
ABSTRACT

NEURAL NETWORK-BASED PID COMPENSATION FOR NONLINEAR

SYSTEMS: BALL-ON-PLATE EXAMPLE

A. Mohammadi, M.S.
Department of Mechanical Engineering

Northern Illinois University, 2018
Dr. Ji-Chul Ryu, Director

Controller design of a nonlinear system is in general very difficult. One way to avoid

such complexity is using a simplified model so that certain nonlinear control techniques can

be easily applied. Using a linearized model could make the controller design even simpler.

However, some control error is inevitable with a simplified model. Therefore, in this thesis,

a neural network-based approach is proposed in order to compensate for the errors caused

by using a simplified dynamic model.

The base controller which is designed by using the simplified dynamic model will be

compensated by a PID controller with adjustable gains. A neural network is used to update

the PID gains during control process. Finally, the outputs of the NN-based PID compensator

and the base controller are added together to control the actual nonlinear system. This way,

the NN-based PID compensator tries to compensate for the effects of the ignored nonlinear

terms of the dynamic model.

The performance of the proposed control method is verified on the ball-on-plate system

that is built for this study. Approximate feedback linearization is applied as the base con-

troller on a simplified decoupled dynamic model. A NN-based PID compensator is added



to each decoupled ball-on-beam system. Experimental results that show better stabilization

and trajectory tracking performance are provided and discussed in the thesis.



NORTHERN ILLINOIS UNIVERSITY
DE KALB, ILLINOIS

AUGUST 2018

NEURAL NETWORK-BASED PID COMPENSATION FOR NONLINEAR

SYSTEMS: BALL-ON-PLATE EXAMPLE

BY

A. MOHAMMADI
c© 2018 A. Mohammadi

A THESIS SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE

MASTER OF SCIENCE

DEPARTMENT OF MECHANICAL ENGINEERING

Thesis Director:
Dr. Ji-Chul Ryu



ACKNOWLEDGEMENTS

I would like to appreciate Dr. Ji-Chul Ryu for his support in the process of completing

the thesis. I received both technical and financial support from my advisor.

Internship experience at Apellix, summer 2017, helped me a lot to write the programming

part of the thesis. I used almost everything that I learned there.

Research group members also gave me suggestions that led to new ideas, so I would like

to appreciate Revanth Raghuram Konda, Sandeep Reddy Erumalla, and Tyler Thompson.

They also helped me in choosing the right motor for the experimental setup.

Last but not least, I would like to appreciate the Mechanical Engineering Department

for their partial funding support to purchase experimental setup materials.



DEDICATION

There is nothing more important in life than faith in God. He helped me a lot to feel

stronger in each step of my education. I also need to appreciate my family, especialy my

parents, who helped me and were supportive. I would like to dedicate the present research

to my parents. I hope I can make them happier than before.



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

Chapter

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 DYNAMIC MODEL: BALL-ON-PLATE EXAMPLE . . . . . . . . . . . . . . . . . . . . 10

2.1 Ball-on-Plate Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 CONTROLLER DESIGN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Overal Structure of the Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Feedback Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Feedback Linearization Conditions and Procedure . . . . . . . . . . . . . . 20

3.2.2 Simplified Ball-on-Beam System. . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.1 Neural Network Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.2 NN-Based PID Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28



v

Chapter Page

4 EXPERIMENTAL SETUP AND RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1 Experimental Setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.1 Mechanical Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.2 Vision System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1.3 Controller Board. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Simulation and Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.1 Stabilization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.1.1 Simulation Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.1.2 Experimental Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2.2 Trajectory Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.2.1 Simulation Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2.2.2 Experimental Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 CONCLUSION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



LIST OF TABLES

Table Page

2.1 Ball-on-plate system generalized coordinates . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Ball-on-plate system parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1 Parameters and values for the ball-on-plate system. . . . . . . . . . . . . . . . . . . 38

C.1 Mechanical setup items of the ball-on-plate system. . . . . . . . . . . . . . . . . . . 77



LIST OF FIGURES

Figure Page

1.1 Feedback linearization approach, ball-on-wheel system [1] . . . . . . . . . . . . . . 2

1.2 Feedback linearization approach, disk-on-disk system [2] . . . . . . . . . . . . . . . 2

1.3 Approximate feedback linearization approach, ball-on-sphere system [5] . . . . 3

1.4 Neural network structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 PID-like neural network controller, double inverted pendulum system [10] . . 6

1.6 Reference compensation technique (RCT), two-dimensional inverted pendu-
lum system [13]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.7 Neural network controller, PAM manipulator [7] . . . . . . . . . . . . . . . . . . . . 7

2.1 Ball-on-plate system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Local oxyz and global OXY Z coordinate systems . . . . . . . . . . . . . . . . . . . 12

3.1 Decoupled controller design for the ball-on-plate system . . . . . . . . . . . . . . . 17

3.2 Overal structure of the controller applied on the ball-on-plate system . . . . . 18

3.3 Inside of the controller block diagram (x axis) . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Neural network structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5 A neuron in a neural network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.6 Neural network structure (along x axis) . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.7 Tangent sigmoid activation function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.8 Linear activation function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.9 Sign function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32



viii

Figure Page

4.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Ball-on-plate system designed in SolidWorks . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Dynamixel motor2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4 Linkage mechanism for the plate rotation . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.5 Camera used in the experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.6 Dynamixel2USB adapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.7 Torque-current graph of Dynamixel motors4 . . . . . . . . . . . . . . . . . . . . . . . 41

4.8 Simulation on using AFL in order to stabilize the ball at (0, 0) (center point
simulation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.9 Simulation on using AFL in order to stabilize the ball at (0.1,−0.1) (offset
point simulation). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.10 Experiment on using AFL in order to stabilize the ball at (0, 0) . . . . . . . . . 46

4.11 Experiment on using AFL in order to stabilize the ball at (0.1,−0.1). . . . . . 47

4.12 Experiment on using AFLNNPID in order to stabilize the ball at (0.1,−0.1) 48

4.13 Experiment on PID gains in x axis in order to balance the ball at (0.1,−0.1) 49

4.14 Experiment on AFL control input of AFLNNPID in x axis in order to balance
the ball at (0.1,−0.1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.15 Experiment on NNPID control input of AFLNNPID in x axis in order to
balance the ball at (0.1,−0.1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.16 Experiment on total control input (AFLNNPID) in x axis in order to balance
the ball at (0.1,−0.1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.17 Simulation on using AFL for trajectory tracking (ω = 2.0rad/s and R =
0.08m) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.18 Simulation on using AFL for trajectory tracking (ω = 6.0rad/s and R =
0.06m) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.19 Simulation on using AFLNNPID for trajectory tracking (ω = 6.0rad/s and
R = 0.06m), simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



ix

Figure Page

4.20 Simulation on PID gains in x axis for trajectory tracking (ω = 6.0rad/s and
R = 0.06m) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.21 Simulation on AFL control input of AFLNNPID in x axis for trajectory
tracking (ω = 6.0rad/s and R = 0.06m) . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.22 Simulation on NNPID control input of AFLNNPID in x axis for trajectory
tracking (ω = 6.0rad/s and R = 0.06m) . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.23 Simulation on total control input (AFLNNPID) in x axis for trajectory track-
ing (ω = 6.0rad/s and R = 0.06m) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.24 Experiment on using AFL for trajectory tracking (ω = 2.0rad/s and R =
0.08m), experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.25 Experiment on using AFLNNPID for trajectory tracking (ω = 2.0rad/s and
R = 0.08m), experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.26 Experiment on PID gains in x axis for trajectory tracking (ω = 2.0rad/s and
R = 0.08m) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.27 Experiment on AFL control input of AFLNNPID in x axis for trajectory
tracking (ω = 2.0rad/s and R = 0.08m) . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.28 Experiment on NNPID control input of AFLNNPID in x axis for trajectory
tracking (ω = 2.0rad/s and R = 0.08m) . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.29 Experiment on total control input (AFLNNPID) in x axis for trajectory
tracking (ω = 2.0rad/s and R = 0.08m) . . . . . . . . . . . . . . . . . . . . . . . . . . 59

B.1 Inside of controller block diagram (y axis) . . . . . . . . . . . . . . . . . . . . . . . . . 70

B.2 Neural network structure (y axis) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

C.1 Base plate designed in SolidWorks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

C.2 Connecting rod of the linkage mechanism designed in SolidWorks . . . . . . . . 78

C.3 Center rod designed in SolidWorks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

C.4 Rod end of the linkage mechanism designed in SolidWorks . . . . . . . . . . . . . 79

C.5 Top plate (off-the-shelf item) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80



x

Figure Page

C.6 Motor bottom bracket (off-the-shelf item) . . . . . . . . . . . . . . . . . . . . . . . . . 80

C.7 Motor back frame (off-the-shelf item) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

C.8 Dynamixel motor (off-the-shelf item) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

C.9 Rod end attached to motor side bracket (off-the-shelf item) . . . . . . . . . . . . 81

C.10 Motor spacer (off-the-shelf item). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

C.11 Universal joint (off-the-shelf item) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

D.1 Experiment on PID gains in y axis in order to balance the ball at (0.1,−0.1) 84

D.2 Experiment on AFL control input of AFLNNPID in y axis in order to balance
the ball at (0.1,−0.1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

D.3 Experiment on NNPID control input of AFLNNPID in y axis in order to
balance the ball at (0.1,−0.1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

D.4 Experiment on total control input (AFLNNPID) in y axis in order to balance
the ball at (0.1,−0.1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

D.5 Simulation on PID gains in y axis for trajectory tracking (ω = 6.0rad/s and
R = 0.06m) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

D.6 Simulation on AFL control input of AFLNNPID in y axis for trajectory
tracking (ω = 6.0rad/s and R = 0.06m) . . . . . . . . . . . . . . . . . . . . . . . . . . 86

D.7 Simulation on NNPID control input of AFLNNPID in y axis for trajectory
tracking (ω = 6.0rad/s and R = 0.06m) . . . . . . . . . . . . . . . . . . . . . . . . . . 87

D.8 Simulation on total control input (AFLNNPID) in y axis for trajectory track-
ing (ω = 6.0rad/s and R = 0.06m) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

D.9 Experiment on PID gains in y axis for trajectory tracking (ω = 2.0rad/s and
R = 0.08m) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

D.10 Experiment on AFL control input of AFLNNPID in y axis for trajectory
tracking (ω = 2.0rad/s and R = 0.08m) . . . . . . . . . . . . . . . . . . . . . . . . . . 88

D.11 Experiment on NNPID control input of AFLNNPID in y axis for trajectory
tracking (ω = 2.0rad/s and R = 0.08m) . . . . . . . . . . . . . . . . . . . . . . . . . . 89



xi

D.12 Experiment on total control input (AFLNNPID) in y axis for trajectory
tracking (ω = 2.0rad/s and R = 0.08m) . . . . . . . . . . . . . . . . . . . . . . . . . . 89



LIST OF APPENDICES

Appendix Page

A EQUATIONS OF MOTION MATRICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

A.1 Equations of Motion Matrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

B Y AXIS CONTROLLER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

B.1 Y Axis Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

B.1.1 Approximate Feedback Linearization . . . . . . . . . . . . . . . . . . . . . . . 70

B.1.2 NN-Based PID Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

C EXPERIMENTAL SETUP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

C.1 Experimental Setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

D Y AXIS RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

D.1 Experiment on Offset Point Stabilization. . . . . . . . . . . . . . . . . . . . . . . . . . 84

D.2 Simulation on Trajectory Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

D.3 Experiment on Trajectory Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87



CHAPTER 1

INTRODUCTION

Degrees of freedom and number of actuators in a dynamic system are very important.

If the number of actuators is less than the degrees of freedom of the dynamic system, it is

called underactuated. Balancing an object on another object is an example of an underac-

tuated system in which the object motion can be controlled using a specific control strategy.

However, some other underactuated systems are not controllable, which are not in the scope

of this thesis.

Control laws are classified into two main categories: linear and nonlinear. The basic

idea behind linear controllers is designing a controller that works within a specific region

around an equilibrium point. Therefore, linear controllers are easy to design and only work

successfully in a confined state space. One of the most widely used linear controllers is PID

controller. A PID is easy to design and robust to some extent due to its feedback nature.

These two features have made PID common in industry. However, it lacks the optimality

consideration of the control input. LQR is the linear controller that tries to optimize the

controller. It considers both state convergence and the amount of control input. On the other

hand, nonlinear controllers are designed based on the original system’s nonlinear dynamic

model. As a result, they have a better control performance and/or a larger workspace (in

many times the entire state space of the system), but they are more complex and difficult

to design in general.

There are different methods for nonlinear control design, and in this thesis, input-output

feedback linearization method is used. Feedback linearization transforms system dynamics

to a new space in which the system is represented by a linear form. This way one can take



2

advantage of the linear control theory in the new space and use the mapping relations of

the system to go from the transformed space to the original one. Among numerous related

studies, Ho et al. in [1] used the method to balance a ball on a wheel as shown in Fig. 1.1.

A DC motor attached to the wheel acts as the input and the ball angle is the output.

Figure 1.1: Feedback linearization approach, ball-on-wheel system [1]

Ryu et al. in [2] used feedback linearization to balance a disk on a disk, Fig. 1.2. The

lower disk is attached to a DC motor that works as input, and the upper disk which, is free

to roll, is supposed to be balanced.

Figure 1.2: Feedback linearization approach, disk-on-disk system [2]



3

1.1 Motivation

Even though feedback linearization is a powerful tool in control design of nonlinear sys-

tems, only a set of systems that satisfy the necessary conditions are feedback linearizable.

For those of systems that do not satisfy the conditions, a possible solution would be dynamic

model approximation. Hauser et al. in [3] showed that the ball-on-beam system is not feed-

back linearizable, so the simplified dynamic model of the system is used to apply feedback

linearization. They demonstrated the performance of the approximated controller through

simulations. Due to the approximation, the control law has a limited operation domain

because the controller is susceptible to the initial offset from the target states. Guo et al.

in [4] used a fuzzy dynamic model of the system and derived two separate linearization laws

within those two subspaces. The resulting controller shows better performance in simulation

compared to [3]. Liu et al. in [5] also simplified the dynamic model of the ball-on-sphere

system to two independent ball-on-wheel systems and then applied feedback linearization on

each of them. Since ball-on-wheel system, Fig. 1.1, is feedback linearizable, this nonlinear

method stabilized the ball-on-sphere system, shown in Fig. 1.3.

Figure 1.3: Approximate feedback linearization approach, ball-on-sphere system [5]

Ho et al. in [6] applied an approximate feedback linearization controller on the ball-on-

plate system. Since ball-on-plate system is not feedback linearizable, they ignored coupling



4

terms to derive two independent ball-on-beam systems. Finally, they applied approximate

feedback linearization on each simplified nonlinear system and provided experimental results.

Due to the approximations that have been made in this type of controller design, it seems

necessary to find a way to compensate for the effects of the ignored nonlinear terms in the

dynamic model. This compensation strategy should be adaptive in order to adjust itself

to different system conditions, and it should be robust enough to stabilize the system. For

example, the effect of friction is usually ignored in the control design, so adaptivity of the

compensator may play a critical role here.

Since neural networks have shown adaptivity, they can be a good candidate to be used as

a compensator. Moreover, PID controllers have shown reliable performance. Therefore, this

error-based control method of the PID can be used for neural network training. For these

collective reasons, the design of a NN-based PID controller is proposed in this work. The

next part discusses the general structure of neural networks.

1.1.1 Neural Networks

Neural networks are sets of nodes or neurons, connections, math operations, inputs, and

outputs. From the moment a neural network receives inputs, math operations are applied

until outputs are generated. Fig. 1.4 shows the overall structure of a general neural network.

While more complex structures of neural network are available, this thesis uses a feed-

forward neural network. Neural networks have the ability to learn by changing network

attributes. This way the neural network can generate desired outputs. The forementioned

characteristics of adaptivity or learning feature make neural networks favorable in the control

problems.



5

As shown in Fig. 1.4, a neural network is divided into a few layers. Each layer consists of

some nodes or neurons, and all nodes of each layer is connected to all nodes of the next. The

connection between the previous and the current layers is established by weights. Moreover,

there are biases that are added to the neuron input. These weights along with biases define

the input of the neuron. Next, the input of the neuron goes into a transfer (or activation)

function that generates neuron output. This process continues until neural network outputs

are generated. Among different learning processes available in neural networks, the super-

vised learning process is used in this thesis. Supervised learning changes network weights

and biases in a way that neural network outputs converge to the desired values. There are

several network training algorithms such as backpropagation and Levenberge-Marquardt.

These algorithms update the network in each iteration based on a criterion (or function).

This function is called an error function, and it determines how close the network outputs are

to the desired values. Math functions, training algorithm, and details of the neural networks

will be discussed in Chapter 3.

Figure 1.4: Neural network structure



6

1.2 Literature Review

There has been growing attention to the ability of neural networks in system control.

Adaptivity of neural networks is a great strength in controller design. Neural network control

design has been used in a wide range of applications from the robotic manipulators ([7] and

[8]) to the car industry ([9]).

Cong and Liang in [10] proposed a PID-like neural network controller that has better

performance compared to LQR. They applied their controller on single and double inverted

pendulum, shown in Fig. 1.5, and compared the results with LQR. One disadvantage of this

control approach is that the controller performance depends on the initial conditions. If the

initial conditions are far from the target states, the controller may not be able to stabilize the

system or show satisfactory performance. They provided stability analysis of the controller.

The difference between this PID-like controller and the controller proposed in this work is

the neural network. The latter has different neural network structure and it generates PID

gains, whereas the former generates torque. The NN-based PID controller is designed to be

used as a compensator working with other controllers in order to reduce the error.

Figure 1.5: PID-like neural network controller, double inverted pendulum system [10]



7

Jung et al. in [11]-[13] designed a neural network controller based on reference compen-

sation technique (RCT) that can stabilize a two-dimensional inverted pendulum, shown in

Fig. 1.6. The neural network in RCT represents the inverse dynamics of the system, which

is not the case in NN-based PID controller.

Figure 1.6: Reference compensation technique (RCT), two-dimensional inverted pendulum
system [13]

A neural controller is investigated by Thanh and Ahn in [7] and [8]. They designed a

neural network controller to control PAM manipulator, shown in Fig. 1.7. The superiority

of the proposed controller over conventional PID is verified by experimental results. A

backpropagation algorithm updates neural network online.

Figure 1.7: Neural network controller, PAM manipulator [7]



8

A novel robust neural network controller is proposed by Chen and Sheu in [14] for speed

control of an induction motor. They designed a neural network estimator for the dynamic

model of the system along with a neural network PI controller. Projection algorithm was

used as the training algorithm. The control performance is verified by experimental and

simulation results. This control scheme shows better performance in presence of the dis-

turbance. Adaptivity of the neural network helps it to correct itself online. It’s worth

mentioning that although using a neural network to represent system dynamics is useful in

neural network controller design, noisy data from state derivatives make it difficult to train

the neural network for this purpose.

Ge et al. in [15] used an observer with high gains to estimate state derivatives. They used

a state feedback neural network controller and discussed the control stability by Lyapunov

function. This control method doesn’t need to be trained offline, but neural network gains

should have a good initial estimation of the system.

1.3 Objective

Nonlinear controller design is difficult in general. Applying dynamic approximations can

be a solution, but it introduces errors in the control performance. In this work, the objective

is to reduce this error using a NN-based PID compensator. The controller structure of the

system consists of two parts using this method: base controller and NN-based PID. The

base controller can be any classic linear or nonlinear controller that can perform stabiliza-

tion and/or trajectory tracking. The error of the base controller, which may be induced by

dynamic model simplifications, is compensated by using NN-based PID. In this work, ap-

proximate feedback linearization is used as the base controller, which has some steady state

error as will be shown in Chapter 4. Next, NN-based PID compensator is added to the con-



9

troller to reduce the error. The NN-based PID controller has two main parts: neural network

and PID. The neural network part receives the state errors and generates PID gains as the

outputs. Neural network is also updated online using backpropagation learning algorithm.

Next, the PID controller receives the updated gains from the neural network along with the

state errors and generates the compensatory control input. Finally, the output of the PID is

added to the output of the base controller. In this structure, the NN-based PID controller

constantly modifies control input of the base controller to overcome the error. This control

approach is implemented on the ball-on-plate system and verified to show improvements in

both stabilization and trajectory tracking. It’s worth noting that the proposed method can

be applied on any nonlinear system.

Neural network in this control approach needs offline training. Another limitation is that

NN-based PID controller is activated only when approximate feedback linearization settling

time is met. This means when there is steady state error from the base controller, neural

network comes into the picture and reduces the error. In this work, NN-based PID controller

activated one second after the base controller in both stabilization and trajectory tracking.

The rest of the thesis is organized as follows. Dynamic model of the ball-on-plate system

is derived in Chapter 2, followed by Chapter 3, which describes the new control law. Chapter

4 presents experimental setup and results, and Chapter 5 ends the thesis with concluding

remarks.



CHAPTER 2

DYNAMIC MODEL: BALL-ON-PLATE EXAMPLE

This chapter provides the ball-on-plate dynamic model, then it will be simplified to two

independent ball-on-beam systems such that rotational motion of the ball-on-plate system

will be controlled by the ball-on-beam system.

2.1 Ball-on-Plate Dynamics

Ball-on-plate system is a nonlinear, coupled system that will be modelled in this section.

Fig.2.1 shows the 3D modeling of the system.

Figure 2.1: Ball-on-plate system

Lagrange equation is used to derive the equations of motion:

L = T − V (2.1)

d

dt
(
∂L

∂q̇
)−

∂L

∂q
= Q (2.2)



11

where T and V are kinetic and potential energies of the system, respectively. L is called

system Lagrangian; t, q, q̇, and Q are time, system generalized coordinates, time derivative

of generalized coordinates, and generalized forces, respectively. Eq. (2.2) derives equations

of motion in matrix form. Torques applied on the ball-on-plate system are given below:

Q =

[

τ1 τ2

]T

(2.3)

where τ1 and τ2 are torques applied about x and y axes, respectively. The ball-on-plate

system has four generalized coordinates, explained in Table 2.1, that are given below:

q =

[

θ1 θ2 x y

]T

(2.4)

Table 2.1: Ball-on-plate system generalized coordinates

θ1 plate angle about x axis (see Fig. 2.1 for the direction)

θ2 plate angle about y axis (see Fig. 2.1 for the direction)

x ball position along x axis(local coordinate system)

y ball position along y axis(local coordinate system)

There is one local oxyz coordinate frame which is attached to the plate, and one global

OXY Z frame as shown in Fig. 2.2. The system parameters are explained in Table 2.2. Plate

moment of inertia with respect to the local oxyz frame is



12

Ioxyzp =













Ipx 0 0

0 Ipy 0

0 0 Ipz













(2.5)

Figure 2.2: Local oxyz and global OXY Z coordinate systems

Table 2.2: Ball-on-plate system parameters

Ipx moment of inertia of the plate about x axis

Ipy moment of inertia of the plate about y axis

Ipz moment of inertia of the plate about z axis

Ib ball moment of inertia (all three axes have the same moment of inertia)

m mass of the ball

r radius of the ball

g gravity



13

A ball is a symmetric object, so the ball moments of inertia in all three axes are the

same. It will be shown that the ball moment of inertia with respect to the global OXY Z

frame is also the same as the moment of inertia with respect to the local oxyz frame.

I
oxyz
b =













Ib 0 0

0 Ib 0

0 0 Ib













(2.6)

The plate is rotated by θ1 about x axis, then it will be rotated by θ2 about y axis with

respect to the local oxyz frame attached to the plate. The rotation matrix between the local

oxyz frame to the global OXY Z frame is given below:

R = ROXY Z
oxyz = Rx,θ1Ry,θ2 =













cos(θ2) 0 sin(θ2)

sin(θ1) sin(θ2) cos(θ1) − cos(θ2) sin(θ1)

− cos(θ1) sin(θ2) sin(θ1) cos(θ1) cos(θ2)













(2.7)

Given the ball position in the local oxyz coordinate frame,

P
oxyz
b =

[

x y r

]T

(2.8)

Using the rotation matrix in Eq. (2.7), the ball position with respect to the global OXY Z

coordinate frame is given by

POXY Z
b = R× P

oxyz
b =













cos(θ2)x+ sin(θ2)r

sin(θ1) sin(θ2)x+ cos(θ1)y − cos(θ2) sin(θ1)r

− cos(θ1) sin(θ2)x+ sin(θ1)y + cos(θ1) cos(θ2)r













, (2.9)



14

By taking time derivative from position in Eq. (2.9), the ball velocity can be obtained

with respect to the global OXY Z coordinate frame.

V OXY Z
b =

[

V OXY Z
bx V OXY Z

by V OXY Z
bz

]T

(2.10)

V OXY Z
bx =

dPOXY Z
bx

dt
= − sin(θ2)θ̇2x+ cos(θ2)ẋ+ cos(θ2)θ̇2r (2.11)

V OXY Z
by =

dPOXY Z
by

dt
= cos(θ1)θ̇1 sin(θ2)x+ sin(θ1) cos(θ2)θ̇2x+ sin(θ1) sin(θ2)ẋ−

sin(θ1)θ̇1y + cos(θ1)ẏ + sin(θ2)θ̇2 sin(θ1)r − cos(θ2) cos(θ1)θ̇1r (2.12)

V OXY Z
bz =

dPOXY Z
bz

dt
= sin(θ1)θ̇1 sin(θ2)x− cos(θ1) cos(θ2)θ̇2x− cos(θ1) sin(θ2)ẋ+

cos(θ1)θ̇1y + sin(θ1)ẏ − sin(θ1)θ̇1 cos(θ2)r − cos(θ1) sin(θ2)θ̇2r (2.13)

Equation S(ωp) = ṘR−1 gives angular velocity of the plate in the form of a skew sym-

metric matrix. Hence:

S(ωOXY Z
p ) =













0 −θ̇2 sin(θ1) θ̇2 cos(θ1)

θ̇2 sin(θ1) 0 −θ̇1

−θ̇2 cos(θ1) θ̇1 0













(2.14)

Now, angular velocity of the plate with respect to the global OXY Z coordinate frame is

ωOXY Z
p =

[

θ̇1 θ̇2 cos(θ1) θ̇2 sin(θ1)

]T

(2.15)



15

Assuming no slip condition between the ball and the plate, the angular velocity of the

ball with respect to the local oxyz coordinate frame is given by

ω
oxyz
b =

[

−
ẏ

r

ẋ

r
0

]T

(2.16)

The ball is rolling on the plate, and the local frame is attached to the plate. Consequently

the angular velocity of the ball with respect to the global OXY Z coordinate frame is given

by

ωOXY Z
b = Rω

oxyz
b + ωOXY Z

p =













−
cos(θ2)ẏ

r
+ θ̇1

−
sin(θ1) sin(θ2)ẏ

r
+

cos θ1ẋ

r
+ θ̇2 cos(θ1)

cos(θ1) sin(θ2)ẏ

r
+

sin(θ1)ẋ

r
θ̇2 sin(θ1)













(2.17)

The superscript OXY Z will be dropped in the rest of the thesis because it is assumed

that all positions and velocities are defined with respect to the global OXY Z coordinate

frame. If a variable is defined with respect to the local frame, it will be specified. Now,

kinetic and potential energy of the ball and plate can be derived as below:

Tp =
1

2
ωT
p RIoxyzp RTωp (2.18)

Vp = 0 (2.19)

Tb =
1

2
ωT
b RI

oxyz
b RTωb +

1

2
V T
b mbVb (2.20)

Vb = mbgP
2
bz (2.21)

Tsys = Tp + Tb (2.22)

Vsys = Vp + Vb (2.23)



16

where subscript p, b, and sys refer to the plate, the ball, and the whole system, respectively.

It is important to note that the local oxyz frame is rotating with the plate, so the plate

moment of inertia must be measured with respect to the global OXY Z coordinate frame.

This can be done by using the relation IOXY Z = RIoxyzRT as shown in Eqs. (2.18) and

(2.20). This relation does not have effect on the ball because the ball is a symmetric object,

so applying the relation will result to the I
oxyz
b . Substituting Eqs. (2.22) and (2.23) into

Eqs. (2.1)-(2.2) gives equations of motion of the system:

Mq̈ + Cq̇ +G = Q (2.24)

where M , C, G, and Q are the matrices of inertia, centrifugal and coriolis forces, potential,

and external forces, respectively. These matrices are given in Appendix A.

Now, ignoring coupling effects in the equations of motion results into two independent

ball-on-beam systems (Ho et al. [6]):

θ̈1 =
1

Ib + Ip +my2

[

τ1 +mgr sin(θ1)−mgy cos(θ1)− 2myẏθ̇1

]

(2.25)

θ̈2 =
1

Ib + Ip +mx2

[

τ2 +mgr sin(θ2) +mgx cos(θ2)− 2mxẋθ̇2

]

(2.26)

ẍ =
1

m+
Ib

r2

[

mxθ̇22 +mg sin(θ2)
]

(2.27)

ÿ =
1

m+
Ib

r2

[

myθ̇21 −mg sin(θ1)
]

(2.28)

The simlified equations will be used in the next chapter to design an approximate feedback

linearization with NN-based PID controller.



CHAPTER 3

CONTROLLER DESIGN

This chapter discusses the controller design. A new compensator is proposed for improve-

ments in both stabilization and trajectory tracking. Although this controller is applied on

the ball-on-plate system, it can be applied on any nonlinear system. Another advantage of

this controller is its simplicity. Since the decoupled ball-on-plate dynamics is used in this

work, representing the controller design procedure for one axis is sufficient. This chapter

considers controller design about x axis only; y axis controller is given in Appendix B. Fig.

3.1 shows the decoupled controller design for the ball-on-plate system. The next section

describes the overal structure of the controller in more detail.

Figure 3.1: Decoupled controller design for the ball-on-plate system

3.1 Overal Structure of the Controller

The new controller consists of two main parts: base controller and NN-based PID. Fig.

3.2 shows the overal structure of the controller applied on the ball-on-plate system. The



18

base controller can be any linear or nonlinear controller. It is better to choose the simplest

one because NN-based PID compensator can reduce the control errors. In this work, an

approximate nonlinear controller has been used as the base controller to see the effect of NN-

based PID controller. This approximate nonlinear controller is approximate input-output

feedback linearization. Since the ball-on-plate system dynamic model is simplified, it is called

approximate. Detailed information on the base controller is given in the next section.

Figure 3.2: Overal structure of the controller applied on the ball-on-plate system

Figure 3.3: Inside of the controller block diagram (x axis)

The second part of the controller is called NN-based PID controller. This controller

contains two major parts: a neural network and a PID controller. The neural network part



19

gets state error as inputs and generates PID gains. Next step, PID gets the updated gains

along with the state errors to generate compensatory control input. Finally, the output of

the NN-based PID controller is added to the output of the base controller. Fig 3.3 shows

the details of the controller.

The rest of the chapter consists of two sections. First one describes feedback linearization

and its necessary conditions, which are derived from [1], [2], and [6] mostly, and the second

part is dedicated to the NN-based PID.

3.2 Feedback Linearization

Feedback linearization is a control approach that transforms the original space of the

system to a new one. This method uses a systematic approach to find a specific change of

coordinates for the transformation. As a result, a linear system which is equivalent to the

original system is obtained in the new state space. States of the new system are functions

of the original system states. This approach enables us to apply linear controllers on the

transformed system.

There are two points that need to be made. The process of transforming a nonlinear

system to a linear form is a systematic approach through a specific method. The second point

is that not all systems can be transformed to a linear form. Only a class of systems that satisfy

feedback linearization conditions can be transformed. If system dynamic model satisfies the

conditions, the system is called feedback linearizable. However, since the decoupled ball-

on-plate system does not satisfy the conditions, the ball-on-beam system dynamic model

undergoes further simplification to make it feedback linearizable. The controller designed

for this nonlinear simplified model is called approximate feedback linearization.



20

This section discusses feedback linearization and sufficient conditions on how to apply it

on the simplified ball-on-beam system.

3.2.1 Feedback Linearization Conditions and Procedure

A nonlinear system with states of X and input u:

Ẋ = f(X) + g(X)u (3.1)

is feedback linearizable if it satisfies the following conditions:

• The matrix has rank of n.

G(X) =
[

g(X), adfg(X), ad2fg(X), ..., adn−1
f g(X)

]

(3.2)

• The distribution is involutive.

∆ = span
[

g(X), adfg(X), ad2fg(X), ..., adn−2
f g(X)

]

(3.3)

where n is the number of states of the original system, and Lie bracket is defined as below:

adfg(X) = [f, g](X) =
∂g(X)

∂X
f(X)−

∂f(X)

∂X
g(X) (3.4)

and in a generalized form:

adkfg(X) = [f, adk−1
f g(X)](X) (3.5)



21

If a system satisfies the conditions (3.2) and (3.3), it is said to be feedback linearizable.

Next step is transforming the system to a linear form. Given the system output h(X), the

derivatives of the output give the transformed states. Derivation continues until input of the

original system appears.

ζ1 = h(X) (3.6)

ζ2 =
dζ1

dt
(3.7)

.

.

.

ζn =
dζn−1

dt
(3.8)

where [ζ1, ζ2, ..., ζn]
T are the transformed states. The input of the transformed system is as

follows:

v = ζ̇n (3.9)

v = α + βu (3.10)

where α and β are defined as below:

α = Ln
fh(x) (3.11)

β = LgL
n−1
f h(x) (3.12)



22

Eq. (3.10) is important since it relates transformed system input, v, to the original

system input, u. Finally, the system representation in the transformed space is written as

ζ̇ = Aζ +Bv (3.13)

where

ζ =

































ζ1

ζ2

.

.

.

ζn

































, A =







































0, 1, 0, ..., 0

0, 0, 1, ..., 0

.

.

.

0, 0, 0, ..., 1

0, 0, 0, ..., 0







































, B =







































0

0

0

.

.

.

1







































(3.14)

Since the transformed system in Eq. (3.13) is now linear, one can take advantage of the

linear control theory. Applying the pole placement method determines the controller gains:

P =

[

p1, p2, ..., pn

]

(3.15)

K = Pole P lacement(P ) (3.16)

v = −Kζ (3.17)

ζ̇ = Aζ − BKζ (3.18)

where P , K, and ζ are the locations of the controller poles, the controller gains, and the

transformed states, respectively. In the next part, the dynamic model of the ball-on-beam

system is considered, and the application of feedback linearization is investigated.



23

3.2.2 Simplified Ball-on-Beam System

In Chapter 2, it was shown that the equations of motion of the ball-on-plate system can

be simplified into two independent ball-on-beam systems. Hauser et al. in [3] showed that the

ball-on-beam system does not satisfy the feedback linearization conditions, so they simplified

the system dynamics to make it feedback linearizable. Ho et al. in [6] applied approximate

feedback linearization on the ball-on-beam system. The same model simplification as in [6]

is utilized here.

The ball-on-beam system has four states as below:

X =

[

θ2 θ̇2 x ẋ

]T

(3.19)

From Fig. 2.2, it is clear that angular position of the plate, θ2, changes ball position along x

axis and vice versa. The ball-on-beam dynamics in Eqs. (2.26) and (2.27) can be rewritten

as an input-affine form as in Eq. (3.1).

Ẋ =

[

θ̇2 θ̈2 ẋ ẍ

]T

(3.20)

f(X) =

























θ̇2

1

Ib + Ip +mx2

(

mgr sin(θ2) +mgx cos(θ2)− 2mxẋθ̇2

)

ẋ

1

m+
Ib

r2

(

mxθ̇22 +mg sin(θ2)
)

























(3.21)

g(x) =

[

0
1

Ib + Ip +mx2
0 0

]T

(3.22)

u = τ2 (3.23)



24

By using the position of the ball as the output:

h(X) = x (3.24)

The system’s transformed states can be derived as below:

ζ1 = h(X) = x (3.25)

ζ2 =
dζ1

dt
= ẋ (3.26)

ζ3 =
dζ2

dt
= ẍ =

1

m+
Ib

r2

(

mxθ̇22 +mg sin(θ2)

)

(3.27)

ζ4 =
dζ3

dt
=

1

m+
Ib

r2

(

mẋθ̇22 +mgθ̇2 cos(θ2)

)

(3.28)

ζ =

[

ζ1 ζ2 ζ3 ζ4

]T

(3.29)

where the term 2mxθ̇2θ̈2 is ignored from the ζ4 in order to make system feedback linearizable.

By using Eqs. (3.9) and (3.10), the transformed control input is

ζ̇4 = α + βτ2 (3.30)

where

α = A2
xmθ̇22

(

mxθ̇22 +mg sin(θ2)

)

− Axmgθ̇22 sin(θ2)+ (3.31)

AxBx

(

2mẋθ̇2 +mg cos(θ2)

)(

−2mxẋθ̇2 +mgx cos(θ2) +mgr sin(θ2)

)

(3.32)

β = AxBx

(

2mẋθ̇2 +mg cos(θ2)

)

(3.33)

Ax =
1

m+
Ib

r2

(3.34)



25

Bx =
1

mx2 + Ip + Ib
(3.35)

Since the transformed system is now linear, the pole placement method can be used to

determine the controller gains. The same procedure is applied for the y axis. The details

are given in Appendix B.

3.3 Neural Networks

Neural networks have been capturing more attention in recent years. Adaptivity and often

simplicity in structure are the main reasons for their popularity in many control problems.

In this study a PID compensator with adjustable gains is designed using neural network.

It is designed to compensate for the errors caused by the approximate feedback linearization.

This controller is applied on the ball-on-plate system, but it can be used on any nonlinear

system. Another positive point of this controller is that it takes advantage of having a

simple design. It is applied to the ball-on-beam system which has simpler dynamics than

the ball-on-plate system.

This section is dedicated to the neural network part of the controller. First part describes

the generals of the neural networks on how they work, and the second part goes through

making PID controller adjustable.

3.3.1 Neural Network Structure

Neural networks have inputs and outputs. Mathematical operations are carried out on

the inputs, and then outputs are generated in the last stage.



26

A neural network with two layers is shown in Fig. 3.4. There is one hidden layer and one

output layer. Throughout this work, inputs are not considered as a separate layer, and the

input, hidden, and output neurons are defined by i, j, and k subscripts, respectively. Each

layer is connected to the next using network weights. In addition, there are biases that are

added to the neuron input. Finally, the neuron input goes through a function called transfer

function (or activation function) and produces neuron output. Fig. 3.5 shows a neuron.

Figure 3.4: Neural network structure

Figure 3.5: A neuron in a neural network



27

If a neural network input matrix is defined by Si, neural outputs, φk, can be obtained

through the following equations:

φi = Si (3.36)

Sj = wjiφi + bj (3.37)

φj = fh(Sj) (3.38)

Sk = wkjφj + bk (3.39)

φk = fo(Sk) (3.40)

where fh(·) and fo(·) define transfer functions of the hidden and output layers, respectively.

Variables denoted by φ represent neuron output, and wji and wkj are the weights connecting

the inputs to the hidden layer and the hidden layer to the output layer, respectively; bj and

bk are biases of the hidden and output layers, respectively.

Neural network adaptivity helps generate desired outputs. There are numerous methods

to train a neural network. When desired outputs are known, one can use supervised learning

method. This learning is based on a reference function or error function, E, that shows how

far network outputs are from the desired values. One of the most common neural network

training methods is gradient descent. This method is described by the following equations:

dwn
kj =

∂E

∂wn
kj

(3.41)

wn+1
kj = wn

kj − ηdwn
kj + αdwn−1

kj (3.42)

dbnk =
∂E

∂bnk
(3.43)

bn+1
k = bnk − ηdbnk + αdbn−1

k (3.44)

dwn
ji =

∂E

∂wn
ji

(3.45)



28

wn+1
ji = wn

ji − ηdwn
ji + αdwn−1

ji (3.46)

dbnj =
∂E

∂bnj
(3.47)

bn+1
j = bnj − ηdbnj + αdbn−1

j (3.48)

where the superscript n denotes the iteration number. The learning rate, η, and the mo-

mentum rate, α, are typically determined through experiments. Learning rate specifies the

amount of correction jump in each iteration, i.e., speed of convergence, and the momentum

rate is used to avoid local minima.

3.3.2 NN-Based PID Controller

The combination of PID and the neural network is used as the compensator. It’s worth

mentioning that PID controller is designed before adding the neural network, and it is used

for the neural network offline training. Once PID gains are determined through experiment,

those gains can be used as neural network desired outputs. Finally, this neural network is

included in the controller to update the PID gains; see Fig. 3.3:

τNN = Kp(x
d − x) +Kd(ẋ

d − ẋ) +Ki

[
∫ t

0

(xd − x)dt

]

(3.49)

Neural network online training enables the PID controller to update itself. In other

words, the PID adapts itself to the different situations of system states. The structure of

the neural network used in the controller is shown in Fig. 3.6. Position error, velocity error,

and integral of the position error are the inputs to the neural network, and PID gains are

the outputs. Neural network consists of two layers in which all neurons of one layer are



29

connected to the all neurons of the next. A tangent sigmoid and linear transfer functions are

used for the hidden and the output layers, respectively. Figs. 3.7 and 3.8 show the functions.

Figure 3.6: Neural network structure (along x axis)

Figure 3.7: Tangent sigmoid activation function

Figure 3.8: Linear activation function



30

The neural network has three inputs, five neurons in the hidden layer, and three neurons

in the output layer. Inputs of the neural network are

S1 = xd − x (3.50)

S2 = ẋd − ẋ (3.51)

S3 =

∫ t

0

(xd − x)dt (3.52)

The transfer functions shown in Figs. 3.7 and 3.8 are defined by

ftansig(s) =
2

1 + e−2s
− 1 (3.53)

flin(s) = s (3.54)

The outputs of the neural network are

φ1 = Kp (3.55)

φ2 = Kd (3.56)

φ3 = Ki (3.57)

As shown in Fig. 3.3,

τ = τAFL + τNN (3.58)

The error function is defined by

E =
1

2
(xd − x)2 (3.59)



31

Finally, the gradient descent method [16] is used to update neural network outputs.

∂E

∂wkj

= (
∂E

∂x
)(
∂x

∂τ
)(

∂τ

∂τNN

)(
∂τNN

∂φk

)(
∂φk

∂Sk

)(
∂Sk

∂wkj

) (3.60)

∂E

∂bk
= (

∂E

∂x
)(
∂x

∂τ
)(

∂τ

∂τNN

)(
∂τNN

∂φk

)(
∂φk

∂Sk

)(
∂Sk

∂bk
) (3.61)

∂E

∂wji

= (
∂E

∂x
)(
∂x

∂τ
)(

∂τ

∂τNN

)

[

3
∑

k=1

(
∂τNN

∂φk

)(
∂φk

∂Sk

)(
∂Sk

∂φj

)

]

(
∂φj

∂Sj

)(
∂Sj

∂wji

) (3.62)

∂E

∂bj
= (

∂E

∂x
)(
∂x

∂τ
)(

∂τ

∂τNN

)

[

3
∑

k=1

(
∂τNN

∂φk

)(
∂φk

∂Sk

)(
∂Sk

∂φj

)

]

(
∂φj

∂Sj

)(
∂Sj

∂bj
) (3.63)

From Eq. (3.59),

∂E

∂x
= −(xd − x) (3.64)

Due to the nature of the gradient descent method, only the direction of the term
∂x

∂τ
is

important. Using finite difference method, one can simplify this to

∂x

∂τ
= sign(

∆x

∆τ
) = sign(

x− xprev

τ − τprev
) (3.65)

where xprev and τprev are the state and torque values in the previous iteration; sign(.) is the

sign function as shown in Fig. 3.9. Using the sign function of the term
∂x

∂τ
is important



32

because the exact value of the finite difference fraction is noisy. Consequently, it may create

large updates at some iterations, which is undesirable.

Figure 3.9: Sign function

From Eq. (3.58),

∂τ

∂τNN

= 1 (3.66)

Since neural network outputs are PID controller gains,

∂τNN

∂φ1

= xd − x (3.67)

∂τNN

∂φ2

= ẋd − ẋ (3.68)

∂τNN

∂φ3

=

∫ t

0

(xd − x)dt (3.69)

From the neural network structure in Eqs. (3.37) and (3.39),

∂Sk

∂wkj

= φj (3.70)

∂Sk

∂bk
= 1 (3.71)

∂Sk

∂φj

= wkj (3.72)



33

∂Sj

∂wji

= φi (3.73)

∂Sj

∂bj
= 1 (3.74)

Also, from transfer functions in Eqs. (3.53) and (3.54),

∂φk

∂Sk

= 1 (3.75)

∂φj

∂Sj

= 1− φ2
j (3.76)

Finally, following Eqs. (3.41)-(3.48) will update the weight and biases of the neural

network. The learning and the momentum rates are determind empirically in the next

chapter. The same procedure is applied to the y axis ball-on-beam system.



CHAPTER 4

EXPERIMENTAL SETUP AND RESULTS

This chapter presents the experimental setup and results. It first describes the mechanical

setup and the design, followed by the simulation and experimental results.

4.1 Experimental Setup

The experimental setup consists of three main components: mechanical system, vision

system, and controller system. Fig. 4.1 shows the experimental setup. Appendix C gives

detailed information on the part list and mechanical drawings.

Figure 4.1: Experimental setup



35

4.1.1 Mechanical Design

As shown in Fig. 4.2, a setup is designed such that a ball is free to roll on the plate and

the plate is controlled by two motors through two linkage mechanisms. Each mechanism

includes a universal joint that enables the plate to rotate in both directions at the same

time. There is also a third universal joint which is attached to the center rod and the plate.

Figure 4.2: Ball-on-plate system designed in SolidWorks

Dynamixel servo motors (Fig. 4.3), are used as actuators and attached to the end of each

linkage. The bottom side of the motors are mounted on the base plate using bolts and nuts.

Figure 4.3: Dynamixel motor1

1Source: www.trossenrobotics.com/dynamixel-xm430-w210-t.aspx



36

Fig. 4.4 shows the linkage mechanism.

Figure 4.4: Linkage mechanism for the plate rotation

Initially, when the motor is not rotated, the vertical distance between motor and point 2

is

h1
2 = a+ b (4.1)

where subscript 2 denotes point 2, and superscript 1 denotes the initial position of this point.

Next, the motor is rotated by the amount of θm. The vertical distance between the point 2

to the motor is given by

h2
2 = a cos(θp) + b cos(θl)− l sin(θm) (4.2)

Now, vertical displacement of the point 2 from the initial position to the final configura-

tion is calculated by



37

∆h2 = h1
2 − h2

2 = a+ b− a cos(θp)− b cos(θl) + l sin(θm) (4.3)

Assuming the angles θp and θl are small,

cos(θl) ≃ 1 (4.4)

cos(θp) ≃ 1 (4.5)

Now, Eq. (4.3) can be simplified to

∆h2 = l sin(θm) (4.6)

Eq. (4.6) shows that the amount of the vertical displacement of point 1 in Fig. 4.4 is

equal to the amount of the vertical displacement of point 2. From Fig. 4.4,

∆h2 = d sin(θp) (4.7)

Using Eqs. (4.6) and (4.7),

l sin θm = d sin θp (4.8)

If plate angle is small enough, then sin θp ≃ θp; therefore,

θp =
l

d
sin θm (4.9)



38

Table 4.1 shows the system parameters and their values for the actual system.

Table 4.1: Parameters and values for the ball-on-plate system

Parameters Description Values

Ib moment of inertia of the ball 4.077×10−3(kg.m2)

Ipx moment of inertia of the plate about x axis 4.315×10−6(kg.m2)

Ipy moment of inertia of the plate about y axis 4.315×10−6(kg.m2)

Ipz moment of inertia of the plate about z axis 8.630×10−6(kg.m2)

r radius of the ball 0.0127(m)

m mass of the ball 0.067(kg)

g gravity 9.81(m/s2)

l length of the motor link (4.4) 0.056(m)

a plate width (square plate) 0.140(m)

4.1.2 Vision System

A Sony SLEH-00448 USB camera is used to track the ball on the plate, Fig. 4.5.

Figure 4.5: Camera used in the experiment

This camera runs at the frame rate of 120 Hz at 320 × 240 pixels resolution. OpenCV

library is used for the image processing. The camera is mounted at a height of 18.875in



39

from the plate. It is important to note that the camera detects the ball position with

respect to the fixed global coordinate frame, but the ball position with respect to the local

coordinate frame, which is attached to the plate, is needed for the controller. It means that

the rotational matrix in Eq. (2.7) is needed to transform the global ball coordinates to the

local coordinates.

P
oxyz
b = R−1POXY Z

b (4.10)

Next, the ball velocity with respect to the local coordinate frame can be obtained by

using numerical differentiation and a low pass filter:

V
oxyz
bx =

∆P
oxyz
bx

∆t
(4.11)

V
oxyz
bx = λV

oxyz
bx + (1− λ)V oxyz

bx,prev (4.12)

where subscript prev represents the previous value of the velocity. The same procedure is

applied on the y and z axes to obtain V
oxyz
by and V

oxyz
bz , respectively. The low pass filter value

used in this work is λ = 0.5, and it is determined empirically.

A second candidate for the ball position detection is using a touchpad. Touchpads are

easy to use and detect the ball position based on the amount of the voltage. However,

regular touchpads are noisy and are not as accurate as the vision system. The high-quality

touchpads are expensive, so it would not be economical to use them in the ball-on-plate

system.



40

4.1.3 Controller Board

A 2.1 GHz laptop with Linux 16.04 LTS is used as the controller board in this thesis.

Dynamixel motors can be run at 330 Hz using low latency timer in Linux. However, the

vision system is running at 120 Hz, so it slows down the entire closed loop frequency of

the system. Moreover, the controller math operations are performing while running the

program, and some of the controller operations take more time, like neural network (NN

hereafter) training. As a result, the closed loop frequency of the system including all system

components goes down to 100 Hz.

Dynamixel motors in this thesis are designed to use TTL communication. Unlike serial

communication, TTL communication uses only one wire for sending and receiving data.

Dynamixel motors are connected together in series, and the first motor is connected to

the Dynamixel2USB adapter. The Dynamixel2USB adapter is an interface that provides

the connection between TTL communication and USB. This adapter is shown in Fig. 4.6.

Finally, Dynamixel2USB adapter is connected to laptop USB port for sending and receiving

commands to and from the motors.

Figure 4.6: Dynamixel2USB adapter

Dynamixel servo motors are controlled through the Dynamixel library, Dynamixel SDK

3.5.4, which is provided by the manufacturer. The library is downloadable online and has

a useful forum for troubleshooting. Since both the Dynamixel SDK and OpenCV library

support C++ language, the entire program is written in this language and run in a laptop.



41

The X series of Dynamixel motors have current control mode that can be used for torque

input by using a graph that relates torque to the current. The torque-current relation in

Fig. 4.7 can be fitted to the linear equation given below:

τ = 1.3i− 0.32 (4.13)

Figure 4.7: Torque-current graph of Dynamixel motors2

There are some other options for using a small size controller board to make the system

portable. Arduino board is easy to program, but it is hard to find a camera with 120 Hz

frequency compatible with Arduino. Raspberry PI is also easy to use and can handle both

OpenCV library and Dynamixel SDK, but it is not convenient to install OpenCV library on

it. It seems that fast processing boards like Minnowboard and UP board would also be good

options. Minnowboard and UP board are good candidates to be used in the system, and they

don’t have the drawbacks mentioned for Arduino and Raspberry PI. One drawback of these

fast processing boards may be that they are a bit costly. For example, UP board is almost

$170, which is more expensive than a Raspberry PI board ($35). A full version of Linux

2Source: http://emanual.robotis.com/docs/en/dxl/x/xm430-w210/



42

16.04 along with Open CV library can easily be installed on UP board and Minnowboard,

and data processing is fast enough.

4.2 Simulation and Experimental Results

This section presents simulation and experimental results on both stabilization and tra-

jectory tracking.

The desired pole locations need to be determined for the approximate feedback lin-

earization (AFL hereafter) designed in Chapter 3. The pole locations are chosen through

experiments such that

P =

[

−7 −7 −7 −7

]

(4.14)

Next, using the linear transformed model of the ball-on-beam system in Eq. (3.13)

with the pole locations above, the controller gain matrix can be calculated using the pole

placement method. The same gain matrix is used for both x and y axes, and the controller

gain matrix is the same throughout the experiments and simulations.

K =

[

K1 K2 K3 K4

]

=

[

2401 1372 294 28

]

(4.15)

As mentioned in Chapter 3, a conventional PID controller is needed to be designed along

with AFL before adding NN. Next, the designed PID gains are used for the NN offline

training. These PID gains are given below:

Kp = 1.0 (4.16)



43

Kd = 0.1 (4.17)

Ki = 1.0 (4.18)

4.2.1 Stabilization

In order to stabilize the ball at point (x, y) = (xd, yd), the control input in Eq. (3.17)

can be designed such that

vx(t) = (xd)(4)(t) +K4

(

...
x
d
(t)−

...
x(t)

)

+K3

(

ẍd(t)− ẍ(t)

)

+K2

(

ẋd(t)− x(t)

)

+

K1

(

xd(t)− x(t)

)

(4.19)

where

x = ζ1x (4.20)

ẋ = ζ2x (4.21)

ẍ = ζ3x (4.22)

...
x = ζ4x (4.23)

and Kis are the elements of the controller gain matrix of the AFL in Eq. (4.15). The

superscript d represents the desired value. The same procedure is applied for the y axis.

vy(t) = (yd)(4)(t) +K4

(

...
y
d
(t)−

...
y(t)

)

+K3

(

ÿd(t)− ÿ(t)

)

+K2

(

ẏd(t)− y(t)

)

+

K1

(

yd(t)− y(t)

)

(4.24)



44

where

y = ζ1y (4.25)

ẏ = ζ2y (4.26)

ÿ = ζ3y (4.27)

...
y = ζ4y (4.28)

When the ball is designed to be balanced at a fixed point on the plate, all the time

derivatives of the desired terms are zero:

ẋd = ẍd =
...
x
d
= (xd)(4) = 0 (4.29)

All the time derivatives of the desired states in y axis are also zero:

ẏd = ÿd =
...
y
d
= (yd)(4) = 0 (4.30)

It is worth mentioning that the desired values, xd and ẋd in the NN-based PID controller

(NNPID hereafter) in Eq. (3.49) also need to be changed accordingly.

4.2.1.1 Simulation Results

As mentioned in Chapter 3, each axis of the ball-on-plate system is controlled inde-

pendently. This section provides the simulated results of using such a controller on the

ball-on-plate system. It is worth mentioning that the original nonlinear dynamic model is

used in the simulation study. Fig. 4.8 shows the simulation result for stabilizing the ball at



45

the center of the plate using AFL only. Fig. 4.9 shows the same simulation result, but the

ball is supposed to be balanced at the point (0.1,−0.1).

Figure 4.8: Simulation on using AFL in order to stabilize the ball at (0, 0) (center point

simulation)

Figure 4.9: Simulation on using AFL in order to stabilize the ball at (0.1,−0.1) (offset point

simulation)



46

The initial conditions used for the center point simulation are given below. All the states

started from zero for the offset point simulation.

X =

[

0 0 0 0 0.2 0 −0.1 0.2

]T

(4.31)

As it is clear from the simulated results, the amount of errors are very small. The ball

is balanced at the point (1.79× 10−4,−4.49× 10−5) and (0.099,−0.099) for the center point

and the offset point simulation, respectively.

4.2.1.2 Experimental Results

Fig. 4.10 shows the experimental result for the balancing of the ball at the center of the

plate. Since the experimental data are noisy and in order to make the figures clear, only x

and y states are shown here.

Figure 4.10: Experiment on using AFL in order to stabilize the ball at (0, 0)



47

As it is clear, the ball converges to the desired state (−0.0064, 0.0026) within a small

error. The initial conditions for the experiment are given below:

X =

[

0.00 0.06 0.00 −0.03 −0.14 −6.43 0.13 6.14

]T

(4.32)

Fig. 4.11 shows another stabilization experiment where the ball is supposed to be bal-

anced at (0.1,−0.1). As it is clear, AFL stabilizes the ball at the point (0.073, 0.076). The

amount of error in this experiment is 27.47% for the x and 23.94% for the y. This error is

caused by the approximations that have been made in the AFL design in Chapter 3. The

initial conditions for this experiment was zero for all the states.

Figure 4.11: Experiment on using AFL in order to stabilize the ball at (0.1,−0.1)

The proposed controller which has the structure of AFL plus NNPID (AFLNNPID here-

after) in Fig. 4.12 balanced the ball at (0.093,−0.093), reducing the error to 6.56% and

7.13% for the x and the y axes, respectively. A learning rate of η = 0.3 and momentum rate

of α = 0.6 are used in the experiment. The same initial conditions as in AFL experiment,

zero for all the states, are used in this experiment.



48

It is interesting to investigate the change of PID gains and the control inputs over time.

Figs. 4.13-4.16 show the change in the PID gains and the amount of control input from

AFL and NNPID for the x axis. It is clear from the Fig. 4.13 that the NN helped in

adjusting the PID gains. It is worth mentioning that the amount of the torque input needed

for the stabilization is small, so the NN updates the PID gains within a small range. It was

mentioned before that the ball was balanced at an offset point from the desired location

using only AFL. Fig. 4.15 shows that the NNPID sends the compensatory torque in the

opposite direction to decrease the effect of the AFL control input. As a result, the ball finds

the opportunity to move further under the influence of the gravitational force and get closer

to the desired location. Finally, NN stops updating PID gains to fix the ball at the desired

location. Fig. 4.16 shows the total control input from AFL and NNPID.

Figure 4.12: Experiment on using AFLNNPID in order to stabilize the ball at (0.1,−0.1)



49

Figure 4.13: Experiment on PID gains in x axis in order to balance the ball at (0.1,−0.1)

Figure 4.14: Experiment on AFL control input of AFLNNPID in x axis in order to balance

the ball at (0.1,−0.1)



50

Figure 4.15: Experiment on NNPID control input of AFLNNPID in x axis in order to balance

the ball at (0.1,−0.1)

Figure 4.16: Experiment on total control input (AFLNNPID) in x axis in order to balance

the ball at (0.1,−0.1)



51

4.2.2 Trajectory Tracking

To demonstrate the performance of the proposed controller, a circular tracking of the

ball is presented. The desired ball position for the trajectory tracking is given below:

xd = R sin(ωt) (4.33)

yd = R cos(ωt) (4.34)

(4.35)

where R, ω, and t are radius of the circle, the circle angular velocity, and the time, respec-

tively. The time derivatives of the desired trajectory are given by

ẋd = Rω cos(ωt) (4.36)

ẍd = −Rω2 sin(ωt) (4.37)

...
x
d
= −Rω3 cos(ωt) (4.38)

(xd)(4) = Rω4 sin(ωt) (4.39)

ẏd = −Rω sin(ωt) (4.40)

ÿd = −Rω2 cos(ωt) (4.41)

...
y
d
= Rω3 sin(ωt) (4.42)

(yd)(4) = Rω4 cos(ωt) (4.43)



52

4.2.2.1 Simulation Results

The simulation result of using only AFL for the circular trajectory tracking with a radius

of 0.08m and 2.0rad/s angular velocity is shown in Fig. 4.17. As mentioned before, since

AFL is based on the decoupled simplified dynamic model, increasing radius or angular ve-

locity would make the ball further deviate from the desired trajectory. Fig. 4.18 shows the

simulated system response with a frequency of ω = 6rad/s and radius of R = 0.06m. The

ball is balanced at the radius of 0.0684m, which gives an error of 13.21%.

Figure 4.17: Simulation on using AFL for trajectory tracking (ω = 2.0rad/s and R = 0.08m)

Figure 4.18: Simulation on using AFL for trajectory tracking (ω = 6.0rad/s and R = 0.06m)



53

When the NNPID is added, it is able to reduce the error as shown in Fig. 4.19. The

proposed controller made the ball to follow a trajectory with the radius of 0.0606m, which

decreases the error to 0.97%. Figs. 4.20-4.23 show the results of this simulation for PID

gains and control inputs for the x axis. Since the ball follows a smaller trajectory in Fig.

4.18 by using only the AFL, it is necessary that the NNPID sends the compensatory torque

input in the opposite direction to let the ball get closer to the desired trajectory. As a result

of this action, the torque input to the plate will be decreased, and the ball will be pushed

further to the circumference of the desired trajectory under the influence of the gravitational

force. It is clear from the Fig. 4.22 that the NNPID sends the compensatory torque input

in the opposite direction as the AFL, so the ball moves further away from the center of the

desired trajectory. Consequently, it decreases the trajectory tracking error. Fig. 4.20 also

verifies this conclusion because the NN added more emphasis on the Kp gain along with

subtle changes in Kd and Ki. Total control input of the simulation is shown in Fig. 4.23.

Figure 4.19: Simulation on using AFLNNPID for trajectory tracking (ω = 6.0rad/s and R

= 0.06m), simulation



54

Figure 4.20: Simulation on PID gains in x axis for trajectory tracking (ω = 6.0rad/s and R

= 0.06m)

Figure 4.21: Simulation on AFL control input of AFLNNPID in x axis for trajectory tracking

(ω = 6.0rad/s and R = 0.06m)



55

Figure 4.22: Simulation on NNPID control input of AFLNNPID in x axis for trajectory

tracking (ω = 6.0rad/s and R = 0.06m)

Figure 4.23: Simulation on total control input (AFLNNPID) in x axis for trajectory tracking

(ω = 6.0rad/s and R = 0.06m)



56

4.2.2.2 Experimental Results

Fig. 4.24 shows the experimental result of the ball following a circular trajectory with

0.08m radius and 2.0rad/s angular velocity. Next, a NN with η = 0.3 and α = 0.6 as the

learning and the momentum rates is used for the NNPID controller, Fig. 4.25. Experimental

results show that NNPID controller decreases the error from 14.31% with the radius of

0.0685m in Fig. 4.24 to the error of 9.66% with the radius of 0.0723m in Fig. 4.25.

Figure 4.24: Experiment on using AFL for trajectory tracking (ω = 2.0rad/s and R = 0.08m),

experiment

Figure 4.25: Experiment on using AFLNNPID for trajectory tracking (ω = 2.0rad/s and R

= 0.08m), experiment



57

Control inputs and PID gains history are provided in Figs. 4.26-4.29 for the x axis. The

y axis results are provided in Appendix D. Looking at the Figs. 4.27 and 4.28 shows that

the torque inputs from the NNPID is in the opposite direction of the AFL. For example,

at t = 5s, the AFL sends almost −0.05N.m, but the NNPID counteracts that by sending

almost 0.03N.m compensatory torque. As a result, the ball finds the opportunity to go

further from the center of the circular trajectory under the influence of the gravitational

force, and it decreases the trajectory tracking error. Fig. 4.26 shows that the NN adjusted

PID gains online successfully. It shows that the NN tried to increase system response by

decreasing Kd gain while increasing trajectory tracking accuracy by increasing Kp and Ki.

Fig. 4.29 also shows the total control input used for the experiment.

Figure 4.26: Experiment on PID gains in x axis for trajectory tracking (ω = 2.0rad/s and

R = 0.08m)



58

Figure 4.27: Experiment on AFL control input of AFLNNPID in x axis for trajectory track-

ing (ω = 2.0rad/s and R = 0.08m)

Figure 4.28: Experiment on NNPID control input of AFLNNPID in x axis for trajectory

tracking (ω = 2.0rad/s and R = 0.08m)



59

Figure 4.29: Experiment on total control input (AFLNNPID) in x axis for trajectory tracking

(ω = 2.0rad/s and R = 0.08m)



CHAPTER 5

CONCLUSION

This thesis introduces a solution for the problem of nonlinear control design using neural

network (NN hereafter). The controller consists of a base controller and a NN-based PID

compensator. Since simplified dynamic model is used in the design of the base controller,

control errors appear in the system response. The NN-based PID controller is added to the

controller to reduce the error. The NN-based PID controller uses NN to generate PID gains.

The online training feature of the neural network helps the PID controller to work with up-

dated control gains. Next, the PID controller generates compensatory torque inputs. Finally,

the output of NN-based PID controller is added to the output of the base controller. This

way, the controller is supposed to decrease errors caused by simplifications and assumptions

considered in the design of the base controller.

The proposed control method is verified on the ball-on-plate system for demonstration. It

is shown that adding the NN-based PID controller can decrease the error in both stabilization

and trajectory tracking. There is still some room for improvement in the design of the NN-

based PID compensator in terms of the error reduction. One solution would be considering

the plate angle and ball position together in the PID, and the neural network updates both

of the PID gains. Neural network structure also needs to be changed accordingly.

The controller has some limitations. First of all, neural network needs to be trained

offline. The second is the NN-based PID activation time. As mentioned before, NN-based

PID comes into the picture when the base controller has settled the system’s response. For

the ball-on-plate system in this thesis, the NN-based PID is set to turn on one second after



61

the starting point of the base controller, and the ball-on-plate system is controlled only by

the base controller during the first second.

Finally, it would be helpful to design an extra neural network for estimating dynamic

model of the system. In this case, one neural network is used in the controller and the second

one is utilized as the system dynamic estimator. However, state derivatives of the system

are noisy due to numerical derivation, so design of the neural network estimator that fits

the noisy data is difficult. A possible solution in order to bypass the noisy data of the state

derivatives would be using an observer. In that case, the observer predicts the value of the

state derivatives using available position states, and the neural network dynamic estimator

can be designed based on the position states and observer outputs. It is also recommended

to use a better training algorithms like Levenberge-Marquardt, which has better convergence

than backpropagation method. Finally, it would be a good idea to use a small, fast controller

board, mentioned in Chapter 4, to make the entire system portable.



REFERENCES

[1] Ming-tzu Ho, Yi-wei Tu, and Hao-shuan Lin, Controlling a ball and wheel system using

full-state-feedback linearization [Focus on Education, IEEE Control Systems Magazine,

vol. 29, no. 5, pp. 93101, Oct. 2009.

[2] J. C. Ryu, F. Ruggiero, and K. M. Lynch, Control of Nonprehensile Rolling Manipula-

tion: Balancing a Disk on a Disk, IEEE Transactions on Robotics, vol. 29, no. 5, pp.

11521161, Oct. 2013.

[3] J. Hauser, S. Sastry, and P. Kokotovic, Nonlinear control via approximate input-output

linearization: the ball and beam example, IEEE Transactions on Automatic Control,

vol. 37, no. 3, pp. 392398, Mar. 1992.

[4] Y. Guo, D. J. Hill, and Z.-P. Jiang, Global nonlinear control of the ball and beam

system, in Proceedings of 35th IEEE Conference on Decision and Control, 1996, vol. 3,

pp. 28182823 vol.3.

[5] S. Y. Liu, Y. Rizal, and M. T. Ho, Stabilization of a ball and sphere system using

feedback linearization and sliding mode control, in 2011 8th Asian Control Conference

(ASCC), 2011, pp. 13341339.

[6] M.-T. Ho, Y. Rizal, and L.-M. Chu, Visual Servoing Tracking Control of a Ball and Plate

System: Design, Implementation and Experimental Validation, International Journal of

Advanced Robotic Systems, vol. 10, no. 7, p. 287, Jul. 2013.



63

[7] T. D. C. Thanh and K. K. Ahn, Nonlinear PID control to improve the control perfor-

mance of 2 axes pneumatic artificial muscle manipulator using neural network, Mecha-

tronics, vol. 16, no. 9, pp. 577587, Nov. 2006.

[8] K. K. Ahn and T. D. C. Thanh, Nonlinear PID control to improve the control perfor-

mance of the pneumatic artificial muscle manipulator using neural network, Journal of

Mechanical Science and Technology, vol. 19, no. 1, pp. 106115, Jan. 2005.

[9] . Eski and . Yldrm, Vibration control of vehicle active suspension system using a new

robust neural network control system, Simulation Modelling Practice and Theory, vol.

17, no. 5, pp. 778793, May 2009.

[10] S. Cong and Y. Liang, PID-Like Neural Network Nonlinear Adaptive Control for Un-

certain Multivariable Motion Control Systems, IEEE Transactions on Industrial Elec-

tronics, vol. 56, no. 10, pp. 38723879, Oct. 2009.

[11] S. Jung and S. S. Kim, Control Experiment of a Wheel-Driven Mobile Inverted Pen-

dulum Using Neural Network, IEEE Transactions on Control Systems Technology, vol.

16, no. 2, pp. 297303, Mar. 2008.

[12] S. Jung and H. T. Cho, Decoupled Neural Network Reference Compensation Technique

for a PD Controlled Two Degrees-of-Freedom Inverted Pendulum, International Journal

of Control, vol. 2, no. 1, p. 9, 2004.

[13] S. Jung, H. T. Cho, and T. C. Hsia, Neural Network Control for Position Tracking of

a Two-Axis Inverted Pendulum System: Experimental Studies, IEEE Transactions on

Neural Networks, vol. 18, no. 4, pp. 10421048, Jul. 2007.



64

[14] T.-C. Chen and T.-T. Sheu, Model reference neural network controller for induction

motor speed control, IEEE Transactions on Energy Conversion, vol. 17, no. 2, pp.

157163, Jun. 2002.

[15] S. S. Ge, C. C. Hang, and Tao Zhang, Adaptive neural network control of nonlinear

systems by state and output feedback, IEEE Transactions on Systems, Man and Cy-

bernetics, Part B (Cybernetics), vol. 29, no. 6, pp. 818828, Dec. 1999.

[16] P. Baldi, Gradient descent learning algorithm overview: a general dynamical systems

perspective, IEEE Transactions on Neural Networks, vol. 6, no. 1, pp. 182195, Jan.

1995.



APPENDIX A

EQUATIONS OF MOTION MATRICES



66

A.1 Equations of Motion Matrices

The equations of motion of the ball-on-plate system are derived in Chapter 2. This

appendix shows the matrices of the inertia, centrifugal and coriolis forces, potential, and

external forces.

M =



















m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44



















where elements are

m11 = −mx2 cos2(θ2) + Ib + Izp +my2 +mr2 cos2(θ2) + cos2(θ2)Ixp − Izp cos
2(θ2) +mx2

− 2mr sin(θ2)x cos(θ2)

m12 = −my(cos(θ2)x+ sin(θ2)r)

m13 = −m sin(θ2)y

m14 = −
−mr sin(θ2)x+ Ib cos(θ2) +mr2 cos(θ2)

r

m21 = −my(cos(θ2)x+ sin(θ2)r)

m22 = mr2 + Iyp + Ib +mx2

m23 =
Ib +mr2

r

m24 = 0

m31 = −m sin(θ2)y



67

m32 =
Ib +mr2

r

m33 =
Ib +mr2

r2

m34 = 0

m41 = −
−mr sin(θ2)x+ Ib cos(θ2) +mr2 cos(θ2)

r

m42 = 0

m43 = 0

m44 =
Ib +mr2

r2

C =



















c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 c34

c41 c42 c43 c44



















where elements are

c11 = −2 cos(θ2)Ixp sin(θ2)θ̇2 − 2mr2 cos(θ2) sin(θ2)θ̇2 + 2mx2 cos(θ2) sin(θ2)θ̇2+

2Izp cos(θ2) sin(θ2)θ̇2 − 2mr sin(θ2)ẋ cos(θ2) + 2myẏ − 4mr cos2(θ2)θ̇2x− 2mx cos2(θ2)ẋ

+ 2mxẋ+ 2mrθ̇2x

c12 =
−2mr cos(θ2)ẋy + Ib sin(θ2)ẏ

r
− θ̇2my(− sin(θ2)x+ cos(θ2)r)

c13 = 0

c14 = 0



68

c21 = −
ẏ(2mrx cos(θ2) + 2mr2 sin(θ2) + Ib sin(θ2))

r
+ θ̇1(cos(θ2)Ixp sin(θ2)

+mr2 cos(θ2) sin(θ2)−mx2 cos(θ2) sin(θ2)− Izp cos(θ2) sin(θ2) + 2mr cos2(θ2)x−mrx)

c22 = 2mxẋ

c23 = 0

c24 = 0

c31 = −2m sin(θ2)ẏ + θ̇1m sin(θ2)(− sin(θ2)x+ cos(θ2)r)

c32 = −mxθ̇2

c33 = 0

c34 = 0

c41 =
Ib sin(θ2)θ̇2 + 2mr2 sin(θ2)θ̇2 + 2mr cos(θ2)θ̇2x+ 2mr sin(θ2)ẋ

r
− ymθ̇1

c42 = 0

c43 = 0

c44 = 0

G =



















−mg(− sin(θ1) sin(θ2)x− cos(θ1)y + cos(θ2) sin(θ1)r)

−mg cos(θ1)(cos(θ2)x+ sin(θ2)r)

−mg cos(θ1) sin(θ2)

mg sin(θ1)



















Q =

[

τ1 τ2 0 0

]T



APPENDIX B

Y AXIS CONTROLLER



70

B.1 Y Axis Controller

Controller design of the ball-on-beam system in x axis is discussed in Chapter 3. This

appendix discusses the controller design in y axis.

Figure B.1: Inside of controller block diagram (y axis)

B.1.1 Approximate Feedback Linearization

States of the ball-on-beam system in y axis are given below:

X =

[

θ1, θ̇1, y, ẏ

]T

(B.1)

Ball-on-beam equations of motion in y axis are derived in Eqs. (2.25) and (2.28).

Ẋ =

[

θ̇1, θ̈1, ẏ, ÿ

]T

(B.2)

g(x) =

[

0
1

Ib + Ip +my2
0 0

]T

(B.3)

u = τ1 (B.4)



71

f(X) =

























θ̇1

1

Ib + Ip +my2

(

mgr sin(θ1)−mgy cos(θ1)− 2myẏθ̇1

)

ẋ

1

m+
Ib

r2

(

myθ̇21 −mg sin(θ1)
)

























(B.5)

(B.6)

Output of the ball-on-beam system is ball position itself.

h(X) = y (B.7)

Transformed states of the ball-on-beam system in y axis is given by

ζ1 = h(X) = y (B.8)

ζ2 =
dζ1

dt
= ẏ (B.9)

ζ3 =
dζ2

dt
= ÿ =

1

m+
Ib

r2

(

myθ̇21 −mg sin(θ1)
)

(B.10)

ζ4 =
dζ3

dt
=

1

m+
Ib

r2

(

mẏθ̇21 −mgθ̇1 cos(θ1)
)

(B.11)

where the term 2myθ̇1θ̈1 is ignored from the ζ4. Transformed control input can be obtained

as below:

ζ̇4 = α + βτ1 (B.12)

α = A2
ymθ̇21(myθ̇21 −mg sin(θ1)) + Aymgθ̇21 sin(θ1)+ (B.13)

AyBy(2mẏθ̇1 −mg cos(θ1))(−2myẏθ̇1 −mgy cos(θ1) +mgr sin(θ1)) (B.14)



72

β = AyBy

[

2mẏθ̇1 −mg cos(θ1)
]

(B.15)

Ay =
1

m+
Ib

r2

(B.16)

By =
1

my2 + Ip + Ib
(B.17)

B.1.2 NN-Based PID Controller

NN-based PID controller is discussed in this part. PID controller in y axis is given below:

τNN = Kp(y
d − y) +Kd(ẏ

d − ẏ) +Ki

[
∫ t

0

(yd − y)dt

]

(B.18)

Neural network in y axis is shown in Fig. B.2.

Figure B.2: Neural network structure (y axis)



73

The inputs to the neural network are given below:

S1 = yd − y (B.19)

S2 = ẏd − ẏ (B.20)

S3 =

∫ t

0

(yd − y)dt (B.21)

A tangent sigmoid and a linear transfer functions are used for the hidden and the output

layers, respectively.

ftansig(s) =
2

1 + e−2s
− 1 (B.22)

flin(s) = s (B.23)

The outputs of the neural network are given below:

φ1 = Kp (B.24)

φ2 = Kd (B.25)

φ3 = Ki (B.26)

From Fig. B.1,

τ1 = τAFL + τNN (B.27)

Neural network error function is given below:

E =
1

2
(yd − y)2 (B.28)



74

Applying backpropagation on neural network results in updating equations:

∂E

∂wkj

= (
∂E

∂y
)(

∂y

∂τ1
)(

∂τ1

∂τNN

)(
∂τNN

∂φk

)(
∂φk

∂Sk

)(
∂Sk

∂wkj

) (B.29)

∂E

∂bk
= (

∂E

∂y
)(

∂y

∂τ1
)(

∂τ1

∂τNN

)(
∂τNN

∂φk

)(
∂φk

∂Sk

)(
∂Sk

∂bk
) (B.30)

∂E

∂wji

= (
∂E

∂y
)(

∂y

∂τ1
)(

∂τ1

∂τNN

)

[

3
∑

k=1

(
∂τNN

∂φk

)(
∂φk

∂Sk

)(
∂Sk

∂φj

)

]

(
∂φj

∂Sj

)(
∂Sj

∂wji

) (B.31)

∂E

∂bj
= (

∂E

∂y
)(

∂y

∂τ1
)(

∂τ1

∂τNN

)

[

3
∑

k=1

(
∂τNN

∂φk

)(
∂φk

∂Sk

)(
∂Sk

∂φj

)

]

(
∂φj

∂Sj

)(
∂Sj

∂bj
) (B.32)

From Eq. (B.28),

∂E

∂y
= −(yd − y) (B.33)

From Fig. 3.1,

∂y

∂τ1
= sign(

∆y

∆τ1
) = sign(

y − yprev

τ1 − τ1prev
) (B.34)

From Eq. (B.27),

∂τ1

∂τNN

= 1 (B.35)



75

From Eq. (B.18),

∂τNN

∂φ1

= yd − y (B.36)

∂τNN

∂φ2

= ẏd − ẏ (B.37)

∂τNN

∂φ3

=

∫ t

0

(yd − y)dt (B.38)

(B.39)

From Eqs. (3.36)-(3.40),

∂Sk

∂wkj

= φj (B.40)

∂Sk

∂bk
= 1 (B.41)

∂Sk

∂φj

= wkj (B.42)

∂Sj

∂wji

= φi (B.43)

∂Sj

∂bj
= 1 (B.44)

From Eqs. (B.22) and (B.23),

∂φk

∂Sk

= 1 (B.45)

∂φj

∂Sj

= 1− φ2
j (B.46)

(B.47)



APPENDIX C

EXPERIMENTAL SETUP



77

C.1 Experimental Setup

Items used for the design of the ball-on-plate system are summarized in Table C.1. Figs.

C.1-C.11 show the items of the mechanical setup in SolidWorks.

Table C.1: Mechanical setup items of the ball-on-plate system

item Model/Material Quantity

DYNAMIXEL motor XM430-W210-T 2

USB2Dynamixel ... 1

Robotis power supply ... 1

Motor frames Aluminum 2

Rod end bearing Steel 2

Rod end bolt Carbon steel 2

Top plate Acrylic 1

Base plate Acrylic 1

Tube(connecting rod) Aluminum 1(3ft)

Center rod Aluminum 1(0.5ft)

Universal joint Metal/Plastic 3



78

Figure C.1: Base plate designed in SolidWorks

Figure C.2: Connecting rod of the linkage mechanism designed in SolidWorks



79

Figure C.3: Center rod designed in SolidWorks

Figure C.4: Rod end of the linkage mechanism designed in SolidWorks



80

Figure C.5: Top plate (off-the-shelf item)

Figure C.6: Motor bottom bracket (off-the-shelf item)



81

Figure C.7: Motor back frame (off-the-shelf item)

Figure C.8: Dynamixel motor (off-the-shelf item)

Figure C.9: Rod end attached to motor side bracket (off-the-shelf item)



82

Figure C.10: Motor spacer (off-the-shelf item)

Figure C.11: Universal joint (off-the-shelf item)



APPENDIX D

Y AXIS RESULTS



84

D.1 Experiment on Offset Point Stabilization

This section provides the output graphs for the PID gains and the control inputs for the

y axis where the ball is supposed to be balanced at (0.1,−0.1).

Figure D.1: Experiment on PID gains in y axis in order to balance the ball at (0.1,−0.1)

Figure D.2: Experiment on AFL control input of AFLNNPID in y axis in order to balance

the ball at (0.1,−0.1)



85

Figure D.3: Experiment on NNPID control input of AFLNNPID in y axis in order to balance

the ball at (0.1,−0.1)

Figure D.4: Experiment on total control input (AFLNNPID) in y axis in order to balance

the ball at (0.1,−0.1)

D.2 Simulation on Trajectory Tracking

The simulated output graphs of trajectory tracking for the change in PID gains and the

control inputs are provided in this section. The ball is supposed to follow a circular trajectory

with a radius of 0.06m and angular velocity of ω = 6rad/s.



86

Figure D.5: Simulation on PID gains in y axis for trajectory tracking (ω = 6.0rad/s and R

= 0.06m)

Figure D.6: Simulation on AFL control input of AFLNNPID in y axis for trajectory tracking

(ω = 6.0rad/s and R = 0.06m)



87

Figure D.7: Simulation on NNPID control input of AFLNNPID in y axis for trajectory

tracking (ω = 6.0rad/s and R = 0.06m)

Figure D.8: Simulation on total control input (AFLNNPID) in y axis for trajectory tracking

(ω = 6.0rad/s and R = 0.06m)

D.3 Experiment on Trajectory Tracking

The experimental results for the change in PID gains and control inputs are given in this

section. The ball is supposed to follow a circular trajectory with radius of 0.08m and angular

velocity of ω = 2rad/s.



88

Figure D.9: Experiment on PID gains in y axis for trajectory tracking (ω = 2.0rad/s and R

= 0.08m)

Figure D.10: Experiment on AFL control input of AFLNNPID in y axis for trajectory

tracking (ω = 2.0rad/s and R = 0.08m)



89

Figure D.11: Experiment on NNPID control input of AFLNNPID in y axis for trajectory

tracking (ω = 2.0rad/s and R = 0.08m)

Figure D.12: Experiment on total control input (AFLNNPID) in y axis for trajectory track-

ing (ω = 2.0rad/s and R = 0.08m)


