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Abstract—Power flow analysis is used to evaluate the flow of 

electricity in the power system network. Power flow calculation is 

used to determine the steady-state variables of the system, such as 

the voltage magnitude / phase angle of each bus and the 

active/reactive power flow on each branch. The DC power flow 

model is a popular linear power flow model that is widely used in 

the power industry. Although it is fast and robust, it may lead to 

inaccurate line flow results for some transmission lines. Since 

renewable energy sources such as solar farm or offshore wind 

farm are usually located far away from the main grid, accurate 

line flow results on these critical lines are essential for power flow 

analysis due to the unpredictable nature of renewable energy. 

Data-driven methods can be used to partially addressed these 

inaccuracies by taking advantage of historical grid profiles. In this 

paper, a neural network (NN) model is trained to predict power 

flow results using historical power system data. Although the 

training process may take time, once trained, it is very fast to 

estimate line flows. A comprehensive performance analysis 

between the proposed NN-based power flow model and the 

traditional DC power flow model is conducted. It can be concluded 

that the proposed NN-based power flow model can find solutions 

quickly and more accurately than DC power flow model. 

 
Index Terms— DC Power Flow, Machine learning, Neural 

network, Power flow, Renewable energy, Transmission network. 

I.  INTRODUCTION 

or any power system, power flow is necessary to analyze 

the steady-state of the system. AC Power flow problems are 

usually solved using iterative methods such as Gauss-Seidel 

(GS) method and Newton-Raphson (NR). These methods can 

provide steady-state solutions for the system within specified 

accuracy boundaries. However, for a large-scale system, with 

hundreds of thousands of buses, it is not practical to use AC 

power flow equation-based methods for decision making or fast 

screening of the system, especially system with multiple solar 

or wind farms. Renewable sources provide clean, 

environmentally friendly energy to the power system. However, 

due to the inherent intermittent nature of renewable energy, 

novel solutions to mitigate uncertainties from renewable 

sources are desirable. Outside of the challenges of securing 

green and clean energy sources, the power industry must face 

difficult problems of integrating renewable energy sources to 

the existing aging power infrastructure. Problems will arise in 

terms of economic feasibility, reliability, and security. 

Applying ML to solve these challenging situations is critical for 

development of clean and green energy of the future. 

Applications of machine learning (ML) toward renewable 

energy have been widely researched and studied in recent years 

[1]- [2]. For example, using recursive neural networks, 

researchers had tried to forecast energy prices of renewable 

energy sources for day-ahead energy market [1]. Alternatively, 

using ML as an advanced algorithm to predict generation of 

renewable sources has been proposed [3] [4]. Deep 

reinforcement learning was investigated as a possible control 

strategy for power systems with multiple renewable energy 

sources [5].  

Thus, it can be concluded that using machine learning as an 

alternative approach for solving problems involving renewable 

energy in power systems can be quite beneficial. Studies 

focusing on applications of ML show that ML algorithms could 

be used to gain an advantage over traditional methods in 

addressing various issues in power systems. Compared to 

traditional computational approaches, machine learning 

algorithms have an intrinsic generalization capability with 

greater computational efficiency and scalability [6]. Machine 

learning algorithms also have the ability to learn complex 

nonlinear input-output relationships, use sequential training 

procedures, and reflexively adapt themselves to the data.  

Machine learning has been used as an algorithm selector that 

chooses between different power flow management algorithms 

depending on the state of the network [7]. Instead of directly 

using ML methods to solve for power flow, [7] looked at the 

performance benefits of using machine learning in choosing the 

best algorithms for power flow management. In [8], a neural 

network (NN) model was proposed to predict voltage 

magnitude and active power flow of the IEEE 14-bus system. 

Although it proves that NN model is an efficient method for 

calculating power flow, the results were only shown for a 

selected number of buses and branches. For [9], predictions 

using an NN model were made for voltage magnitude and phase 

angle at each bus. However, a thorough analysis regarding the 

performance of the NN model vs. the non-iterative DC power 

flow method was not conducted. Moreover, predictions for 

active power flow for each branch were not considered. The NN 

models studied in [8] and [9] were both trained and tested 

against only one system. This restriction does not show how 

well the NN model would adapt against different power systems 

with different bus-branch configurations. Due to the nature of 

machine learning algorithms to be able to reflexively adapt to 

different data/environments, these models did not fully explore 

the potential of machine learning in solving power flow.  

In this paper, we developed an ML algorithm that can solve 
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power flow solutions quickly and accurately using an NN 

model. Detailed research was performed regarding model 

selection and how to maximize the performance of the proposed 

NN model. The model was trained and tested against multiple 

systems to assess how accurate it could predict the outputs. 

Comparing to DC power flow model, its performance and 

effectiveness are evaluated and demonstrated. 

The rest of the paper is organized as follows. Background 

analysis of power flow and machine learning are covered in 

section II. Section III introduces how the NN model was 

developed, and sample data were generated. Section IV 

provides analysis of the results and evaluates the performance 

of the proposed NN method. Section V concludes the paper and 

section VI describes possible future work. 

II.  PRELIMINARIES 

A.  Power Flow 

Power flow problem is represented by a set of nodal power 

balance equations that simply state that the sum of active and 

reactive power at a node must be equal to zeros respectively, 

which follows the law of conservation of energy [10]. The nodal 

power balance equations are listed as follows [11]  
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where, Pi and Qi are the active and reactive power injections at 

each node respectively. The summation terms represent the 

active or reactive power injections or withdrawals from the 

electrical network at a given node �. |Vi| and |Vk| are the voltage 

magnitude for the two end buses of a branch. Gik and Bik are the 

corresponding conductance and susceptance of a branch. The 

phase angle ��� is the difference in voltage phase angles of the 

two end buses of a branch.  

Using traditional AC power flow (ACPF) methods such as 

NR method and GS method, an accurate steady-state solution 

can be found. But, due to the inherent and complex iterative 

nature of these algorithms, it is not beneficial for some online 

monitoring applications or to be integrated into optimization-

based scheduling and dispatching models [12]. An alternative 

non-iterative method called DC power flow (DCPF) can be 

used in such cases. For this method, at all nodes, the voltage 

magnitude is assumed to be 1, and reactive power is ignored 

[13]. With DCPF, the solutions to steady-state active power 

flow can be found very quickly. However, the values may be 

very inaccurate due to the assumptions made earlier. Thus, it is 

desirable to develop a new method that can provide fast and 

accurate power flow solutions. 

B.  Machine Learning 

Machine learning is a computer algorithm that can 

automatically improve/learn through experience by using 

historical data. Models will be built using sample training data 

to make predictions or decisions without being explicitly 

programmed.  

 
Fig. 1.  Example of a simple machine learning model. 

 

For a basic ML model in Fig. 1, training data (input) are 

multiplied first with a weight (w) vector. Then, the results are 

mapped to an output value after applying an activation function. 

Depending on model selection, different activation functions 

can be used. During the training process, the w vector is 

repeatedly updated until the error is less than a targeted 

threshold or a specified number of epochs is reached [14]. 

 

 
Fig. 2.  Example of a multilayer neural network model. 

 

An NN model typically involves multiple nodes (artificial 

neurons) with several hidden layers, such as the one from Fig. 

2. The connections between nodes (vector weights) reflect the 

signal strength between each neuron. A complex NN with 

different layers performs different transformations of the input 

data. Each layer/node learns different features from the input 

data. An NN model can learn complex input-output 

relationships that can be difficult to comprehend or program 

using traditional algorithms. 

The applications of ML methods are numerous across 

different industries, businesses, and research areas. One 

exciting application is to use artificial intelligence to automate 

the translation of text/speech. In addition, super-resolution 

enhancement of pictures is an interesting subject for machine 

learning [15]. As applications for machine learning are 

increasingly being explored and utilized, continuous 

development of machine learning is critical to solving existing 

and emerging challenging problems in power systems. 

III.  MODEL SELECTION 

For the power flow problem studied in this paper, supervised 

learning through regression analysis was selected as the ML 

method to train the NN model with a large amount of data. The 

matpower module for MATLAB was used to solve AC power 

flow problems under various power system conditions and data 

samples (power flow results) were collected. Initial voltage and 

demand were varied within ±10% of the base values. For each 

test power system, at least 10,000 samples were generated. The 

data set was divided into three groups: 80% for training, 10% 

for validation, and 10% for testing.  
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Fig. 3.  Illustration of the proposed multilayer neural network model. 

 

The proposed NN model as shown in Fig. 3 has five hidden 

layers. The Leaky Rectified Linear Unit (Leaky ReLU), as 

shown in Fig. 4, was chosen as the activation function for 

backpropagation. It allows a small, non-zero constant gradient 

to pass through to minimize the vanishing gradient problem 

during the training phase of a NN model. 

 
Fig. 4.  Plot of leaky RELU function. 

 

Input data for the proposed NN model include the initial 

voltage magnitude, the sum of active power injection, and 

reactive power injection for each bus. The output data for 

training will be steady-state voltage magnitude for each bus and 

active power flow for each branch. 

Before feeding input data into the model for training, the 

data are normalized using the min-max normalization method. 

For every data feature, the minimum value is 0 and the 

maximum value is 1. 

 

 
Fig. 5.  Illustration of stochastic gradient descent (SGD) algorithm 

 

Stochastic gradient descent (SGD) was chosen as the 

optimizing function for the NN model. SGD is very common 

for ML algorithm. In Fig. 5, a random starting point was chosen 

on the gradient curve of the objective cost function. At each 

subsequent iteration, the gradient was updated until the global 

minimum/threshold has been reached. Regular stochastic 

gradient requires computation of all data points for each 

iteration. For SGD, the selection of random samples in each 

minibatch for training can minimize computing time compared 

to using a complete training data set. Thus, it is desirable to use 

SGD as an optimization function. 

Mean square error (MSE) loss was used to measure the 

performance of the model during the training process. MSE loss 

is commonly used for regression training of machine learning. 

The MSE loss function used in this paper is defined in (3), 

where �� denotes the actual output value while ��� denotes the 

NN model estimated output value, and n denotes the number of 

sample points. 

��� �
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IV.  RESULTS ANALYSIS 

The proposed NN model was trained to predict voltage 

magnitude and active power flow on multiple systems with 

different sizes: the IEEE 9-bus test system, IEEE 24-bus test 

system, IEEE 39-bus test system, IEEE 57-bus test system, and 

the IEEE 118-bus test system.  

For comparison between the proposed NN model and DCPF 

model, absolute value difference and percent relative difference 

are used as evaluation metrics. Absolute value difference is 

defined as the Mean Absolute Error (MAE) between the target 

value against a reference value. The target values for 

comparison are the NN model’s predictions and DCPF results. 

The reference base value is obtained from the full ACPF model. 
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where x is the target value and y is the reference value. 

Percent relative difference (PRD) was calculated using the 

relative difference formula shown below: 
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This PRD metric is a dimensionless unit. The penalty of 

having a much smaller reference value relative to the target 

value is minimized when dividing by the sum of both values. 

 

 
Fig. 6.  MSE loss during training for active power flow of a 24-bus system. 

 

In Fig. 6, the proposed NN model performs well in 

minimizing the MSE loss. The training loss decreases rapidly 

and then reaches the plateau zone after around 400 epochs. In 

addition, the model did an excellent job in fitting the predicted 
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value toward the output value. The validation error rate curve 

nearly matched the training error rate curve in Fig. 7. The 

trained NN model does not seem to suffer from being 

underfitted or overfitted. 

 

 
Fig. 7.  MAE during training for active power flow of a 24-bus system 

 

The proposed NN model predicts voltage magnitude at each 

bus for multiple systems with high accuracy: the error is around 

0.5% as shown in Table I. However, since nearly all voltage 

magnitude values fall between a narrow range from 0.9 p.u. to 

1.1 p.u., it was considerably easier for the NN model to learn 

and predict the output values. 

 
TABLE I 

Mean PRD of voltage magnitude of the proposed NN model on different test 

systems. 

Voltage Magnitude 

System Percent Error 

9 Bus 0.54 

24 Bus 0.60 

39 Bus 0.50 

57 Bus 0.33 

118 Bus 0.59 

 

Table II shows the absolute errors (in MW) for line flows 

estimated with the proposed NN model and the traditional 

DCPF model. The active line power flow predicted by the 

proposed NN model is much more accurate than the traditional 

DCPF model. The lines flows (MW) predicted with the 

proposed NN model are much closer to the reference values 

from the full exact ACPF model across all measured statistical 

values. 

 
TABLE II 

Absolute value (MW) difference of active power flow comparing the 

proposed NN model and the traditional DCPF model on different test systems. 

System Model Mean Max Min Median Std.Dev. 

9  

Bus 

NN 1.70 6.54 0.00 1.50 1.22 

DCPF 2.96 14.52 0.00 2.53 2.21 

24  
Bus 

NN 2.77 21.60 0.00 2.26 2.27 

DCPF 5.92 43.38 0.00 4.29 5.53 

39  

Bus 

NN 7.07 45.69 0.00 5.27 6.65 

DCPF 13.33 100.86 0.00 9.93 12.20 

57  

Bus 

NN 0.54 11.08 0.00 0.27 0.73 

DCPF 1.65 23.19 0.00 0.96 1.98 

118 
Bus 

NN 1.16 20.86 0.00 0.84 1.27 

DCPF 3.43 70.62 0.00 2.02 5.27 

 

Table III presents the results associated with only highly 

loaded branches using different threshold levels. The DCPF 

results are not as accurate as the proposed NN model. For 

example, for all branches with actual active power flow over 

200 MW for the IEEE 24-bus system, the PRD mean for the 

proposed NN model is only 0.65%, which is very close to the 

actual results reported from the full ACPF model. However, the 

PRD is 1.35% for the DCPF model. It is double the error of the 

proposed NN model. 

 
TABLE III 

PRD of active power flow comparing the proposed NN model and the DCPF 

model for different threshold levels on the IEEE 24-bus system. 

System Model Mean Max Min Median Std.Dev. 

50  

MW 

NN 1.72 17.14 0.00 1.26 1.62 

DCPF 6.42 75.28 0.00 3.43 10.02 

100 

MW 

NN 1.42 8.95 0.00 0.89 1.52 

DCPF 6.55 75.28 0.00 2.75 12.76 

150 
MW 

NN 1.33 8.95 0.00 0.76 1.59 

DCPF 2.96 24.63 0.00 1.63 3.53 

200 

MW 

NN 0.65 3.34 0.00 0.53 0.52 

DCPF 1.35 5.74 0.00 1.22 0.92 

 

 
Fig. 8.  Mean absolute value difference for active power flow of a 24-bus 

system. 

 

 
Fig. 9.  Mean absolute value difference for active power flow of a 118-bus 

system. 

 

Fig. 8 and Fig. 9 present the mean absolute error of line 

power flows on the IEEE 24-bus system and IEEE 118-bus 
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system respectively. From these two figures, it is observed that 

the proposed NN model outperforms the traditional DCPF 

model by a large margin. Note that the DCPF model has large 

outliers with great errors while the proposed NN model does 

not. For the proposed NN model, the predicted line active 

power flows are rarely more than 5MW away from the true 

values. It can be concluded that the proposed NN model is 

superior to the traditional DCPF model in terms of accuracy. 

V.  CONCLUSION 

Based on the result, it can be concluded that the proposed NN 

model produces much better results at predicting line active 

power flows compared to the traditional DCPF model. In 

addition, the voltage magnitudes predicted by the proposed NN 

model closely match the results of ACPF. The potential of using 

the NN model as a supervised machine learning algorithm to 

calculate power flow has been explored in this paper. Unlike 

DCPF, no assumption must be made regarding voltage 

magnitudes and the proposed NN model can predict the values 

of voltage magnitudes very accurately. The values of line active 

power flows using the proposed NN model are very close to 

solutions solved by ACPF. In addition, solutions to both line 

active power flows and voltage magnitudes can be found 

quickly once the model has been trained offline. The proposed 

NN model performs faster with better results compared to the 

DCPF model. 

Model selection is an important step for the ML algorithm. 

In addition, training the NN model may require a large data set 

of samples and computing resources. Building and training NN 

models can be difficult and computationally expensive, but the 

reward is significant. Applications of NN in power systems are 

still being explored and researched [1], [5]. Regardless, the 

potentials of using ML to build and improve upon previous 

power systems technologies are limitless. 

VI.  FUTURE WORK 

The proposed NN model shows potentially useful 

applications of machine learning in power systems. Due to the 

adaptability nature of ML, NN predictions can be used as part 

of the optimization model to solve optimal power flow (OPF) 

for system with multiple renewable sources. With the NN 

model, we can directly calculate line flows as part of the 

constraint and simplify OPF calculation. Alternatively, we can 

also develop a different machine learning algorithm to account 

for unpredictability of renewable energy in OPF calculation. 

Another potential application of the proposed NN model is to 

quickly screen a long list of contingencies and filter out non-

critical contingencies for large-scale power systems in real-

time. 

VII.  REFERENCES 

 

[1]  P. Mandal, T. Senjyu, N. Urasaki, A. Yona, T. 

Funabashi and A. K. Srivastava, "Price Forecasting for 

Day-Ahead Electricity Market Using Recursive Neural 

Network," in IEEE Power Engineering Society General 

Meeting, 2007.  

[2]  "Long-Term Recurrent Convolutional Network-based 

Inertia Estimation using Ambient Measurements," IEEE 

PES General Meeting (under review), 2022.  

[3]  L. Wu, J. Park, J. Choi, J. Cha and K. Y. Lee, "A study 

on wind speed prediction using artificial neural network 

at Jeju Island in Korea," in Transmission & Distribution 

Conference & Exposition: Asia and Pacific, Seoul, 

Korea, 2009.  

[4]  "Solar Power Output Prediction Using Multilayered 

Feedforward Neural Network: A Case Study of Jaipur," 

in IEEE International Symposium on Sustainable 

Energy, Signal Processing and Cyber Security , 

Gunupur Odisha, India , 2020.  

[5]  S. Huang, M. Yang, C. Zhang, J. Yun, Y. Gao and P. Li, 

"A Control Strategy Based on Deep Reinforcement 

Learning Under the Combined Wind-Solar Storage 

System," in IEEE 3rd Student Conference on Electrical 

Machines and Systems, 2020.  

[6]  S. M. Miraftabzadeh, F. Foiadelli, M. Longo and M. 

Pasetti, "A Survey of Machine Learning Applications 

for Power System Analytics," in International 

Conference on Environment and Electrical Engineering, 

2019.  

[7]  J. E. King, S. C. E. Jupe and P. C. Taylor, "Network 

State-Based Algorithm Selection for Power Flow 

Management Using Machine Learning," IEEE 

Transactions on Power Systems, vol. 30, no. 5, Sept. 

2015.  

[8]  M. Zhou, "Exploring Application of Machine Learning 

to Power System Analysis," ResearchGate, 218. 

[9]  W. A. Alsulami and R. S. Kumar, "Artificial Neural 

Network based Load Flow Solution of Saudi National 

Grid," in Saudi Arabia Smart Grid Conference, 2017.  

[10] M. S. S. T. O. A. B. J. Duncan Glover, Power System 

Analysis and Design, Cengage Learning, 2022.  

[11] A. S. K. P. B. Xingpeng Li, "Sensitivity factors based 

transmission network topology control for violation 

relief," IET Generation, Transmission & Distribution, 

vol. 14, no. 17, pp. 3539-3547, July 2020.  

[12] A. Keyhani, A. Abur and S. Hao, "Evaluation of Power 

Flow Techniques for Personal Computers," in IEEE 

Transactions on Power Systems, 1989.  

[13] Y. Qi, D. Shi and D. Tylavsky, "Impact of assumptions 

on DC power flow model accuracy," in North American 

Power Symposium, 2012.  

[14] R. Lukomski and K. Wilkosz, "Power System Topology 

Verification Using Artificial Neural Network Utilization 

of Measurement Data," in IEEE Bologna Power Tech 

Conference Proceedings, 2003.  

[15] J. H. W. C. T. S. D. J. F. M. N. Chitwan Saharia, "Image 

Super-Resolution via Iterative Refinement," in 

International Conference on Computer Vision, 2021.  

[16] A. V. Ramesh and X. Li, "Machine Learning Assisted 

Approach for Security-Constrained Unit Commitment," 

IEEE Transactions on Power Systems (under review).  

 


