor systems, bearings play an impor- Signals from vibration sensors are usually measured and

tant role. Many problems arising in motor operations are linked to d with ref s i der to int t
bearing faults. In many cases, the accuracy of the instruments and compared wiih relérénceé measurements In order to inierpre

devices used to monitor and control the motor system is highly de- bearing conditions. The methods used to analyze these signals
pendent on the dynamic performance of the motor bearings. Thus, include probabilistic analysis [4], [5], frequency analysis
fault diagnosis of a motor system is inseparably related to the diag- [4]-[13], time-domain analysis [4], [5], and finite-element
nosis of the bearing as_sembly. In this paper, be_aring vibra_tion fre_- analysis [14]. Among these methods, the frequency analysis
quency features are discussed for motor bearing fault diagnosis. approach is the most popular one. This popularity is most
This paper then presents an approach for. motor rolling beanng bablv due to th ilability of Fourier t f techni
fault diagnosis using neural networks and time/frequency-domain probably due 1o the availability of Fourier transtorm technique,
bearing vibration analysis. Vibration simulation is used to assistin @S characteristics of vibration signals are more easily noticed
the design of various motor rolling bearing fault diagnosis strate- in the frequency domain rather than in the time domain. The
gies. Both simulation and real-world testing results obtained indi- frequency analysis technique involves frequency analysis of
cate that neural networks can be effective agents in the diagnosis the vibration signal and further processing of the resulting
?efrv?gt%ltjii ?gg%;ﬁ?g@%ﬁ”'t\?ig;;%‘é%hs}hﬁar{‘uerg:”remem andin- gnactrum to obtain clearly defined diagnosis information [15],
P g 9 ' [16]. Among the methods that use frequency analysis are the
Index Terms—Bearing vibration, fault diagnosis, frequency do- bearing defect frequencies analysis method [15], [16], high-fre-
main, neural network, time domain. quency shock pulse and friction forces method [5], [15], [16],
and enveloped spectrum method [15], [16]. In the category
of time-domain analysis technique there are the time-series
] ) averaging method [16], the signal enveloping method [16], the
D UE TO THE close relationship between motor system dgyrtosis method [16], and the spike energy method [16].
velopment and bearing assembly performance, it is dif- | the motor bearing fault diagnosis process, as shown in
ficult to imagine the progress of modern rotating machinefyig. 1, the sensors collect time domain vibration signals. The
without consideration of the wide application of bearings. Inagast Fourier transform (FFT) technique is then employed to
dition, the faults_arising in motors are often Iinkgd with bearinggnyert the time-domain signals into frequency-domain signals,
faults. In many instances, the accuracy of the instruments aggich can provide salient features for the diagnosis of the
devices used to monitor and control the motor system is higilgaring condition. The designed fault diagnosis system can use
dependent on the dynamic performance of bearings. both time-domain and frequency-domain signals to perform
Bearing vibration can generate noise and degrade the quajftytor bearing fault diagnosis.
of a product line which is driven by a motor system. Heavy |n this paper, neural networks are applied to motor bearing
bearing vibration can even cause the entire motor systemgi@t diagnosis. The bearing vibration frequency features and
function incorrectly, resulting in downtime for the system angime-domain characteristics are applied to a neural network
economic loss to the customer. Proper monitoring of bearigg puild an automatic motor bearing fault diagnosis machine.
vibration levels in a motor system is highly cost effective ifyeural networks have a proven ability in the area of nonlinear
minimizing maintenance downtime—both by providing adpattern classification. After being trained, they contain expert
vance warning and lead time to prepare appropriate correctigwledge and can correctly identify the different causes of
actions, and by ensuring that the system does not deteriongéring vibration. The capacity of artificial neural networks
to mimic and automate human expertise is what makes them
Manuscript received January 15, 1999; revised March 24, ZOOO.Abstractpiﬂea”y suited for handling nonlinear systems. Neural networks
lished on the Internet July 1, 2000. This work was supported by the Natiorafe able to learn expert knowledge by being trained using a
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NC 27695-7911 USA (e-mail: bli@eos.ncsu.edu; chow@eos.ncsu.ed@Ctor’s diagnosis of the motor’s condition will not be accurate.
ytipsuw@unity.ncsu.edu). An error quantity is measured and used to adjust the neural net-
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Fig. 1. General flow of signals in a typical motor bearing fault detection process.

parameters have been saved, the neural network contains all the
necessary knowledge to perform the fault detection. This paper
presents the design of the neural network diagnosis algorithm.
Both simulation and actual experimental results indicate that a
neural network bearing vibration diagnosis algorithm can give
accurate information about the condition of the motor bearing
based on appropriately monitored vibration data.

Il. MOTORBEARING VIBRATION FREQUENCY FEATURES

Since most bearing vibrations are periodical movements, it
is easy to extract vibration features from the frequency domain
using the powerful and popular FFT technique. Many publf9- 2. Basic frequencies in a bearing.
cations have studied the frequency features of rolling bearing
vibration [4]-[7], [20]-[22]. Generally, rolling bearings con-B. Fundamental Cage Frequenc¥)
sist of two concentric rings, called the inner raceway and OUtelThe fundamental cage frequendy- is related to the mo-

raceway, with a set of rolling elements running in their track§yp, of the cage. It can be derived from the linear velocity of

Standard shapes of rolling elements include the ball, cyIindri(‘aellpoint on the cag,, which is the mean of the linear veloc-
roller, tapered roller, needle roller, and symmetrical and unsymeq of the inner raé,eway and the outer raceway,, i.e.

metrical barrel roller [7]. Typically, the rolling elements in &, _ (Vi + V,)/2. WhenV, is divided by the radius of the
bearing are guided in a cage that ensures uniform spacing %Qgerc — (D./2), we can get the fundamental cage frequency

prevents mutual contact. , Fe. Thus,Fe- can be written as [5]-[7], [13], [23]:

There are five basic motions that are used to describe the dy-
namics of bearing elements, with each movement having a cor- F Ve _Vi+ Vg (1)
responding frequency [4]-[8], [12], [21]. These five frequencies “ "y~ D.

are denoted as the shaft rotational frequernicy)( the funda- . o . :
mental cage frequencyfk:), the ball pass inner raceway fre- Sometimes, it is more convenient to represent the linear
quency g p;), the ball pas’s outer raceway frequengyfo) velocities V; and V,, as their respective rotational frequen-
and the ball rotational frequency'g). These frequencies are®'®S F; and F, multiplied by their corresponding radii
illustrated in Fig. 2. r; = 7. — (Dycos8/2) andr, = r. + (D, cos 8/2). Thus,Fc

Fig. 3 describes several important variables that will be us&g" be further expressed as

in later sectiond’;, V., andV, represent the linear velocities of Vi+V, Er+Fr,

the inner raceway, ball center, and outer raceway, respectively. Fe = D, = D,

Dy is the ball diameterD.. is the bearing cage diameter mea- 1 D, — D, cos 6 D, + D, cos 6

sured from one ball center to the opposite ball center,éaisd =D <E - 5 + F,— 5 ) - (2
the contact angle of the bearing. c

A. Shaft Rotational Frequency§) C. Ball Pass Inner Raceway Frequendys(-r)

As bearings are often used to form a bearing—rotor system,The ball pass inner raceway frequenky »; indicates the
the speed of the rotor (or shaffls is very important to the rate at which the balls pass a point on the track of the inner
movements of bearings. All other frequencies are a function i@ceway. The value of gy is equal to the number of bearing
this frequency. balls Ng multiplied by the difference between the fundamental
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Fig. 3. Structure of a ball bearing and the definition of each variable.

cage frequency < and the inner raceway frequengy[5]-[7],

[13], [23]

Fppr =Ng|Fc — Fjj

\ II

or ball pass outer raceway frequenicy o . Both situations will
give the same result [5]-[7], [13], [23]

T
g = ‘(-Fz - Fc)ﬁ

To
= ‘(FO —Fe) .
Tb

_ Firi + Foro ‘ 2 o2
=Np D. r _ D, (F— F,) <1_Dbcos 9)‘ 5)
2D, D2
F<<7’ _DbC089>+F <7‘ +DbC059> _ _
e 2 o\’ wherer, is the radius of the ball.
=Ng D. — I In a motor system, the outer raceway can be assumed
stationary, since it is generally locked in place by an external
Ng D, cosf casing, while the inner raceway is rotating at the speed of the
=—|(Fi - F,) <1 + T)‘ . (3) shaft,i.e..F, = 0 andF; = Fs. Therefore, in a motor system,
‘ (2)—(5) can be rewritten as
1 Dy cosf
D. Ball Pass Outer Raceway Frequendys(po) fe = §F5 <1 - . ) (6)
Similar to the ball pass inner raceway frequedGyp;, the Np Dy cost
ball pass outer raceway frequenEy po is defined as the rate Fpro = TFS <1 T D, ) ™
at which the balls pass a point on the track of the outer raceway. Np Dy cos 6
The value off'5 po is a function of the number of bearing balls Fgpr= TFS <1 +—5 ) 8
Np and the difference between the outer raceway frequépcy D D2 5082 f
and the fundamental cage frequergy [5]—[7], [13], [23] Fg= 2ch Fs <1 — bT) ) (9)

Fppo =N|F¢ — F,|
E77 + FOTO

=Np D

— Fo

D 0
7 <7’c e ) +F, <rc+
=Np

D,

Np

2

(F— F) <1_ Dbcosﬁ)"

C

E. Ball Rotational FrequencyHg)

Frequency-domain studies show that, when defects exist in a
bearing, the defects will generate some of the above frequencies
in the vibration signals. Many publications have discussed the
use of these five frequencies to identify defects in a bearing as-
sembly [5]-[7], [13], [23].

For defects on the raceway of a rolling bearing, each time
a roller hits the defective raceway, the corresponding ball pass
inner raceway frequenck’zpy or ball pass outer raceway fre-
quencyl's po Will be excited. If the defective area is large, har-
monics of Fg pr Or Figpo Will also be present as an indication
of the severity of the defects [5]-[7], [13], [23]. For defects ex-
isting on a bearing roller, usually, two times the ball rotational
frequency2£z will be generated. This is because the roller hits

The ball rotational frequency¥'s is the rate of rotation of a both the inner and outer raceways each time it spins on its own
ball about its own axis in a bearing. This frequency can be calxis. In most cases, this frequency will be modulated with other

culated from either the ball pass inner raceway frequéngyr

existing frequencies, such d&p; and Fgpo, resulting in a
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TABLE |
BEARING VIBRATION FEATURES

Location of bearing defects| Frequency in Spectrum Observations

Good condition can have Fy, F,,,

F,

and its harmonics, the amplitude
S’FBPO’FBPI Famr s P

Good condition . )
is small and even, no salient

frequency stands out.

Looseness condition can have Fs»

F and its harmonics.
Bearing looseness

For severe case these frequencies can
Rolling elements 2F,, Fapo» Fapr be modulated by 2F,, F,,and the

natural frequency can be also excited.

Increased severity of the defect results

in higher order harmonics being

Bearing raceway P F produced, the frequency for the
BPO > 4" BPI

raceway with defect will stand out, if

the clearance is small, 2F, can also

be presented.

more complicated spectrum. Occasionally, if the defective arBaurier transform was used and fine tuned to reconstruct
on the roller is very large, the system natural frequency willifferent bearing vibration time-domain signals based on those
also be excited and modulated with two times the ball rotationaéquency features discussed in the previous section. Measure-
frequency [5]-[7], [13], [23]. Table | summarizes the possiblment noise was also introduced in the bearing vibration model.
motor bearing vibration features in the frequency domain. The results have been verified by comparison to real-world
vibration signals [6]. Fig. 4 shows a bearing vibration signal
generated by simulating bearing looseness and defects on the
inner raceway and rolling element using MotorSim.

Table | shows that the vibration generated by defects in the

In the design and study of motor bearing fault diagnostsearing will show one, or some combination of several, of the
schemes, it is important to determine if the designed fadite basic frequencies. Many publications [5]-[7], [13], [23]
diagnosis algorithm is able to correctly classify differentave discussed the usage of these five basic frequencies to iden-
bearing fault conditions. Using a well-controlled fault dat&fy defects in a bearing. Usually, an expert will examine the
environment, such as one obtained from a computer simulatitime-domain signal and the frequency spectra of bearing vibra-
to verify the fault diagnosis algorithm’s performance capabilitjon to determine if there are any defects within the bearing.
is essential. In this section, the authors useRhst Prototype However, a problem with using experts for vibration analysis
Motor Simulationsoftware, MotorSim, [3], [24] to simulate is that this experience, which is gained over a period of many
and design the bearing vibration fault diagnosis algorithm. years, is a very expensive and an inefficient use of resources.

MotorSim is a MATLAB-SIMULINK [25] based program Therefore, if a neural network can be trained to emulate the
that provides a framework for in-depth simulation of motoknowledge of vibration experts, motor bearing fault diagnosis
system dynamics. Although motor system dynamics simulatiean be achieved more efficiently and at a reduced cost. The gen-
software cannot completely model all real-world situationgral structure of this neural-network-based motor bearing fault
a computer simulation can assist in several aspects of motilggnosis system is shown in Fig. 5.
system operation and control. MotorSim can be used to generat®&otorSim is used to generate vibration signals with varying
appropriate motor data, with different operating and loadirggverity for each of three different bearing defects. The geo-
conditions, in a cost-effective and time-efficient manner. metrical structure of the bearing I3, = 0.5 in, D, = 2.559

A significant amount of motor fault diagnosis research has, and N, = 9. The three bearing defects are the vibrations
focused on bearing vibration to detect motor bearing condiaused by bearing looseness, by a circular defect located on
tions. MotorSim can generate time-domain vibration signalee inner raceway with a variable size from the initial diam-
for different conditions of bearing failure by incorporating ater of 0.03—0.225 in at a severe case, and by a defect which
bearing wear submodule into the motor base module. Inverssides on the rolling element increasing from 0.025 to 0.155in.

I1l. BEARING VIBRATION FAULT DIAGNOSIS ALGORITHM
USING NEURAL NETWORK
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Fig. 4. Bearing vibration signal generated by MotorSIM.
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Fig. 5. Neural network motor bearing fault detection system.

Each signal consists of 2048 sampling points with a samplitige defect present. Due to the energy leakage, when generating
time of 0.0005 seconds. An FFT is performed to extract the frihe signatures, we consider a frequency band of 5 Hz for each
guency characteristics of these vibration signals. This procedbasic frequency. That is

is shown in
frequency band= [f — 2.5, f +2.5] (14)
N—-1
D(k)=>" d(n)e™>* /N k=0,1,---,N-1  wheref is the basic frequency.
=0 For the different characteristic frequencies, the frequency am-

(10) plitude can be represented as
where N = 2048 andd(n), 0 < n < N — 1 denotes the
time-domain data generated by MotorSim. The power spectrum f+2.5 Fy 1
of the vibration signal is obtained as follows: A(F) = i ;f; 5 P GA—A) . Af= NT, (15)
_ 2
P(0) =1D(0)] ’2 ) (11) whereT’; is the sampling time, and is the total sampling points
P(k) = [|[D(F)] + |D(N = B)IP] used.
. N Therefore, the amplitude of spectrum for frequenciés
k=1,2,---, ——1 (12)
2 Fgpo, andFgpr are
N N\
P <5> = ‘D <5> (13) wry = A(Fs) (16)
TFppo =A(FBrPO) 17)
Next, we construct basic frequency signatures to represent Trye =A(fBPI)- (18)

different bearing vibrations. These signatures are created from
the power spectrum of the vibration signal and consist of the cor-The time-domain information considered is the maximum
responding basic frequencies, with varying amplitudes basedamd mean value of the amplitude of vibration waveform, and
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the Kurtosis factor of the vibration waveform. They are defined TABLE I
PERFORMANCE OF THENEURAL NETWORK MOTORBEARING FAULT DIAGNOSIS

as ALGORITHM ON SIMULATED MOTOR ROLLING BEARING FAULT DATA
N-1
Amax = mnax (d(n)) (19) Bearing Number of | Diagnosis Results
1 VL Fault Data Sets Correct detect
A =_— 2
mem TN E:O d(n) (20) Good 72 68
n=
1 N-1 Looseness Bad 72 71
4
N > (d(n)) Total 144 139/96.5%
=0
Kp=—7p—— (21) Good 72 58
rms
Inner Race Bad 72 69
where
Total 144 127/88.2%
N-—1
Good 72 71
Dy = 1/N d2(n).
e 1/ );::o (n) Ball Bad 72 70
] o Total 144 141/97.9%
The completed neural network will have six input measure-
ments
after finishing the data collection and the result is saved on the
X = [AmaX7 Ameanv Kf7 TFsy LFppo» -TFRPT] . (22) 9

hard disk. The overall data acquisition system setup is shown in

The neural network has three outputs, each one serving adlh 7-

indicator for one of the three fault conditions (bearing looseness, | €€ kinds of bearing fault vibrations are generated using the

defects on the inner raceway, and defects on the rolling elemeigchinery Fault SimulatorThey are: 1) defect on bearing ball;
producing an output of 1 for good anel for bad. 2) defect on inner raceway; and 3) defect on outer raceway. In

Different neural network configurations have been evaluat@ddition, the normal bearing vibration is also measured in order
to determine the possible structure of the motor rolling bearifig compare with the fault cases. The geometn::z_;ll structure of
fault diagnosis algorithm. The performance of the final motdP€ Pearing used in the experimentlls = 0.3125 in, D. =
bearing fault diagnosis machine, a three-layer feedforwatd19 in. andN, = 8. The faulted bearings are provided by the
neural network with ten hidden nodes, was tested using tm@nufacturer; the detailed information (size and geometry) for
data generated by MotorSim and is summarized in Table 11. {R€ defects are not known. y _
learning rate of 0.01 and momentum of 0.8 was selected for allT "€ vibration signals under normal condition, bearing ball de-
cases based on the experience of the authors. Table Il sh&fd and inner raceway and outer raceway defects are measured

that the neural network was able to accurately detect the thfdive shaft rotational frequencidss, which are 15, 57.5, 25,
faults. 40, and 32 Hz, respectively. At each shaft frequency, five mea-

surements are made for each working condition.

As in the real-world environment, the motor speed cannot
keep rotating at a constatfs precisely. This fluctuation is

In this section, actual motor rolling bearing vibration datgaused from external factors such as the performance of the
were collected to verify the feasibility of applying a neural netcontroller, noise, and disturbance in power system. The fluctua-
work to diagnose bearing fault. The vibration data was genejon in F5 also causes other bearing basic frequencies to deviate
ated with aMachinery Fault Simulatomanufactured by Spec- from the calculated value. Therefore, the frequency band range
traQuest, Richmond, VA, 1997. Tidachinery Fault Simulator in (14) needs to be adjusted. Thus, in each measurement, the
allows for the measurement of vibration data with the motor ogeviation of Fs is computed by
erating under a variety of fault conditions. The platform of the
Machinery Fault Simulatois depicted in Fig. 6. Doy = max(Fy) — min(F}). (23)

The Machinery Fault Simulatocan simulate different types
of motor faults. Bearing fault vibration is generated by replacing Generally, the deviation in each measurement under the same
the front bearing with a bearing of known fault condition probearing fault condition may not be identical. In order to de-
vided by the bearing manufacturer. The vibration signals arige the range of the deviations for all conditions, the maximum
measured through two vibration sensors located ofktla@dY”  value of deviation from all measurements in each fault condi-
axes. The motor speed or the shaft rotational frequéfacgan tion is considered. The maximum deviation at edGhunder
be collected from the encoder attached on the motor shaft. Tdifferent conditions is plotted in Fig. 8.
signals from the vibration sensors and encoder are transmitted he frequency band range has to be wide enough to cover the
to a National Instruments SCXI chassis [26] for signal condimaximum deviation in every condition. Therefore, the variable
tioning and then sampled at a rate of 20 000 samples/s via a Kage is defined by drawing thé-range line shown in Fig. 8
tional Instruments A/D PC card. Each data set collected contafmsm the maximum deviation of every fault condition&t =
16 384 samples. An FFT of the data set is followed immediatelyp Hz to the maximum deviation #s = 32 Hz because this

IV. REAL-TIME DATA VERIFICATION
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Fig. 6. Motor fault simulator drawingl{ encoder?2: three-phase induction motd; temperature sensot; shaft coupling5: variable-frequency motor drive;
6: current sensor7: x-axis vibration sensoi8: front bearing;9: rotational disk 1;10: y-axis vibration sensor}1: motor shaft;12: rotational disk 2;13: rear
bearing).

Vibration
Sensors

Pentium PC

National

Instruments

DAQ
Machinery
Fault
Simulator

Fig. 7. Real-time motor bearing vibration data acquisition system.

range represents the maximum proportion betwieand de- one bearing element defect as we did in the simulation data,
viation. This line is extended to cover othEk. The slope of vibration signals generated from faulty bearings at different
this line is used to define the frequency band range. Thus, (18ptor speeds are examined instead. To examine the effect of

becomes motor speed on the performance of diagnosis of the neural
network motor bearing fault scheme, two neural networks
f1R Fy are designed in this verification. The input for these neural
AFy="3 P GA—A) networks areX = [Amax, Ameans Kfs Trgs Trppor Tigpr)
Foe=f-R and X = [F57 AIHH.X7 Amearn Kf7 LFsy LFppos ‘/L'FBPI]
1 . . correspondingly. Thé’; used to computer,, Try, .., LFgp;
k=3 <a(f —15) + A (Daev); f 2 10) @4 isthe averagd’, from each measurement. The training of the

neural network with real-time data sets is performed by the

whereq is the slope of thé -range line. MATLAB Neural Networks Toolbox 3.0 [27]. A three-layer
The modified frequency band range from (24) provides faedforward neural network is trained by using the Leven-
more robust scheme to process the measured data descrilrd—Marquardt algorithm. The activation functions at the
by the equations in Section lll. As the real-time environmemidden layer and output layer in the network are a hyperbolic
cannot provide a vibration signal under different severity faangent function. Two parameters, the number of hidden
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Fig. 8. Frequency fluctuation in real-time measurement.

TABLE Il
PERFORMANCE OFREAL—TIME NEURAL NETWORK MOTOR BEARING FAULT DIAGNOSIS ALGORITHM
Correct detection

Hidden Learning rate With Normal Rolling Elements Inner raceway Quter raceway Average

Neuron speed input | Number | Accuracy | Number | Accuracy | Number | Accuracy | Number | Accuracy | Detection rate
70 0.001 Yes 40 100 38 95 33 82.5 36 90 91.875
15 0.001 Yes 39 97.5 39 97.5 36 90 37 92.5 94.375
20 0.001 Yes 39 97.5 39 97.5 37 92.5 36 90 94.375
25 0.001 Yes 40 100 39 97.5 34 85 39 97.5 95
30 0.001 Yes 40 100 37 92.5 33 82.5 38 95 92.5
35 0.001 Yes 40 100 40 100 33 82.5 38 95 94.375
10 0.005 Yes 39 97.5 38 95 36 90 37 92.5 93.75
15 0.005 Yes 40 100 40 100 36 90 37 92.5 95.625
20 0.005 Yes 40 100 40 100 34 85 36 90 93.75
25 0.005 Yes 40 100 40 100 35 87.5 39 g7.5 96.25
30 0.005 Yes 40 100 39 97.5 35 87.5 37 92.5 94.375
35 0.005 Yes 39 97.5 39 97.5 34 85 37 92.5 93.125
10 0.001 No 40 100 39 975 33 82.5 32 80 90
15 0.001 No 39 97.5 35 87.5 37 92.5 31 77.5 88.75
20 0.001 No 40 100 38 95 35 87.5 35 87.5 92.5
25 0.001 No 40 100 40 100 33 82.5 35 87.5 925
30 0.001 No 39 97.5 39 7.5 32 80 30 97.5 93.125
35 0.001 No 38 95 33 82.5 36 90 31 775 86.25
10 0.005 No 39 97.5 38 95 30 75 32 80 86.875
15 0.005 No 38 95 38 95 30 75 36 90 88.75
20 0.005 No 39 97.5 39 97.5 32 80 36 90 91.25
25 0.005 No 39 97.5 32 80 33 82.5 35 87.5 86.875
30 0.005 No 40 100 40 100 35 87.5 30 75 90.625
35 0.005 No 40 100 40 100 33 82.5 34 85 91.875

neurons and the learning rate, are varied to find the optimal V. CONCLUSION

design. The different numbers of hidden neurons applied in the_, . . . . .
verification are 10, 15, 20, 25, 30, and 35. The two learni Th's paper has_ discussed s_everal popular rolling bear_lng v
rates used are 0.001 and 0.005. All inputs are normalized torl%@t'on features in both the time and frequency domain and
in the range -1, 1] before being applied to train the networktN€ use of signal processing to provide features to be used for
To improve generalization and the avoid overtraining probleri®aring fault diagnosis. Neural networks have been used in this
the cross-validation method [28] is applied during the training?@P€r to perform motor bearing fault diagnosis based on the

Table 11l shows the performance of the real-time neural negxtracted information features. Computer-simulated data were
work motor bearing fault diagnosis scheme. There are totaffjst used to study and design the neural network motor bearing
40 real-time testing data sets to test the accuracy of the traif@dlt diagnosis algorithm. Actual bearing vibration data col-
neural network to diagnose different motor bearing faults. THected in real-time were then applied to perform initial testing
result demonstrates that with proper processing of the measuaéd validation of the approach. The results show that neural net-
data and possible training procedure, the neural network moveerks can be effectively used in the diagnosis of various motor
bearing fault diagnosis schema can diagnose bearing faults witkaring faults through appropriate measurement and interpreta-
desired accuracy. tion of motor bearing vibration signals.
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